
The Keel Meta-framework: A Hands On Tutorial

Shash Chatterjee

Published September 29, 2003 on TheServerSide.com
Copyright © 2001-2003 The Keel Group, Ltd.

Table of Contents
Introduction..4

The Keel Meta-framework..4
About the Tutorial...4
A Few Notes..5

Infra-structure..6
Prerequisites for Keel..6

The Java Environment..6
The Build Environment..6
Keel Meta-framework..6

Installing Keel and Required Tools...7
Downloading Tomcat and Struts..7
Installing Tomcat and Struts...7
Building and Deploying Keel...8
Important Directories..8

Skeletal Application...9
Setting-up Directory Structure..9
Directory Structure - The Easy Way(s)...9
Adapting to Keel's build-system...10

Changing build.xml..10
Customizing Ant targets...10
Deployment properties...11

Hello World in Keel...13
Implementing the Model...13
Adding roles..14
Adding model meta-data...14
Adding ant.properties file..15
Building...15
Starting Tomcat...16
Adding to the menu...18

Configuration...20
Changing the model..20
Altering Meta-data..20
Configuring the Second Shorthand...20
Adding New Components to Menu...21
Building, Deployment, Testing...21

Adding Security..22
Create the model...22
Setting up security...23

Adding Persistence...28
The Entity Bean...28
The Prompter Model...30
The Processing Model...31
Auto-increment configuration...33
Adding default data...33
Using the Persistent...33
Verifying the data..35

Page 2 of 42

The Keel Meta-framework:
A Hands-On Tutorial http://www.keelframework.org

Adding a Struts User Interface...37
Where to go next?...37
Mapping to JSPs - Struts Forwards...37
Adding the JSPs..37

More To Come..41
References...42

Index of Figures
Figure 1- Directory Structure...9
Figure 2- The Keel Navigation Menu..17
Figure 3- The Output of HelloWorld Model..18
Figure 4- Hello World Added to Menu..19
Figure 5- Creating the Default Database...24
Figure 6- Secured Model Absent from Menu..24
Figure 7- Access Denied..25
Figure 8- Security Setup..26
Figure 9- Output from Secured Model...27
Figure 10- Output from Prompt Model..34
Figure 11- Output from Process Model...35
Figure 12- Data Shown by CRUD...36
Figure 13- JSP Output from Prompt Model...39
Figure 14- JSP Output from Process Model..40

Page 3 of 42

http://www.keelframework.org
The Keel Meta-framework:

A Hands-On Tutorial

Introduction
There has been a movement afloat for a while in the Java world to move away from proprietary, one of a kind
developments, to the use of application development frameworks. Application development frameworks offer
many benefits. Chief among them is the reduction in the development effort and time to bring a product to
market. This benefit arises from using an integrated set of features that over time have proven to be common to
all large and medium scale developments. As well, using the same tools over and over in projects by multiple
people and organizations, allows a framework to mature far more rapidly, and reach a level of stability, that one
of a kind developments can rarely match. Frameworks provide structure to an application by providing
established implementation patterns. The very fact that makes frameworks attractive, being repositories of
integrated functions and components, may also sometimes pose a somewhat steep initial learning curve. This
article is an attempt to take one such framework, the Keel Meta-framework, and lead the uninitiated through the
first paces.

The Keel Meta-framework
The Keel Meta-framework, available at http://www.keelframework.org, is an Open Source "framework of
frameworks". The question is, if Keel is a framework or not? Certainly, Keel is a framework, in that it provides
common services such as a component container, logging, persistence, configuration, and so on and so forth.
However, Keel is more than that, in that it provides its services less by means of its own proprietary code base.
Instead, Keel concentrates on providing a very thin backbone, and a set of core interfaces for each of its
services. Keel then relies on other, best-of-breed, Open Source frameworks and libraries to provide
implementations of its core services. This allows the application architect to pick and choose which Open
Source (and, Commercial, for that matter) frameworks and libraries best suit the end application. So, Keel is a
framework, but also a framework of frameworks, hence a "Meta-framework".

The Keel Meta-framework has some other salient features which distinguish it from other frameworks. Being a
meta-framework, it isn't itself a presentation framework. But, Keel goes to great lengths to keep the MVC
separation of the view. As such, as will be seen later in this tutorial, Keel applications are written in a vacuum
without thought to the eventual user-interface. When done, user-interfaces can be added, with the presentation
framework choices being Struts, Cocoon, Velocity, Command Line Interface, and Axis/SOAP. Keel is designed
to be distributable, and has the concepts of a "client side" and a "server side" (which is a bit confusing, since we
are still talking about Java "server side" applications, in general). Having this architectural separation allows for
easy distribution of the client and server across JVMs or hosts. So, the client webapp or web-service or even a
future Swing client can run on a single VM, and communicate to the Keel server running in a distributed JVM,
using JMS or SOAP as communication protocols. As a simplification, both the Keel server and client sides can
be packaged together and run in a single VM, which is the version we will use in this tutorial.

An article called "Keel - The Next Generation Framework", discussing the architecture of Keel in more detail,
was published recently on TheServerSide. The article provides useful information for understanding this
tutorial, and is available at http://www.theserverside.com/resources/article.jsp?l=Keel.

About the Tutorial
This tutorial came about because of a live, hands-on tutorial about the Keel Meta-framework presented to the
Hands On Java SIG of JavaMUG (http://www.javamug.org). The JavaMUG users' group, based in the
Dallas/Fort Worth Metroplex, is one of the largest and most active Java users' groups in the nation. The monthly
Hands On Java Sessions are in a format where the participants each follow along live with their own desktop
PC, while the presenter leads on a PC at the podium where the display is projected on to a large screen. Typical

Page 4 of 42

http://www.keelframework.org
The Keel Meta-framework:

A Hands-On Tutorial

sessions are three hours long, with the application pre-installed on the systems. The sample files of the tutorial
came first, this document was written later to supplant the live presenter. Therefore, the overall tone of the
tutorial is cookbook-like, and does not delve into details of each and every aspect of what is being done.

Given the origins of this tutorial, three hours is plenty of time to go through it. Additional time should be
allocated to download and install Keel, and more if the Java and Ant environments are not already setup.
Certainly, a day is plenty of time to go through the entire setup and tutorial.

The tutorial has the following objectives for the reader to accomplish:

➢ Download and install Keel

➢ Build Keel with JVM/Ant

➢ Setup infra-structure for a typical application

➢ Create a "Hello World" application

➢ Add configuration to the application

➢ Add authorization (security) to the application

➢ Add persistence to the application

➢ Add an user-interface to the application

A Few Notes
As mentioned before, Keel can be deployed in a myriad of ways. For this tutorial we will concentrate on a non-
distributed, single-VM webapp, where the web-application, Keel client side and Keel server side all reside and
run within the same VM. For a web container, we will use Tomcat. The user interface will be demonstrated with
Struts and JSPs.

One of the fascinating aspects of Keel has been the rapid pace with which new services and modules have been
added to Keel. Over time, therefore, the exact list of services in Keel will change such that the examples
provided in this tutorial may look somewhat different from the true list. However, the process of adding
properties and services to Keel is generic enough that the pattern should be quite evident.

All the code developed for this tutorial is available as a downloadable bundle on Keel's SourceForge page at
http://www.sourceforge.net/projects/keel. A version of the code and this document is available from Keel CVS
as the "app-hoj" module. The current plans are for the CVS version of this tutorial to be kept up to date as Keel
changes over time.

If help is needed with this tutorial, a great resource for Keel developer information is the Keel Documentation
Wiki, mentioned in the references section at the end of this tutorial. The user-maintained Wiki has a plethora of
information about the different Keel deployments, "Howto" articles on the various Keel services, a "getting
started" tutorial, and many other subjects. Other great resources, particularly for asking questions, are the Keel
user and developer mailing lists, mentioned in the references section.

Page 5 of 42

http://www.keelframework.org
The Keel Meta-framework:

A Hands-On Tutorial

Infra-structure

Prerequisites for Keel
Before your Keel-based application can be developed and deployed, there are three things that must be installed
and available on your system:

➢ Java development environment

➢ Ant build system

➢ Keel distribution

The Java Environment
The first thing that is needed is the Java environment using a Java Software Development Kit (JDK). If Java is
not already installed on your system, it can be obtained from http://java.sun.com/downloads/. Keel mandates
use of Java version 1.4, ideally JDK-1.4.1_03. after you have installed Java, as a check, type the following
command:

java -version

If Java is installed properly, you should see output similar to:

java version "1.4.1_03" Java(TM) 2 Runtime Environment, Standard Edition (build
 1.4.1_03-b02) Java HotSpot(TM) Client VM (build 1.4.1_03-b02, mixed mode)

The Build Environment
Keel's build system is based on the popular Ant package. If you don't have it, download and install Ant from
http://ant.apache.org. Keel will work with any version of Ant above version 1.5. After Ant is installed, as a
check type the following command:

ant -version

If Ant is installed properly, you should see output similar to:

Apache Ant version 1.5.3 compiled on April 16 2003

Keel Meta-framework
Keel can be downloaded as a compressed source distribution from Sourceforge. For the die-hard developers that
want to keep up with the latest developments in Keel, anonymous CVS access is offered. This article was
written with Keel-2.0 features in mind. Any 2.0 or later release of Keel should work with this tutorial. The
closest Keel release available for download at the time of writing is 2.0-ea3. To download any version of Keel,
point your browser to http://sourceforge.net/projets/keel.

You can also get Keel from CVS. Instructions on acquiring Keel through CVS are on the Keel Wiki page at
http://66.105.113.115/vqwiki-2.3.5/jsp/Wiki?topic=CvsPage. For the purposes of this tutorial, checking out the
"default" module, which is an alias, will checkout all the necessary modules.

Page 6 of 42

http://www.keelframework.org
The Keel Meta-framework:

A Hands-On Tutorial

Installing Keel and Required Tools
The biggest part of installing Keel is simply uncompressing the distribution bundle into a local directory on
your computer. Keel can be installed anywhere on the filesystem. Select a directory where you want to install
Keel, and use your favourite "unzip" utility to extract the files from the Keel distribution into this directory. The
directory where Keel is installed will be referred to in the rest of this tutorial with "KEEL". This would be the
equivalent of "$KEEL" on Unix systems, and "%KEEL%" on Windows systems. Once extracted, if you browse
the KEEL directory, you'll find directories such as "keel-build", "keel-core", "keel-server" in there. In addition,
you'll find other directories starting with the prefix "comm-" (Keel client-server communications), "clnt-" (Keel
client adapters), "svc-" (Keel service implementations), and "app-" (Keel applications).

If you are checking out Keel from CVS, then each module that you checkout from CVS, should be placed in the
KEEL directory.

Keel supports a myriad of configuration choices, and as such, configuration could get quite harrowing. The Ant
build scripts for Keel have been written to generalize the approach of acquiring, installing and then adapting
Keel to these tools. All of this power in the Ant scripts can be harnessed by the alteration of some property files,
called "deployment property files". These files all end with the suffix "-deploy.properties", and predefined ones
can be found in KEEL/keel-build. For this tutorial we'll use the "default" deployment, which simply refers to
"default-deploy.properties"; this is a property file pre-configured for a Keel deployment that runs the Keel
server and client in a single VM, embedded within a Struts/JSP based webapp that is deployed to the Tomcat
container.

Downloading Tomcat and Struts
Technically Tomcat and Struts are not part of Keel. However, a big part of Keel is about integrating disparate
tools. Keel provides Ant scripts to facilitate the downloading and installation of all the third-party tools, not just
Tomcat and Struts, needed to ultimately deploy an application. If you have Tomcat and Struts already installed
on your system, you can simply change some properties and instruct Keel to deploy using your installed tools.
However, for purposes of learning Keel, it is far easier to just let Keel download and install Keel on its own.
This has two benefits. First, it allows for working with a known quantity; it is easier to communicate with other
developers to get help since all are familiar with the standard locations of tools. Second, it will leave your
standard installation untouched; if errors are made during the learning process the package in question can
simply be deleted and the process can be started over.

To download the required 3rd-party tools, simply change directory to KEEL/keel-build, and type the following:

ant download-keeltools

This will start downloading the versions of Tomcat and Struts that Keel was integrated with. The downloaded
distributions will be palced in KEEL/keel-build/deploy, by default. The deployment directory can be changed
with, you guessed it, some Ant property changes. If you were using another deployment, sunch as openjms-
cocoon, running the identical command would have resulted in the download of Tomcat, Cocoon and
OpenJMS. This step obviously requires connectivity to the Internet when the command is run; if you do not
have network access you will have to acquire the distributions in some other fashion and place them manually
in KEEL/keel-build/deploy.

Installing Tomcat and Struts
Once the 3rd-party distributions are in place, to install them, run the command:

ant install-keeltools

Page 7 of 42

http://www.keelframework.org
The Keel Meta-framework:

A Hands-On Tutorial

This will expand the distributions in KEEL/keel-build/deploy, and will run installation scripts, if necessary.

Building and Deploying Keel
Now that the prior steps have the required environment all setup, it is time to build and deploy Keel. To build
and deploy Keel, all that needs to done is the following command:

ant assemble-deploy

This will prompt for a deployment name, supply "default" at the prompt. The prompting could be avoided by
passing an extra parameter when Ant is invoked:

ant -D"deploy.name=default" assemble-deploy

The build takes a while, compiling, processing meta-data, building JARs, assembling configuration files,
building webapp archive (WAR) files, etc. When it finally stops, Tomcat can be started with the command:

ant tomcat-start

Once Tomcat starts up, Keel can be accessed from a broswer by accessing http://localhost:8080/struts When it
is time to shut it down, Tomcat can be shut down with the command:

ant tomcat-stop

Important Directories
Sooner or later you will want to look under the hood to try and find things. It will help to know that using the
"default" deployment, Keel will be deployed in KEEL/keel-build/deploy/jakarta-tomcat-
x.y.z/wbeapps/struts.jar, which, when Tomcat runs, will be expanded to KEEL/keel-build/deploy/jakarta-
tomcat-x.y.z/webapps/struts. Tomcat, Struts and Keel client-side error messages will be visible on the browser
or in KEEL/keel-build/deploy/jakarta-tomcat-x.y.z/logs.

The Keel server is deployed in KEEL/keel-build/deploy/jakarta-tomcat-x.y.z/webapp/struts/WEB-INF/keel.
Server-side The server-side configuration files are located in the server/conf directory, while server-side logs
are to be found in server/log. All the Keel server JARs are in server/lib.

Page 8 of 42

http://www.keelframework.org
The Keel Meta-framework:

A Hands-On Tutorial

Skeletal Application

Setting-up Directory Structure
This chapter explains how to create the application structure - the hard way. However, the intent of this chapter
is to introduce the structure of a Keel application in detail. Once the pieces are understood, the app-blank
shortcut may be utilized, but hopefully the pieces will make more sense.

To make use of Keel's supplied build system, the application
must be rooted at the same level as all the other Keel modules.
For this hands-on tutorial, we will create the directory
structure as in the accompanying figure:

➢ app-hoj - This is the root directory of the application

➢ app-hoj/src/java – This is where Java source goes

➢ app-hoj/src/test – This is where unit and functional
tests go

➢ app-hoj/build - This is where build output goes

➢ app-hoj/client – This where client-side configuration
goes

➢ app-hoj/server – This is where server-side
configuration goes

➢ app-hoj/lib – This is where JAR needed by this
subsystem goes

➢ app-hoj/resources/client – This is where client-side
resources needed by this application go

➢ app-hoj/resources/server – This is where server-side
resources needed by this application go

➢ app-hoj/src/doc – This is where documentation files
(Docbook, PDF, OpenOffice etc.) files go

➢ app-hoj/src/jsp/struts – This is where JSP files go. By
convention, an additional directory struts/hoj is added
to keep each applications files distinct

Directory Structure - The Easy Way(s)
Now that you know how to create the directory structure for a
Keel application, it is time to know about the tools that make
the job easy. First, if you use the Eclipse IDE, on Keel's
SourceForge site site there is a plugin that creates the Keel
directory structures for you. Secondly, in KEEL/keel-build,
there is build-mdoule.xml Ant script that will allow you to
create a blank application or service. Finally, the Keel
distribution includes a template application, app-blank, which can be copied and modified to start your new

Page 9 of 42

http://www.keelframework.org
The Keel Meta-framework:

A Hands-On Tutorial

Figure 1- Directory Structure

application.

Adapting to Keel's build-system

Changing build.xml
The first thing to do is to change the application's Ant build file, build.xml. There is only a small change
required, which is to change the name attribute of the project element at the very top of build.xml to the name of
the application: "app-hoj".

<!-- Ant build file for the Hoj App Subsystem of the Keel meta-framework project
-->

<project name="app-hoj" default="Usage" basedir="../keel-build">

Customizing Ant targets
Keel's build system is made to adapt to a highly configurable list of modules to be included in the final
deployment. The build system expects to have arbitrary applications and services to be added to Keel at each
development site. The place in the build system the customization is defined is in KEEL/keel-build/custom.xml.
To keep from updated Keel distributions from overwriting your customizations, copy custom.xml to local-
custom.xml. Open local-custom.xml and observe that sets of applications are defined as follows:

 <!-- Define the sub-systems that fall in the "application" category -->
 <target name="app-set">
 <antcall target="app-crud"/>
 <antcall target="app-navigate"/>
 <antcall target="app-poll"/>
 <antcall target="app-register"/>
 <antcall target="app-security"/>
 <antcall target="app-workflow"/>
 </target>

Simply add the new application along with the predefined ones, as follows:

 <!-- Define the sub-systems that fall in the "application" category -->
 <target name="app-set">
 <antcall target="app-crud"/>
 <antcall target="app-hoj"/>
 <antcall target="app-navigate"/>
 <antcall target="app-poll"/>
 <antcall target="app-register"/>
 <antcall target="app-security"/>
 <antcall target="app-workflow"/>
 </target>

Scroll down further in local-custom.xml, and find the section that looks like the following:

 <!-- Targets for Applications subsystems -->
 <target name="app-crud" if="app.crud">
 <ant antfile="${basedir}/../app-crud/build.xml"
 target="${target-to-run}"/>
 </target>
 <target name="app-navigate" if="app.navigate">
 <ant antfile="${basedir}/../app-navigate/build.xml"
 target="${target-to-run}"/>
 </target>

Page 10 of 42

http://www.keelframework.org
The Keel Meta-framework:

A Hands-On Tutorial

Add the new application following the template:

 <!-- Targets for Applications subsystems -->
 <target name="app-crud" if="app.crud">
 <ant antfile="${basedir}/../app-crud/build.xml"
 target="${target-to-run}"/>
 </target>
 <target name="app-hoj" if="app.hoj">
 <ant antfile="${basedir}/../app-hoj/build.xml"
 target="${target-to-run}"/>
 </target>
 <target name="app-navigate" if="app.navigate">
 <ant antfile="${basedir}/../app-navigate/build.xml"
 target="${target-to-run}"/>
 </target>

Deployment properties
A myriad of deployment options, including which subsystems to include in a Keel deployment, is defined in
what are known as deployment properties files. For this hands-on, we are going to rely on the default
deployment properties, which is defined in the file KEEL/keel-build/default-deploy.properties. As before, copy
default-deploy.properties to local-deploy.properties. Open local-deploy.properties and navigate to the section
shown below:

Now specify whether or not to include each of the following applications.
You can also include any other custom properties required by custom.xml here
#If you have defined your own application, the property to trigger it to be
#included would be set to true here as well. E.g. app.myapp=true
#Each of the properties below includes the app from the module named "app-xyz"
#where the property is app.xyz. E.g. app.crud=true includes app-crud, etc. See
#the documentation for each module for a description of what each app does.
app.crud=true
app.poll=true
app.register=true
app.navigate=true
app.security=true
app.workflow=true

As before, add the new application following the template:

Now specify whether or not to include each of the following applications.
You can also include any other custom properties required by custom.xml here
#If you have defined your own application, the property to trigger it to be
#included would be set to true here as well. E.g. app.myapp=true
#Each of the proeprties below includes the app from the module named "app-xyz"
#where the property is app.xyz. E.g. app.crud=true includes app-crud, etc. See
#the documentation for each module for a description of what each app does.
app.crud=true
app.hoj=true
app.poll=true
app.register=true
app.navigate=true
app.security=true
app.workflow=true

Finally, the build system needs to know to use the local-custom.xml file instead of the standard custom.xml. To
do that, in local-properties.xml, navigate to the section:

Page 11 of 42

http://www.keelframework.org
The Keel Meta-framework:

A Hands-On Tutorial

#The name of the custom ant file that specifies the Keel/Custom subsystems to
build
#If you have defined your own applications and/or services, you will need
#to make a custom version of this file (copy the original), and change this
#property to point to this custom copy. (E.g. custom.file=custom-local.xml).
custom.file=custom.xml

Change the custom.file property to point to local-custom.xml as follows:

#The name of the custom ant file that specifies the Keel/Custom subsystems to
build
#If you have defined your own applications and/or services, you will need
#to make a custom version of this file (copy the original), and change this
#property to point to this custom copy. (E.g. custom.file=custom-local.xml).
custom.file=local-custom.xml

Page 12 of 42

http://www.keelframework.org
The Keel Meta-framework:

A Hands-On Tutorial

Hello World in Keel
Now that we have gone through the tedious job of setting up the infra-structure for Keel, it is time to delve into
some fun. The first task is to create the customary "Hello World" application.

Implementing the Model
In the best tradition of Keel, we are at first not going to worry about the user-interface of our application.
Instead, the focus is on creating small chunks of business logic, called "Models" in Keel. A model's function is
to accept attributes and parameters in a request, process the request, and to create a response. A response
consists of outputs, commands, and inputs.

Models in Keel are classes that implement a org.keel.services.model.Model interface. There is an abstract class,
org.keel.service.model.StandardModel, which implements the Model interface, as well as Avalon's
Configurable interface. A further specialization of the StandardModel class is the StandardLogEnabledModel
which additionally implements the LogEnabled interface. Purely for the sake of convenience, our first model is
going to be an extension of the StandardLogEnabledModel.

Create the package org.javamug.hoj.models in KEEL/app-hoj/src/java. Create a new Java file, HelloWorld.java,
as follows:

/*
 * Copyright (c) 2002, The Keel Group, Ltd. All rights reserved.
 *
 * This software is made available under the terms of the license found
 * in the LICENSE file, included with this source code. The license can
 * also be found at:
 * http://www.keelframework.org/LICENSE
 */
package org.javamug.apphoj.models;

import org.keel.services.model.ModelException;
import org.keel.services.model.ModelRequest;
import org.keel.services.model.ModelResponse;
import org.keel.services.model.StandardLogEnabledModel;

/**
 * A simple model that creates one output, named "hello",
 * which contains the string "Hello World".
 *
 * @version $Revision: 1.5 $ $Date: 2003/09/22 15:21:27 $
 * @author Schatterjee
 * Created on Jul 26, 2003
 */
public class HellowWorld extends StandardLogEnabledModel {

 /**
 * @see org.keel.services.model.Model#execute
(org.keel.services.model.ModelRequest)
 */
 public ModelResponse execute(ModelRequest request) throws ModelException {
 ModelResponse res = request.createResponse();
 res.addOutput("hello", "Hello World");
 return res;
 }

}

Page 13 of 42

http://www.keelframework.org
The Keel Meta-framework:

A Hands-On Tutorial

A model has only one required method, "execute" as shown in the listing. A ModelResponse object is created
using the createResponse() method of the passed in ModelRequest. The required output is then added to the
response, and the response returned to the caller.

Adding roles
A Keel model is, at its roots, an Avalon component that implements the Model service (role). Meta-data needs
to be provided with each component that provides the Keel container with enough information to allow lookup
of each component, and some hints about the expected lifecycle. To do this, we add the following meta-data in
the class javadoc section:

 *
 * @avalon.component
 * @avalon.service type=org.keel.services.model.Model
 * @x-avalon.info name=hoj.hello
 * @x-avalon.lifestyle type=singleton
 *

The meaning of each meta-data item is as follows:

➢ @avalon.component - This indicates that the HelloWorld model is a component

➢ @avalon.service - The type attribute provides the class that implements the role that this component
implements

➢ @x-avalon.info - The name attribute specifies the shorthand (or, hint) that this component can be looked
up by

➢ @x-avalon.lifestyle - The type attribute provides hints about creation and deletion of the component.
"singleton" means that only one instance of the component will be created, and every lookup will return
the same instance. Other choices are: "transient", where a new instance will be created on every lookup;
"pooled", where a pool of instances will be shared; and, "thread", where a new instance will be allocated
per thread that does a lookup.

For more information on role meta-data, refer to http://66.105.113.115/vqwiki-
2.3.5/jsp/Wiki?ComponentXdoclet

Adding model meta-data
All Keel components, to be looked up as a service from the container, must be defined in a configuration file.
Typically called system.xconf, or a filename that ends in system.xconf, the configuration is found in every Keel
modules conf/server directory. For models, this configuration can be automatically generated through the use of
more meta-data. In this case, we'll add:

 * @model.model
 * name="hoj.hello"
 * id="hoj.hello"
 * logger="hoj"
 *

The meaning of each attribute of the @model.model tag is as follows:

➢ name - This refers to the model shorthand defined in the roles meta above

➢ id - The same model can be defined with differing configurations, and the id uniquely identifies each one

Page 14 of 42

http://www.keelframework.org
The Keel Meta-framework:

A Hands-On Tutorial

➢ logger - The logger category that logs will be output to

For more information on model meta-data tags, refer to http://66.105.113.115/vqwiki-
2.3.5/jsp/Wiki?ModelXdoclet

Adding ant.properties file
In order for Keel to utilize xdoclet to properly deploy your application, ant will need to be instructed to do so.
Be sure to have an ant.properties file with the following property in it.

has.modelmeta=true

Building
Change directory over to KEEL/keel-build, and type:

ant assemble-deploy

Ant should start the Keel build process, and will immediately ask for the deployment properties as follows:

$ ant assemble-deploy
Buildfile: build.xml

-test-java:
 [echo] Java version 1.4.2

-bad.java:

-test-ant:
 [echo] Ant version Apache Ant version 1.5.3 compiled on April 16 2003

-bad.ant:

-init:

assemble-deploy:

-input-deploy:
 [input] Deployment name:

At the "Deployment name:" prompt, type "local" (i.e. the prefix for the *-deploy.properties file) and press the
enter key. Ant will proceed to build using local-deploy.properties and local-custom.xml as we have customized
before. The build takes a bit of time, at the end of which you should see something similar to:

-deploy-client:
 [echo] Client for struts deployed.

assemble-deploy:

BUILD SUCCESSFUL Total time: 2 minutes 39 seconds

It takes a bit of time to assemble and deploy all the pieces of Keel. For most development, usually only one
module is worked on at a time. As lomg as "ant assemble-deploy"" has been run once, some development time
can be saved by only assembling the changed module. For example:

Page 15 of 42

http://www.keelframework.org
The Keel Meta-framework:

A Hands-On Tutorial

cd KEEL/app-hoj

ant -D"deploy.name=local" shortcut-assemble-deploy

Although this significantly cuts down on the build time, the shortcut must be used with caution or unexpected
behavior might cause delays in a different way: use with understanding and caution.

Starting Tomcat
Now that the build is complete, and the WAR file deployed to Tomcat, we can start up Tomcat and see if we
can get our example to work. Navigate to the KEEL/keel-build and type:

ant tomcat-start

The Tomcat logs should show:

Sep 27, 2003 8:39:33 AM org.apache.commons.modeler.Registry loadRegistry
INFO: Loading registry information
Sep 27, 2003 8:39:33 AM org.apache.commons.modeler.Registry getRegistry
INFO: Creating new Registry instance
Sep 27, 2003 8:39:35 AM org.apache.commons.modeler.Registry getServer
INFO: Creating MBeanServer
Sep 27, 2003 8:39:37 AM org.apache.coyote.http11.Http11Protocol init
INFO: Initializing Coyote HTTP/1.1 on port 8080
Starting service Tomcat-Standalone
Apache Tomcat/4.1.27
Sep 27, 2003 8:39:42 AM org.apache.struts.util.PropertyMessageResources <init>
INFO: Initializing, config='org.apache.struts.util.LocalStrings', returnNull=true
Sep 27, 2003 8:39:42 AM org.apache.struts.util.PropertyMessageResources <init>
INFO: Initializing, config='org.apache.struts.action.ActionResources',
returnNull=true
Sep 27, 2003 8:39:43 AM org.apache.struts.util.PropertyMessageResources <init>
INFO: Initializing, config='org.apache.webapp.admin.ApplicationResources',
returnNull=true
Sep 27, 2003 8:39:54 AM org.apache.struts.util.PropertyMessageResources <init>
INFO: Initializing, config='org.apache.struts.util.LocalStrings', returnNull=true
Sep 27, 2003 8:39:54 AM org.apache.struts.util.PropertyMessageResources <init>
INFO: Initializing, config='org.apache.struts.action.ActionResources',
returnNull=true
Sep 27, 2003 8:39:55 AM org.apache.struts.util.PropertyMessageResources <init>
INFO: Initializing, config='ApplicationResources', returnNull=true
Sep 27, 2003 8:39:55 AM org.apache.struts.util.PropertyMessageResources <init>
INFO: Initializing, config='CrudApplicationResources', returnNull=true
Sep 27, 2003 8:39:55 AM org.apache.struts.util.PropertyMessageResources <init>
INFO: Initializing, config='SecurityApplicationResources', returnNull=true
Sep 27, 2003 8:39:55 AM org.apache.struts.util.PropertyMessageResources <init>
INFO: Initializing, config='NavigateApplicationResources', returnNull=true
Sep 27, 2003 8:39:55 AM org.apache.struts.util.PropertyMessageResources <init>
INFO: Initializing, config='PollApplicationResources', returnNull=true
Sep 27, 2003 8:39:55 AM org.apache.struts.util.PropertyMessageResources <init>
INFO: Initializing, config='RegisterApplicationResources', returnNull=true
Sep 27, 2003 8:39:56 AM org.apache.struts.tiles.TilesPlugin init
INFO: Tiles definition factory loaded for module ''.
Sep 27, 2003 8:39:56 AM org.apache.coyote.http11.Http11Protocol start
INFO: Starting Coyote HTTP/1.1 on port 8080
Sep 27, 2003 8:39:56 AM org.apache.jk.common.ChannelSocket init
INFO: JK2: ajp13 listening on /0.0.0.0:8009
Sep 27, 2003 8:39:57 AM org.apache.jk.server.JkMain start
INFO: Jk running ID=0 time=33/322
config=/home/schatterjee/java/workspaces/keel/keel-build/deploy/jakarta-tomcat-
4.1.27/conf/jk2.properties

Page 16 of 42

http://www.keelframework.org
The Keel Meta-framework:

A Hands-On Tutorial

Once Tomcat is running properly, open your browser and access
http://localhost:8080/struts/model.do?model=nav.navigate Keel starts up when the first request is made, and so
the first request takes a little while. At the end of Keel initialization, you should see the main Navigation menu
of Keel.

Once the main navigation menu is up, and we know Keel is setup properly, access
http://localhost:8080/struts/model.do?model=hoj.hello. If everything works, we should see the fruits of our hard
work:

Page 17 of 42

http://www.keelframework.org
The Keel Meta-framework:

A Hands-On Tutorial

Figure 2- The Keel Navigation Menu

Adding to the menu
Before we finish this section, let's take one more step and add our application/model to Keel's navigation menu.
So far, we have not needed to change any configuration files, but now is the time. Each application's server-side
configuration goes in conf/server, and is in one ore more files that end in "system.xconf". Keel's configuration
process assembles and merges all the configuration snippets into one master configuration that is then processed
by the Keel container. Create KEEL/app-hoj/conf/server/system.xconf, and put the following text in it:

<keel>

 <nav.navigate id="nav.navigate">
 <menu id="top">
 <menu title="HOJ" id="hoj">
 <menu title="Hello World" model="hoj.hello"/>
 </menu>
 </menu>
 </nav.navigate>

</keel>

Page 18 of 42

http://www.keelframework.org
The Keel Meta-framework:

A Hands-On Tutorial

Figure 3- The Output of HelloWorld Model

The nav.navigate configuration is actually defined in the system.xconf for app-navigate, in KEEL/app-
navigate/conf/server/system.xconf. It might be worthwhile to open that file and see how it is defined. In this
app, we have repeated the nesting of nav.navigate and the nested "top" menu elements with id attributes, Keel
will merge the elements with identical id attributes together. The real change we wish to accomplish here is to
add a top-level menu item with title "HOJ" and then a nested menu-option "Hello World" which, when
accessed, will invoke our "hoj.hello" model.

Make sure Tomcat is stopped. Go through Keel's assemble-deploy and startup Tomcat again, as we did before.
Once Tomcat is ready, access http://localhost:8080/struts/model.do?model=nav.navigate again. This time we
should see our new menu option:

Page 19 of 42

http://www.keelframework.org
The Keel Meta-framework:

A Hands-On Tutorial

Figure 4- Hello World Added to Menu

Configuration
There are two things we are going to attempt to accomplish in this step. The first one is that we are going to
demonstrate how configuration is provided to a component and how it is accessed. The second is to demonstrate
the capability of Keel to have the same component be looked up using two different IDs, and behave completely
different. In the first case, we'll let the model have default values, in the second case we'll provide configured
values that will be used instead.

Changing the model
To show the progressive steps, instead of changing our original HelloWorld class, create a new class
ConfigHelloWorld just as before. StandardLogEnabledModel/StandardModel already implement the
configurable interface, so what we need to do now is to override the "configure" method, and add String
variable to hold the message:

 private String msg = null;

 /* Override StandardLogEnabled's configure method.
 * This will be called by the Keel container when the
 * model is instantiated, and the appropriate configuration
 * from model meta-data or from *-system.xconf will be passed
 * in.
 * @see org.apache.avalon.framework.configuration.Configurable#configure
(org.apache.avalon.framework.configuration.Configuration)
 */
 public void configure(Configuration configuration)
 throws ConfigurationException {
 super.configure(configuration);

 msg = configuration.getChild("hello", true).getAttribute("value",
"Configurable Hello World");
 }

What we do here is simply expect an optional XML configuration element called "hello", which will have an
attribute called "value". If no configuration is provided, "Configurable Hello World" will be the default value.

Altering Meta-data
Create role-meta as before, but since this is a new model provide a new shorthand for it. The @avalon.info tag
should now look like:

 * @x-avalon.info name=hoj.confighello

The model meta-data must also match this new shorthand:

 * @model.model
 * name="hoj.confighello"
 * id="hoj.confighello"
 * logger="hoj"

Configuring the Second Shorthand
We are going to now address the second objective for this section. We have already created our new
configurable model, and set it up as we did our first model. When run, we expect the output to show

Page 20 of 42

http://www.keelframework.org
The Keel Meta-framework:

A Hands-On Tutorial

"Configurable Hello World", since we are not going to provide any altered configuration. Now, we are going to
take the same class, and configure the Keel container to create another component with a different shorthand,
but this time with specified configuration.

Edit system.xconf again, and add the following configuration:

 <hoj.confighello id="hoj.confighello2" activation="request" logger="hoj">
 <hello value="Hey, we did configure it!"/>
 </hoj.confighello>

What we did here was to use the same shorthand for the component as defined in the role-meta (i.e.
"hoj.confighello"), but this time, we use a different id (i.e. "hoj.confighello2") from the id specified in the
model-meta (i.e. "hoj.confighello"). We also provide our configuration for the hello string to print out. As an
aside, can you look at the configuration above, compare it to the model-meta specified and guess what
configuration the meta-data would generate?

Adding New Components to Menu
For the sake of completeness, we'll go through the optional step of adding this new model to our menu.

 <nav.navigate id="nav.navigate">
 <menu id="top">
 <menu title="HOJ" id="hoj">
 <menu title="Hello World" model="hoj.hello"/>
 <menu title="Configurable Hello World" model="hoj.confighello"/>
 <menu title="Configurable Hello World 2"
model="hoj.confighello2"/>
 </menu>
 </menu>
 </nav.navigate>

Building, Deployment, Testing
Build Keel again, deploy, and start Tomcat again. Access the Keel main menu, invoke the two new models and
see if we made any headway!

Page 21 of 42

http://www.keelframework.org
The Keel Meta-framework:

A Hands-On Tutorial

Adding Security
In this section, we are going to take our model and adapt it to Keel authorization.

Create the model
We could simply change our ConfigHelloWorld class, but once more, let us just create a new class
SecuredConfigHelloWorld just as before. To recap we need a class that extends StandardLogEnabledModel,
overrides the configure method, and contains role and model meta-data. The new class should look like the
following:

/*
 * Copyright (c) 2002, The Keel Group, Ltd. All rights reserved.
 *
 * This software is made available under the terms of the license found
 * in the LICENSE file, included with this source code. The license can
 * also be found at:
 * http://www.keelframework.org/LICENSE
 */
package org.javamug.apphoj.models;

import org.apache.avalon.framework.configuration.Configuration;
import org.apache.avalon.framework.configuration.ConfigurationException;
import org.apache.avalon.framework.service.ServiceException;
import org.keel.services.authorization.AuthorizationManager;
import org.keel.services.authorization.Securable;
import org.keel.services.model.ModelException;
import org.keel.services.model.ModelRequest;
import org.keel.services.model.ModelResponse;
import org.keel.services.model.StandardLogEnabledModel;

/**
 * This is the same as the ConfigHelloWorld class, except now the
 * model is secured.
 *
 * @avalon.component
 * @avalon.service type=org.keel.services.model.Model
 * @x-avalon.info name=hoj.securehello
 * @x-avalon.lifestyle type=transient
 *
 * @model.model
 * name="hoj.securehello"
 * id="hoj.securehello"
 * logger="hoj"
 *
 * @version $Revision: 1.5 $ $Date: 2003/09/22 15:21:27 $
 * @author Schatterjee
 * Created on Jul 26, 2003
 */
public class SecuredConfigHelloWorld extends StandardLogEnabledModel implements
Securable {

 private String msg = null;

 private AuthorizationManager am = null;

 /**
 * @see org.keel.services.model.Model#execute
(org.keel.services.model.ModelRequest)
 */
 public ModelResponse execute(ModelRequest request) throws ModelException {
 ModelResponse res = request.createResponse();

Page 22 of 42

http://www.keelframework.org
The Keel Meta-framework:

A Hands-On Tutorial

 res.addOutput("hello", msg);
 return res;
 }

 /**
 * @see org.apache.avalon.framework.configuration.Configurable#configure
(org.apache.avalon.framework.configuration.Configuration)
 */
 public void configure(Configuration configuration)
 throws ConfigurationException {
 super.configure(configuration);

 msg = configuration.getChild("hello", true).getAttribute("value", "Secured
Hello World");
 }
}

To make it secure, the class must now extend the org.keel.services.authorization.Securable interface. Along
with that, two new methods from the Securable interface must be implemented:

 /**
 * @see org.keel.services.authorization.Securable#setAuthorizationManager
(org.keel.services.authorization.AuthorizationManager)
 */
 public void setAuthorizationManager(AuthorizationManager am) throws
ServiceException {
 this.am = am;
 }

 /**
 * @see org.keel.services.authorization.Securable#getAuthorizationManager()
 */
 public AuthorizationManager getAuthorizationManager() {
 return am;
 }

The following imports must be added as well:

import org.apache.avalon.framework.service.ServiceException;
import org.keel.services.authorization.AuthorizationManager;
import org.keel.services.authorization.Securable;

By now we know the routine of adding something to the menu.

 <menu title="Secured Hello World" model="hoj.securehello"/>

There we have it, that was all that is required to secure a model, or any other Keel component, for that matter.

Setting up security
After Keel is built and deployed again, start up Tomcat and access the main menu as before. So far, we have not
done anything which requires Persistence and any of Keels database tables. Now, since the default authorization
manager is based on Persistent data, we need to create the default tables. Access the main menu, and invoke
Keel->Database->Create database:

Page 23 of 42

http://www.keelframework.org
The Keel Meta-framework:

A Hands-On Tutorial

Once the table creation is complete, Keel should show a page with the words "Database Creation Complete" on
it. Once that is done, try the HOJ menu, and you should see that the Secured model is missing from the menu.

This is no accident. Since permissions have not been granted yet to run that secured model, it does not even
show up in the menu. Next, try accessing the model direct with
http://localhost:8080/struts/model.do?model=hoj.securehello. This should take you to a page telling you that

Page 24 of 42

http://www.keelframework.org
The Keel Meta-framework:

A Hands-On Tutorial

Figure 5- Creating the Default Database

Figure 6- Secured Model Absent from Menu

access was denied.

Go back to the main menu, access User->Log In, and login with the Login "root" and Password "root". From
Keel's main menu, invoke Keel->Security Admin->Component Security. In the resulting screen, put the fully
qualified classname of the secured model in the "Component" field. For this example, we will allow all users in
the group "guest" to have access to this model. We will allow all instances of this model to be accessible, so
leave the "Instance" field blank. Alternatively, we could have made the component extend InstanceSecurable
instead of Securable, and then secured by specific instance identifier. In this case, the completed form should
look like the following figure. When done, click the "Set Security" button.

Page 25 of 42

http://www.keelframework.org
The Keel Meta-framework:

A Hands-On Tutorial

Figure 7- Access Denied

Now go back to the Keel main navigation menu, and select User->Log In. Log in with Login "guest", password
"guest", which happens to be the only user in the "guest" group. Invoke
http://localhost:8080/struts/model.do?model=hoj.securehello, and this time, instead of getting access denied, the
following page should display:

Page 26 of 42

http://www.keelframework.org
The Keel Meta-framework:

A Hands-On Tutorial

Figure 8- Security Setup

Page 27 of 42

http://www.keelframework.org
The Keel Meta-framework:

A Hands-On Tutorial

Figure 9- Output from Secured Model

Adding Persistence
Most applications require some sort of persistent storage. Keel has multiple implementations of its persistence
service: one using it's own object-to-relational mapping, another using the popular Hibernate package, Keel also
has a JDO service, using the Xorm package. In this example, we'll use Keel's native persistence implementation.
However, it is important to note that, to move over to Hibernate-based persistence, or JDO-based persistence,
the entity beans we are going to define are not going to change at all. The example models we'll write will use
Keel's persistence service, and therefore when switching between Keel's default persistence and Hibernate, the
models would not change at all either. Of course, persistence and JDO are different services, and therefore
switching between the Persistent and JDO services would involve a code change.

The Entity Bean
We are going to use a very simple entity bean, which has two fields only. The first is an integer id field, which
will uniquely identify each row in the table. The second filed is a string. To do that, create a class Mydata, as
follows:

/*
 * Copyright (c) 2002, The Keel Group, Ltd. All rights reserved.
 *
 * This software is made available under the terms of the license found
 * in the LICENSE file, included with this source code. The license can
 * also be found at:
 * http://www.keelframework.org/LICENSE
 */
package org.javamug.apphoj.entity;

/**
 * Hoj Mydata
 *
 * @jdo.persistence-capable
 *
 * @hibernate.class
 * table="mydata"
 *
 * @persist.persistent
 * schema="hoj"
 * name="mydata"
 * descrip="My sample persistent"
 * table="mydata"
 *
 * @persist.record
 * mydataId="1"
 * mystring="This is the first record"
 * @persist.record
 * mydataId="2"
 * mystring="This is the second record"
 */
public class Mydata {

 /**
 * @jdo.field
 * default-fetch-group="true"
 */
 private Integer mydataId = null;

 /**
 * @jdo.field
 * default-fetch-group="true"
 */

Page 28 of 42

http://www.keelframework.org
The Keel Meta-framework:

A Hands-On Tutorial

 private String mystring = null;

 /**
 * Returns the string.
 * @hibernate.property
 * column="mystring"
 *
 * @persist.field
 * name="mystring"
 * db-name="mystring"
 * type="varchar"
 * length="80"
 * null-allowed="false"
 * descrip="$catDescription"
 *
 * @hibernate.property
 * column="mystring"
 *
 * @return String The string
 */
 public String getMystring() {
 return mystring;
 }

 /**
 * Returns the mydataId.
 *
 * @hibernate.id
 * column="mydataId"
 * generator-class="native"
 *
 * @persist.field
 * name="mydataId"
 * db-name="mydataId"
 * read-only="true"
 * type="integer"
 * primary-key="true"
 * null-allowed="false"
 * descrip="record id"
 * read0only="true"
 * auto-increment="table"
 *
 * @return Integer
 */
 public Integer getMydataId() {
 return mydataId;
 }

 /**
 * Sets the string.
 * @param str
 */
 public void setMystring(String str) {
 mystring = str;
 }

 /**
 * Sets the mydataId.
 * @param id
 */
 public void setMydataId(Integer id) {
 this.mydataId = id;
 }

}

Page 29 of 42

http://www.keelframework.org
The Keel Meta-framework:

A Hands-On Tutorial

The structure of this class is very simple. The two fields mentioned above are realized as mydataId and
myString. As with any other Java bean, each field has a setter and a getter, named according to bean
conventions. The interesting thing to note is that, each field and the setters/getters have meta-data annotated in
Javadoc comments, and meta-data can be seen for JDO, Hibernate and Keel's default persistence. More detail
about the meta-data format can be found at http://66.105.113.115/vqwiki-2.3.5/jsp/Wiki?XDocletHOWTO.

The Prompter Model
We need a model to prompt for data to be stored in the persistent table. Create a new model, PromptMydata as
follows:

/*
 * Copyright (c) 2002, The Keel Group, Ltd. All rights reserved.
 *
 * This software is made available under the terms of the license found
 * in the LICENSE file, included with this source code. The license can
 * also be found at:
 * http://www.keelframework.org/LICENSE
 */
package org.javamug.apphoj.models;

import org.keel.services.model.Command;
import org.keel.services.model.ModelException;
import org.keel.services.model.ModelRequest;
import org.keel.services.model.ModelResponse;
import org.keel.services.model.StandardLogEnabledModel;

/**
 * This model prompts for a single string as input data
 * It also provides a command which will allow the user to
 * transition to a model which process the data that was input.
 *
 * @avalon.component
 * @avalon.service type=org.keel.services.model.Model
 * @x-avalon.info name=hoj.prompt-mydata
 * @x-avalon.lifestyle type=singleton
 *
 * @model.model
 * name="hoj.prompt-mydata"
 * id="hoj.prompt-mydata"
 * logger="hoj"
 *
 * @version $Revision: 1.5 $ $Date: 2003/09/22 15:21:27 $
 * @author Schatterjee
 * Created on Jul 26, 2003
 */
public class PromptMydata extends StandardLogEnabledModel {

 /**
 * @see org.keel.services.model.Model#execute
(org.keel.services.model.ModelRequest)
 */
 public ModelResponse execute(ModelRequest request) throws ModelException {
 ModelResponse res = request.createResponse();
 res.addInput("mystring", "Enter some text");

 // The action to take for data submission
 Command a = res.createCommand("hoj.process-mydata");
 a.setName("add");
 a.setLabel("Add Data");

Page 30 of 42

http://www.keelframework.org
The Keel Meta-framework:

A Hands-On Tutorial

 res.add(a);
 return res;
 }

}

Until now we have only used an Output object in responses from the model. We now introduce two new
objects. An Input object is an abstraction of a data entry field, which will be returned as a parameter in the
request processed by the model that processes that request. A Command object associates a model tat will be
transitioned to when that command is chosen. Responses can have multiple Inputs, Outputs and Commands.
Commands and Inputs can be nested within Output objects, in which case Outputs are used as nesting
containers.

In the prompting model above, we create a text field for entry of the string which will be stored in the persistent
table. There can only be a single transition after the data is entered, to the model which will process the entered
data and store it into the persistent table.

It is important to note, that the model's inputs, outputs and commands are specified with complete disregard for
the actual user-interface technology that will eventually be used. Do not ever assume that the UI is going to be a
webapp, or a CLI, or Struts, Cocoon, or anything else at all. Abstraction of the UI is key to Keel's power.

The Processing Model
The next thing we need is a model that will accept the submitted data and store it in our persistent table. To do
that, create the final class we need in this tutorial, ProcessMydata. The class should look as follows:

/*
 * Copyright (c) 2002, The Keel Group, Ltd. All rights reserved.
 *
 * This software is made available under the terms of the license found
 * in the LICENSE file, included with this source code. The license can
 * also be found at:
 * http://www.keelframework.org/LICENSE
 */

package org.javamug.apphoj.models;
import org.keel.services.model.Command;
import org.keel.services.model.ModelException;
import org.keel.services.model.ModelRequest;
import org.keel.services.model.ModelResponse;
import org.keel.services.model.StandardLogEnabledModel;
import org.keel.services.persist.PersistenceException;
import org.keel.services.persist.Persistent;
import org.keel.services.persist.PersistentFactory;

/**
 * <Replace with description for ProcessMydata>
 *
 * @avalon.component
 * @avalon.service type=org.keel.services.model.Model
 * @x-avalon.info name=hoj.process-mydata
 * @x-avalon.lifestyle type=singleton
 *
 * @model.model
 * name="hoj.process-mydata"
 * id="hoj.process-mydata"
 * logger="hoj"
 * @model.parameter

Page 31 of 42

http://www.keelframework.org
The Keel Meta-framework:

A Hands-On Tutorial

 * name="mystring"
 * required="true"
 *
 * @version $Revision: 1.5 $ $Date: 2003/09/22 15:21:27 $
 * @author Schatterjee
 * Created on Jul 27, 2003
 */
public class ProcessMydata extends StandardLogEnabledModel {

 /**
 * @see org.keel.services.model.Model#execute
(org.keel.services.model.ModelRequest)
 */
 public ModelResponse execute(ModelRequest request) throws ModelException {
 ModelResponse res = request.createResponse();

 // Persistents are created from a factory, the domain
 // is what the user logs into from the login screen
 // The default domain happens to be using Keel's default
 // persistence, but it could be Hibernate just as well.
 PersistentFactory pf =
 (PersistentFactory) request.getService(
 PersistentFactory.ROLE,
 request.getDomain());

 try {
 // This is the actual persistent, see the Mydata entity
 Persistent m = pf.create("hoj.mydata");

 // Set the field we are interested in
 m.setField("mystring", request.getParameter("mystring"));
 // Save to DB
 m.add();

 // Just some confirmation
 res.addOutput("Added data");

 // The transition after confirmation - prompt again
 Command a = res.createCommand("hoj.prompt-mydata");
 a.setName("prompt");
 a.setLabel("Prompt For Data");
 res.add(a);
 } catch (PersistenceException e) {
 throw new ModelException("Error accessing table", e);
 }
 return res;
 }

}

The code is a great example of Keel's simplicity. Persistents are created from a PersistentFactory. As the
comments show, multiple persistent factories, could be present. Each could be a different database, on same or
different hosts. At the same time each domain could be built using one of Keel's different persistence
implementations. All that complexity is hidden from application programs by the hint (here, the domain name)
provided when the persistence service is looked up from the Keel container.

Once the persistent is created by the factory, it is simply a matter of filling in the data in each field, and then
calling the add method. A query is not shown here, but it would consist of setting the key values in appropriate
fields and then calling the find method.

Page 32 of 42

http://www.keelframework.org
The Keel Meta-framework:

A Hands-On Tutorial

Auto-increment configuration
If you look at the meta-data for the mydataId field, it contains a "auto-increment" attribute. That says that the
mydataId is to be automatically incremented every time a new record is added to the Mydata table. The auto-
increment table must be defined, and the index seeded to start from some number. The required configuration in
system.xconf is as follows:

 <table id="mydata" big-decimals="false" block-size="1" table="ids"
 key-table="mydata" activation="request">
 <dbpool>keel-dbpool</dbpool>
 </table>

 <default-persistent id="default">
 <schemas id="default">
 <schema id="ids">
 <persistent id="ids">
 <default-data id="ids-default">
 <record table_name="mydata" next_id="1"/>
 </default-data>
 </persistent>
 </schema>
 </schemas>
 </default-persistent>

Here's how this works. The persistent meta-data refers to "table" in the auto-increment attribute. The "table"
element in the configuration above defines an "ID-generator" which is a feature of the datasource component
from Avalon/Excalibur. The ID-generator, in turn refers to a key-table called "mydata". The second set of
elements then defines a row in the table of IDs for the "mydata" table, and seeds the starting index at "1".

Adding default data
We are not going to do it, but, if needed you could seed the persistent with some default data. This could be
done with meta-data in your persistent entity bean, as follows:

 * @persist.record
 * mydataId="1"
 * mystring="This is the first predefined record"
 * @persist.record
 * mydataId="2"
 * mystring="This is the second predefined record"

Using the Persistent
We have everything that is needed to test our persistent and associated models. Build Keel, start Tomcat, and
access the main navigation menu once again. We have to create our database tables, the id-generators, and seed
the predefined data if any are specified. Access Keel->Database...->Create Database as before to create and
initialize the required tables. This step needs to be run every time new tables are added in your application(s).

Now invoke the prompt model from the HOJ menu. You should now see a page which displays the "mystring"
input created by the model. The screen should look like:

Page 33 of 42

http://www.keelframework.org
The Keel Meta-framework:

A Hands-On Tutorial

Pressing the "Add Data" button after entering some test data like "Testing data entry" should add the record in
the DB and show the following page:

Page 34 of 42

http://www.keelframework.org
The Keel Meta-framework:

A Hands-On Tutorial

Figure 10- Output from Prompt Model

Pressing the "Prompt For Data" button should take you back to the prompt page again.

Verifying the data
To verify that the data was indeed added, go back to the Keel navigation menu and access Data->Select
Schema. From the resulting screen, select "hoj" in the "Choose Schema" dropdown, and press "Select Schema".
Click on "hoj.mydata" and you should see the data you entered. This was your first introduction to the CRUD
application (app-crud).

Page 35 of 42

http://www.keelframework.org
The Keel Meta-framework:

A Hands-On Tutorial

Figure 11- Output from Process Model

Page 36 of 42

http://www.keelframework.org
The Keel Meta-framework:

A Hands-On Tutorial

Figure 12- Data Shown by CRUD

Adding a Struts User Interface
So far we haven't worried about putting up a pretty face, instead concentrating solely on the "business" end of
things and building up the nuts and bolts of the server-side application. It's now time to see how to add in a
Struts based front-end to our application. We will now add JSP front-ends to our prompt/process models we just
got through exercising.

Where to go next?
Still on the abstract side of things, each model can have meta-data/configuration which provides a hint to Keel
on "where to go" after the model has run. The decision is based on some attributes in the meta-data. Attributes
called "forward" and "stylesheet" are used for this function. The Keel "forward" attribute (on the Keel server
side) is provided to the Struts adaptor for Keel (on the Keel client side), which then uses it to find the Struts
"forward" of the same name.

In the meta-data for the PromptMydata model, add the following definition:

 * @model.attribute
 * name="forward"
 * value="hoj.prompt-mydata"

In the meta-data for the ProcessMydata model, add the following definition:

 * @model.attribute
 * name="forward"
 * value="hoj.process-mydata"

Mapping to JSPs - Struts Forwards
The struts forward is defined as snippets of XML configuration, in KEEL/app-hoj/conf/client/struts/struts-
config.xml. It should contain the forward definitions for each one of your models.

 <!-- Forwards for the HOJ models, supplied by the app-hoj project-->
 <forward name="hoj.prompt-mydata" path="/hoj/prompt.jsp"/>
 <forward name="hoj.process-mydata" path="/hoj/process.jsp"/>

Adding the JSPs
The JSPs are located in KEEL/app-hoj/src/jsp/struts/hoj. The Keel build process copies the app-
hoj/src/jsp/struts directory to the context root directory of the webapp being created, such that the "hoj"
directory will show as a child of the context-root directory.

The JSP source is included below. However, the content is straightforward. Each Input, Output and Command
object added by the model is available as a bean to the JSP. Standard Struts bean and html tags are used to
render the fields. The keel:command tag is a custom tag that makes it convenient to display Command objects
as buttons; but standard Struts bean properties could be used to extract the parameters as well.

Here is the content of the prompt JSP:

<%@ page language="java" %>

<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>
<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>
<%@ taglib uri="/WEB-INF/struts-logic.tld" prefix="logic" %>

Page 37 of 42

http://www.keelframework.org
The Keel Meta-framework:

A Hands-On Tutorial

<%@ taglib uri="/WEB-INF/struts-template.tld" prefix="template" %>
<%@ taglib uri="/WEB-INF/keel.tld" prefix="keel" %>

<html:html locale="true">
<head>
 <link rel="stylesheet" type="text/css" href="<%=request.getContextPath()%
>/hoj/hoj.css">
 <meta http-equiv="content-type" content="text/html;charset=iso-8859-1">
 <meta http-equiv="Content-Style-Type" content="text/css">
 <title>Prompt for data</title>
</head>

<html:base />

<body class="default">
 <p class="pageheader">Add Some Data</p>

 <keel:errors />

 <hr>
 <html:form action="model" method="post">
 <div align="center">
 <table cellspacing="0" cellpadding="2" border="0">
 <tr>
 <td class="reqlabel">
 <bean:write name="mystring" property="label"/>:
 </td>
 <td>
 <html:text name="default" property="mystring"/>

 </td>
 </tr>

 <tr>
 <td colspan="2"> </td>

 </tr>
 <tr>
 <td colspan="2">
 <center>
 <logic:present name="add">
 <keel:command name="add"/>
 </logic:present>
 </center>

 </td>
 </tr>
 </table>
 </div>
 </html:form>
</body>
</html:html>

The process JSP looks like:

<%@ page language="java" %>

<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>
<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>
<%@ taglib uri="/WEB-INF/struts-logic.tld" prefix="logic" %>
<%@ taglib uri="/WEB-INF/struts-template.tld" prefix="template" %>
<%@ taglib uri="/WEB-INF/keel.tld" prefix="keel" %>

<html:html locale="true">
<head>
 <link rel="stylesheet" type="text/css" href="<%=request.getContextPath()%
>/hoj/hoj.css">

Page 38 of 42

http://www.keelframework.org
The Keel Meta-framework:

A Hands-On Tutorial

 <meta http-equiv="content-type" content="text/html;charset=iso-8859-1">
 <meta http-equiv="Content-Style-Type" content="text/css">
 <title>Confirmation</title>
</head>

<html:base />

<body class="default">
 <p class="pageheader">Data Has Been Processed</p>

 <keel:errors />

 <hr>
 <html:form action="model" method="post">
 <div align="center">
 <table cellspacing="0" cellpadding="2" border="0">
 <logic:present name="added">
 <tr>
 <td>
 <bean:write name="added"/>
 </td>
 </tr>
 </logic:present>

 <tr>
 <td> </td>

 </tr>
 <tr>
 <td>
 <center>
 <logic:present name="prompt">
 <keel:command name="prompt"/>
 </logic:present>
 </center>

 </td>
 </tr>
 </table>
 </div>
 </html:form>
</body>
</html:html>

The result of running the PromptMydata model now, is as follows:

Page 39 of 42

http://www.keelframework.org
The Keel Meta-framework:

A Hands-On Tutorial

Figure 13- JSP Output from Prompt Model

The result of running the ProcessMydata model now, is as follows:

Page 40 of 42

http://www.keelframework.org
The Keel Meta-framework:

A Hands-On Tutorial

Figure 14- JSP Output from Process Model

More To Come...
Congratulations for coming this far. This tutorial has shown the process of using Java and Ant on the system, as
well as downloading and installing Keel Meta-framework and associated tools. The tutorial has shown how to
build a sample application's models, connect it to a view, and then to enhance the model with security and
persistence. However, this tutorial has barely scratched the surface of the capabilities of Keel. In fact, almost
none of the optional available services in Keel were mentioned. As well, left alone were Keel capabilities such
as Cocoon and Velocity views, or distribution of the client and server pieces using JMS, deployment in
containers such as JBoss and many other features. The intent of this tutorial was to introduce the reader to
working with Keel, in the near future upcoming articles will introduce more advanced features.

Page 41 of 42

http://www.keelframework.org
The Keel Meta-framework:

A Hands-On Tutorial

References

➢ Java Frameworks and Components - Accelerate Your Web Application Development, Michael Nash,
Cambridge University Press, ISBN 0-521-52059-2

➢ Keel Meta-framework - http://www.keelframework.org

➢ Keel - The Next Generation Meta Framework -
http://www.theserverside.com/resources/article.jsp?l=Keel

➢ Keel Documentation Wiki - http://66.105.113.115/vqwiki-2.3.5/jsp/Wiki?StartingPoints

➢ Keel Mailing Lists - http://www.keelframework.org/mail-list.shtml

➢ Apache Avalon Project - http://avalon.apache.org/

➢ Apache Tomcat - http://jakarta.apache.org/tomcat/index.html

➢ Apache Struts - http://jakarta.apache.org/struts/index.html

➢ Apache Ant - http://ant.apache.org/

Page 42 of 42

http://www.keelframework.org
The Keel Meta-framework:

A Hands-On Tutorial

