
TIMELY. PRACTICAL. RELIABLE.

Rima Patel Sriganesh
Gerald Brose
Micah Silverman

Wiley Technology Publishing Timely. Practical. Reliable.

An invaluable tutorial on the dramatic changes to
Enterprise JavaBeans (EJB™) 3.0

Covering basic through advanced subjects,
Mastering Enterprise JavaBeans 3.0 is
more than 50 percent new and revised.
Four new chapters and one new appendix
cover the latest features of this new release,
and in-depth coverage of the Java™
Persistence API and the entities defined
therein is provided. The authors’ main
goal is to get you programming with EJB
immediately. To that end, you’ll learn:

• How to implement EJB 3.0 beans,
with emphasis on session beans
(stateful and stateless) and mes-
sage-driven beans

• Both basic and advanced concepts
(such as inheritance, relationships,
and so on) of Java Persistence API
defined entities

• How to develop and deploy EJB 3.0
Web services

• How to secure EJB applications

• How to integrate EJB applications
with the outside world via the Java
EE Connector technology

• Tips and techniques for designing and
deploying EJB for better performance

• How clustering in large-scale EJB
systems works

Visit the companion Web site at www.wiley.com/go/sriganesh

M
astering Enterprise JavaBeans

™3.0
Sriganesh

Brose
Silverman

Programming Languages/Java $45.00 USA/$58.99 CAN/£29.99 UK

ISBN: 0-471-78541-5

Mastering Enterprise
JavaBeans™ 3.0

Featuring myriad changes from its
previous versions, EJB 3.0 boasts a
very different programming and
deployment model, with nearly every
aspect of development affected. Even the
most experienced EBJ and J2EE™
developers will need to relearn how to
best use EJB to develop mission-critical
applications. This author team of experts
has taken their combined skills in
architecture, development, consulting,
and knowledge transfer to explain the
various changes to EJB 3.0 as well as
the rationale behind these changes.
You’ll learn the concepts and techniques
for authoring distributed, enterprise
components in Java from the ground up.

• Best practices for EJB application
design, development, and testing

Rima Patel Sriganesh is a staff engi-
neer in the technology outreach
group at Sun Microsystems, Inc.
She speaks frequently at major
industry conferences and is a
coauthor of Mastering Enterprise

JavaBeans, Third Edition (Wiley).

Gerald Brose works for Projektron,
a German vendor for project man-
agement software. He maintains
the Open Source ORB JacORB.
Gerald holds a Ph.D. in computer
science and has published widely on
Java, CORBA, and security.

Micah Silverman, a Software
Architect for 15 years, has special-
ized in Java since 1995. He founded
M*Power Internet Services, Inc.,
providing architect, development,
and security services. He has
contributed to books and published
numerous articles.

The companion Web site provides
all the source code, updates to the
source code examples, and a PDF
version of the book.

785415 Cover_rb2.qxp 5/25/06 2:14 PM Page 1

Mastering Enterprise
JavaBeans™ 3.0

01_785415 ffirs.qxp 6/5/06 7:09 PM Page i

01_785415 ffirs.qxp 6/5/06 7:09 PM Page ii

Rima Patel Sriganesh
Gerald Brose

Micah Silverman

Mastering Enterprise
JavaBeans™ 3.0

01_785415 ffirs.qxp 6/5/06 7:09 PM Page iii

Click here to purchase this book.

http://www.amazon.com/gp/product/0471785415/ref=sr_11_1/103-1174895-6545420?%5Fencoding=UTF8
jpiscitelli
cover

Mastering Enterprise JavaBeans™ 3.0
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2006 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada
ISBN-13: 978-0-471-78541-5
ISBN-10: 0-471-78541-5
Manufactured in the United States of America
10 9 8 7 6 5 4 3 2 1
1B/SS/QW/QW/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sec-
tions 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Pub-
lisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for per-
mission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indi-
anapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or war-
ranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all
warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be
created or extended by sales or promotional materials. The advice and strategies contained herein may not be
suitable for every situation. This work is sold with the understanding that the publisher is not engaged in ren-
dering legal, accounting, or other professional services. If professional assistance is required, the services of a
competent professional person should be sought. Neither the publisher nor the author shall be liable for dam-
ages arising herefrom. The fact that an organization or Website is referred to in this work as a citation and/or
a potential source of further information does not mean that the author or the publisher endorses the infor-
mation the organization or Website may provide or recommendations it may make. Further, readers should be
aware that Internet Websites listed in this work may have changed or disappeared between when this work
was written and when it is read.

For general information on our other products and services or to obtain technical support, please contact our
Customer Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317)
572-4002.

Library of Congress Cataloging-in-Publication Data
Sriganesh, Rima Patel.
Mastering enterprise JavaBeans 3.0 / Rima Patel Sriganesh, Gerald Brose,

Micah Silverman.
p. cm.

Includes index.
ISBN-13: 978-0-471-78541-5 (paper/website)
ISBN-10: 0-471-78541-5 (paper/website)
1. JavaBeans. 2. Java (Computer program language) I. Brose, Gerald. II. Silverman, Micah. III. Title.
QA76.73.J38S756 2006
005.13'3--dc22

2006011333

Trademarks: Wiley, the Wiley logo, and related trade dress are trademarks or registered trademarks of John
Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used without
written permission. Enterprise JavaBeans is a trademark of Sun Microsystems, Inc. All other trademarks are
the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

01_785415 ffirs.qxp 6/5/06 7:09 PM Page iv

www.wiley.com

Rima wishes to dedicate this book to her dearest and most loving
Mummy and Papa, on their completing 60 years of a wholesome and

exemplary life this year, and to her beloved husband, Sriganesh.

To my wonderful wife, Christine, and my sons Johannes and Julius.

For Dr. Charles Marshall, who taught me Excellence.

01_785415 ffirs.qxp 6/5/06 7:09 PM Page v

01_785415 ffirs.qxp 6/5/06 7:09 PM Page vi

Rima Patel Sriganesh is a staff engineer presently working in the Technology
Outreach group at Sun Microsystems, Inc. She specializes in Java, XML, and inte-
gration platforms. Rima represents Sun at various financial services standards.
She is a coauthor of three books and usually publishes her take on technology
in the form of papers and blogs. She also speaks frequently at various industry
conferences.

Rima graduated in Mathematics from M.S. University, Gujarat, India. She
currently lives with her husband in the Greater Boston area.

Gerald Brose works as head of software development for Projektron, a soft-
ware vendor that produces project management software. In previous jobs he
has worked as a product manager, software architect, and researcher. He holds
a Ph.D. in computer science.

Gerald is an expert in distributed object computing and middleware secu-
rity, including CORBA, J2EE, and Web services. Gerald also coauthored Java
Programming with CORBA, also published by Wiley.

Gerald is the maintainer of the JacORB project, the most widely used open
source ORB for Java, which is part of the JBoss and JOnAS J2EE application
servers. He lives with his wife and two sons in Berlin, Germany.

Micah Silverman has been a professional software architect and consultant for
over 15 years. He has been developing with Java since its release in 1995. In
that same year, he founded M*Power Internet Services, Inc., a consulting com-
pany providing software architecting, development, and security services. He
has written numerous articles on software development, information security,
and operating systems.

About the Authors

vii

01_785415 ffirs.qxp 6/5/06 7:09 PM Page vii

Click here to purchase this book.

http://www.amazon.com/gp/product/0471785415/ref=sr_11_1/103-1174895-6545420?%5Fencoding=UTF8
jpiscitelli
cover

01_785415 ffirs.qxp 6/5/06 7:09 PM Page viii

Executive Editor
Robert Elliott

Development Editor
Tom Dinse

Technical Editor
Daniel Rubio

Production Editor
Felicia Robinson

Copy Editor
Foxxe Editorial Services

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive
Group Publisher

Richard Swadley

Vice President and
Executive Publisher

Joseph B. Wikert

Project Coordinator
Michael Kruzil

Graphics and Production
Specialists

Jennifer Click
Lauren Goddard
Joyce Haughey
Stephanie D. Jumper
Barry Offringa
Lynsey Osborn
Heather Ryan
Brent Savage
Alicia B. South

Quality Control Technicians
Amanda Briggs
Jessica Kramer

Proofreading and Indexing
Techbooks

Credits

ix

01_785415 ffirs.qxp 6/5/06 7:09 PM Page ix

Click here to purchase this book.

http://www.amazon.com/gp/product/0471785415/ref=sr_11_1/103-1174895-6545420?%5Fencoding=UTF8
jpiscitelli
cover

01_785415 ffirs.qxp 6/5/06 7:09 PM Page x

About the Authors vii

Acknowledgments xxiii

Introduction xxv

Part I Overview 1

Chapter 1 Overview 3
A Prelude to Enterprise JavaBeans 4

Software Components 4
The Need for Componentization 4

Infrastructure Needs of Distributed Applications 5
Application Server–Class Software 8

Building Middleware Services from Scratch 8
Buying Middleware Services via Application Server Software 9

Standardization of Component Frameworks 9
Enterprise JavaBeans Technology 10

Why Java? 11
EJB as a Business Tier Component 12
Distributed Computing: The Foundation of EJB 14
EJB Middleware Services 16

Explicit Middleware Approach 16
Implicit Middleware Approach 17
Implicit vs. Explicit Middleware Services in EJB 18

Roles in the EJB Application Life Cycle 18
The Bean Provider 19
The Application Assembler 19
The EJB Deployer 20
The System Administrator 20

Contents

xi

02_785415 ftoc.qxp 6/5/06 6:53 PM Page xi

Click here to purchase this book.

http://www.amazon.com/gp/product/0471785415/ref=sr_11_1/103-1174895-6545420?%5Fencoding=UTF8
jpiscitelli
cover

EJB Ecosystem 22
EJB Container 24
EJB Tools 24

Service-Oriented Architectures and Enterprise JavaBeans 25
Defining Service-Oriented Architectures 26

SOA and Web Services 26
SOA and Component Architectures 27

Divide and Conquer to the Extreme with Reusable Services 27
The Java Platform, Enterprise Edition 5.0 (Java EE) 29

The Java EE Technologies 31
Summary 34

Chapter 2 Pre-EJB 3.0: The World That Was 37
What Constituted a Pre-EJB 3.0 Enterprise Bean? 38
Developing and Deploying a Pre-EJB 3.0 Enterprise Java Bean 41

The Remote Interface 42
The Local Interface 43
The Home Interface 44
The Local Home Interface 45
The Bean Class 45
Deployment Descriptor 47
Deploying The Bean 47
HelloWorldEJB Client 48

Dissecting EJB 2.x 50
Complexity: The Overarching Issue of EJB 2.x 50

Development Complexities 51
Deployment Complexities 53
Debugging and Testing Complexities 54

What Needs to Be Done to Improve EJB 2.x? 55
Summary 55

Chapter 3 The New Enterprise JavaBean 57
Introducing EJB 3.0 57

EJB Container 59
Types of Beans 61
RMI-IIOP: The Protocol of the Bean 65
EJB and Location Transparency 66
Enterprise Bean Environment 67
Anatomy of the “New” Bean 68
The Role of EJB Home and Object Interfaces 72

The EJB 3.0 Simplified API 73
Elimination of Home and Object Interfaces 74
Elimination of Component Interface 74
Use of Annotations 76

Annotations and Bean Development 77
Annotations and Deployment Descriptors 77
The Good, the Bad, and the Ugly of Deployment Annotations 79

Simplified Access to Environment 80
Packaging and Deployment of the “New” Bean 81

xii Contents

02_785415 ftoc.qxp 6/5/06 6:53 PM Page xii

Example of EJB 3.0 Bean 82
The Business Interface 83
The Bean Class 83
The Deployment Descriptor 84
The Client 85

Summary of Terms 86
Summary 87

Part II The Triad of Beans and Entities 89

Chapter 4 Introduction to Session Beans 91
Session Bean Lifetime 91
Session Bean Subtypes 92

Stateless Session Beans 92
Stateful Session Beans 94

Special Characteristics of Stateful Session Beans 94
Achieving the Effect of Pooling with Stateful Beans 95
The Rules Governing Conversational State 96
Activation and Passivation Callbacks 97
Summary of Callback Methods 100
A Simple Stateful Session Bean 100

The Count Bean’s Remote Interface 100
The Count Bean 102
The Count Bean’s Callback Interceptor 104
The Count Bean’s Deployment Descriptor 106
The Count Bean’s Proprietary Descriptor and Ejb-jar File 107
The Count Bean’s Client Code 107
Running the Client 109

Life-Cycle Diagrams for Session Beans 110
Summary 114

Chapter 5 Writing Session Bean Web Services 115
Web Services Concepts 115

Web Services Standards 118
WSDL 118
SOAP 120

XML Artifacts and Platform Independence 121
Implementing a Web Service 122

WSDL and the XML/Java Mapping 125
Packaging and Deploying a Web Service Session Bean 125

Implementing a Web Service Client 126
Summary 128

Chapter 6 Java Persistence: Programming with Entities 129
Object-Relational Mapping 130
What Is an Entity? 133

Entities versus Session Beans 134
Persistence Provider 135
Entity Classes 135

Contents xiii

02_785415 ftoc.qxp 6/5/06 6:53 PM Page xiii

Accessing Entities in the Persistence Context 138
Extended Persistence Context 141

Packaging and Deploying Entity Classes 143
The EntityManager API 144

Entity Life Cycle 145
Life-Cycle Callbacks 147

Database Synchronization 148
Direct Entity Data Manipulation 149
Concurrent Access and Locking 150
Entity Lookup and Query API 153
Named Queries 154

Summary 155

Chapter 7 Introduction to Message-Driven Beans 157
Motivations for Messaging 157
The Java Message Service (JMS) 160

Messaging Domains 161
The JMS API 162

Integrating JMS with EJB 167
What Is a Message-Driven Bean? 169

Developing Message-Driven Beans 173
The Semantics 173
A Simple Example 175

The Bean Implementation Class 175
The Deployment Descriptor 177
More Metadata: Activation Configuration Properties 178
The Client Program 183

Advanced Concepts 183
Transactions 183
Security 183
Load Balancing 183
Duplicate Consumption in a Cluster 184

JMS Message-Driven Bean Gotchas 186
Message Ordering 186
Missed @PreDestroy Calls 186
Poison Messages 187
How to Return Results Back to Message Producers 190

An Alternative Request/Response Paradigm 194
The Future: Asynchronous Method Invocations 195

Summary 195

Chapter 8 Adding Functionality to Your Beans 197
Calling Beans from Other Beans 197

Default JNDI Lookups 198
Annotations 199

Common Annotations 200
Business Interface Annotations 200
Other Stateful Annotations 202

xiv Contents

02_785415 ftoc.qxp 6/5/06 6:53 PM Page xiv

Dependency Injection 205
Resource References 205

Interceptors 209
Summary 214

Part III Advanced Enterprise JavaBeans Concepts 217

Chapter 9 Advanced Persistence Concepts 219
Inheritance 220

Single Table per Class Hierarchy 223
Separate Table per Subclass 230
Single Table per Concrete Entity Class 232
Other Modes of Inheritance 232

Polymorphism 234
Relationships 237

Relationship Types 237
One-to-One 238
One-to-Many 245
Many-to-Many 254

EJB-QL Enhancements 261
Bulk Updates and Deletes 261
JOIN Operations 265
GROUP BY and HAVING clauses 266
Projection 267
Fun with Queries 268

Dynamic Queries and Named Parameters 268
Subqueries 268

Object Construction in SELECT Statements 269
Summary 270

Chapter 10 Transactions 271
Motivation for Transactions 272

Atomic Operations 272
Network or Machine Failure 273
Multiple Users Sharing Data 274

Benefits of Transactions 275
The ACID Properties 276

Transactional Models 278
Flat Transactions 278

How Transactional State Is Rolled Back 280
Nested Transactions 280
Other Transactional Models 281

Distributed Transactions 282
Durability and the Two-Phase Commit Protocol 283
The Transactional Communications Protocol

and Transaction Contexts 285

Contents xv

02_785415 ftoc.qxp 6/5/06 6:53 PM Page xv

Java Transaction Service and Java Transaction API 285
OTS and Java Transaction Service 285
The Java Transaction API 286
JTS and Distributed Transaction Interoperability

across Application Servers 287
Enterprise JavaBeans Transactions 288

Underlying Transaction System Abstraction 288
Container-Managed, Bean-Managed, and

Client-Controlled Transactions 288
Container-Managed Transactions 289
Client-Controlled Transactions 290

Choosing a Transaction Style 291
Container-Managed Transactions 292

EJB Transaction Attribute Values 293
Required 293
RequiresNew 294
Supports 294
Mandatory 294
NotSupported 295
Never 295
Transaction Attribute Summary 295

Container-Managed Transaction Example 296
Applicability of Transaction Attributes to Various Beans 300

Bean-Managed Transactions 302
The javax.transaction.UserTransaction Interface 303
Bean-Managed Transaction Example 306

Client-Controlled Transactions 307
Transactional Isolation 307

The Need for Concurrency Control 308
Isolation Levels 310
The Dirty Read Problem 310

READ UNCOMMITTED 311
READ COMMITTED 311

The Unrepeatable Read Problem 312
REPEATABLE READ 312

The Phantom Problem 313
SERIALIZABLE 313

Transaction Isolation Summary 314
Using Various Isolation Levels in EJB Applications 314
Pessimistic and Optimistic Concurrency Control 315

Designing Transactional Conversations in EJB 316
Summary 319

xvi Contents

02_785415 ftoc.qxp 6/5/06 6:53 PM Page xvi

Chapter 11 Security 321
Introduction 322

Violations, Vulnerabilities, and Risk 323
Controls 323

Web Application Security 325
Authentication in Web Applications 326
Authorization 327
Confidentiality and Integrity 328

Understanding EJB Security 329
Authentication in EJB 329

JAAS Overview 329
The JAAS Architecture 331
JAAS Sample Code 333

Authorization in EJB 341
Security Roles 341
Performing Programmatic Authorization 342
Performing Declarative Authorization 346
Declarative or Programmatic? 351

Security Propagation 351
Secure Interoperability 353

IIOP/SSL 353
CSIv2 354

Web Services Security 356
End-to-End Security 357
XML Digital Signature and XML Encryption 358
SAML 361
WS-Security 362

Summary 364

Chapter 12 EJB Timers 365
Scheduling 365
EJB and Scheduling 366
The EJB Timer Service 368

Timer Service API 368
javax.ejb.TimerService 369
javax.ejb.Timer 370
javax.ejb.TimedObject 370
javax.ejb.TimerHandle 371

Interaction between the EJB and the Timer Service 371
Timer Example: CleanDayLimitOrdersBean 373

The CleanDayLimitOrders Business Interface 374
The CleanDayLimitOrdersBean Class 374
The CleanDayLimitOrders EJB Deployment Descriptor 376
The CleanDayLimitOrders EJB Client 377
Running the Client 378

Strengths and Limitations of EJB Timer Service 379
Summary 380

Contents xvii

02_785415 ftoc.qxp 6/5/06 6:53 PM Page xvii

Chapter 13 EJB Best Practices 381
When to Use EJB 382
How to Choose a Web Application Framework

to Work with EJB 385
Applying Model Driven Development in EJB Projects 387
Applying Extreme Programming in EJB Projects 389
Testing EJB 392

EJB Unit Testing 392
Use Frameworks for EJB Unit Testing 393

The JUnit Framework 393
Mock Object Frameworks 394

Implementing Client-Side Callback Functionality in EJB 395
JMS 395
Remote Method Invocation 396
Web Service 396

Choosing between Servlets and Stateless
Session Beans as Service Endpoints 396

Considering the Use of Aspect-Oriented Programming
Techniques in EJB Projects 397

Aspect-Oriented Programming 397
When to Use AOP in EJB Applications 398

Support Custom Concerns 398
Are Interceptors AOP? 398
Supply Aspects to the World Outside the EJB Container 399

Reflection, Dynamic Proxy, and EJB 400
Deploying EJB Applications to Various Application Servers 400
Debugging EJB 402
Inheritance and Code Reuse in EJB 404
Writing Singletons in EJB 405
When to Use XML with EJB 406
When to Use Messaging versus RMI-IIOP 407
Summary 410

Chapter 14 EJB Performance Optimizations 411
It Pays to Be Proactive! 411
The Stateful versus Stateless Debate from a

Performance Point of View 413
How to Guarantee a Response Time with Capacity Planning 415
Use Session Façade for Better Performance 416
Choosing between Local Interfaces and Remote Interfaces 418
Partitioning Your Resources 419
Tuning Stateless Session Beans 420
Tuning Stateful Session Beans 421
Tuning Entities 423
Tuning Message-Driven Beans 426
Tuning Java Virtual Machine 427
Miscellaneous Tuning Tips 429
Choosing the Right EJB Server 430
Summary 431

xviii Contents

02_785415 ftoc.qxp 6/5/06 6:53 PM Page xviii

Chapter 15 EJB Integration 433
Why Does Integration Matter? 433

Integration Styles 434
EJB and Integration 435
Java EE Connector Architecture 436

Why Java EE Connectors? 436
Integrating Java EE Platform with Non-IIOP World 436
The M x N Integration Problem 436
The Infrastructure Services Problem 438

Resource Adapter Interaction with Java EE Components 439
Resource Adapter Interaction with Application Server 440

The Java EE Connector API 442
The javax.resource Package 442
The javax.resource.cci Package 443
The javax.resource.spi Package 443
The javax.resource.spi.endpoint Package 451
The javax.resource.spi.security Package 451
The javax.resource.spi.work Package 452

System Contracts 453
Life Cycle Management 453
Connection Management 454
Security Management 458

Container-Managed Sign-On 458
Component-Managed Sign-On 459

Transaction Management 460
Local Transaction Management Contract 460
Global Transaction Management Contract 461

Work Management 462
Message Inflow 464

Connector Example: OutboundLoanRA 467
Example Architecture 468
JavaLoanApp.java 469
LoanApp.dll 470
OutboundLoanRA 471

OutboundLoanRA Client Contracts 471
OutboundLoanRA System Contracts 485
Deploying OutboundLoanRA 493

LoanRatesEJB 495
Developing LoanRatesEJB 495

LoanRatesClient 496
Running the Client 497
Extending OutboundLoanRA 502

Integration Best Practice: When to Use Which Technology 502
When to Use JMS and JMS-Based MDB 502
When to Use Java EE Connectors 503
When to Use Java Web Services 503

Summary 504

Contents xix

02_785415 ftoc.qxp 6/5/06 6:53 PM Page xix

Chapter 16 Clustering 505
Overview of Large-Scale Systems 505

What Is a Large-Scale System? 506
Load Balancing and Failover 509
Clustering with Collocated or Distributed Java EE Containers 512

Instrumenting Clustered EJBs 516
How EJBs Can Be Clustered 516
The Concept of Idempotence 518
Stateless Session Bean Clustering 519

Load Balancing 519
Failover 519

Stateful Session Bean Clustering 521
Load Balancing 522
Failover 522

Entity Clustering 523
Load Balancing 523
Failover 523
Caching 523
Read-Only Caches 524
Distributed Shared Object Caches 524
Read-Mostly Caches 525

Message-Driven Bean Clustering 526
Other EJB Clustering Issues 526

First Contact 527
Initial Access Logic 527

Summary 528

Chapter 17 EJB-Java EE Integration: Building a Complete Application 529
The Business Problem 529
A Preview of the Final Web Site 530
Scoping the Technical Requirements 534

The Business Logic Tier 534
Persistent Data: Entities 534
Business Logic: Session and Message-Driven Beans 538

The Presentation Tier 541
What Are Servlets? 541
What Are Java Server Pages? 543
How Do I Combine Servlets, JSP, and EJB Components? 543
JSP Files in Our E-Commerce Deployment 544

Example Code 547
Summary 558

Appendix A RMI-IIOP and JNDI Tutorial 559
Java RMI-IIOP 560

Remote Method Invocations 560
The Remote Interface 563
The Remote Object Implementation 564
Stubs and Skeletons 566

xx Contents

02_785415 ftoc.qxp 6/5/06 6:53 PM Page xx

Object Serialization and Parameter Passing 568
Passing by Value 568

Object Serialization 568
Rules for Serialization 569
What Should You Make Transient? 570
Object Serialization and RMI 571
Pass-by-Reference Semantics 572

CORBA Interoperability with RMI-IIOP 573
The Big Picture: CORBA and EJB Together 575

The Java Naming and Directory Interface 576
Why Use JNDI? 576
Naming and Directory Services 576
Problems with Naming and Directories 579
Enter JNDI 579
Benefits of JNDI 579
The JNDI Architecture 580
JNDI Concepts 581

Naming Systems, Namespaces, and Composite Names 582
Initial Context Factories 584

Programming with JNDI 586
Integrating RMI-IIOP and JNDI 588

Binding an RMI-IIOP Server to a JNDI Name 589
Looking Up an RMI-IIOP Server with JNDI 590

Summary 591

Appendix B Annotations 593
Introduction to Annotations 593

Annotations for EJB 596
Background 597

XDoclet 597
Annotations in Java 598
Pros and Cons 598

EJB Annotation Reference 599
Bean Type Annotations 599

Common Annotations for Session and 603
Message-Driven Beans

Entity Annotations 611
Summary 645

Index 647

Contents xxi

02_785415 ftoc.qxp 6/5/06 6:53 PM Page xxi

02_785415 ftoc.qxp 6/5/06 6:53 PM Page xxii

This book has been a project spanning several years. Many have commented that
the first edition was one of the best technical books they’ve ever read. What’s
made this book a reality are the many people who aided in its development.

As a special thanks, we’d like to acknowledge the great folks at John Wiley &
Sons. They have been absolutely outstanding throughout this book’s evolution.
In particular, we thank Bob Elliott, Tom Dinse, and Mary Beth Wakefield for
their incredible efforts. We also thank Daniel Rubio for his insightful technical
reviews, and Linda DeMichiel for lending her help to the authors in under-
standing the evolution of EJB 3.0 standard.

I would like to thank my wife, Tes and my daughter, Shaina for being so
patient while I worked on this book.

—Micah

Acknowledgments

xxiii

03_785415 flast.qxp 6/5/06 6:53 PM Page xxiii

Click here to purchase this book.

http://www.amazon.com/gp/product/0471785415/ref=sr_11_1/103-1174895-6545420?%5Fencoding=UTF8
jpiscitelli
cover

03_785415 flast.qxp 6/5/06 6:53 PM Page xxiv

This book is a tutorial on Enterprise JavaBeans (EJB). It’s about EJB concepts,
methodology, and development. This book also contains a number of
advanced EJB topics, giving you a practical and real-world understanding of
the subject. By reading this book, you will acquire a deep understanding of EJB.

Make no mistake about it—what you are about to read is not easy. EJB incor-
porates concepts from a wealth of areas, including distributed computing,
databases, security, component-based architecture, message-oriented systems,
and more. Combining them is a magnificent stride forward for the Java com-
munity, but with that comes a myriad of concepts to learn and understand.
This book will teach you the concepts and techniques for authoring distrib-
uted, enterprise components in Java, and it will do so from the ground up. You
need only to understand Java to understand this book.

While you’re reading this book, you may want to download the EJB specifi-
cation, available at http://java.sun.com/products/ejb/docs.html.

Goals for This Edition

This book has had a long run and hence, a long history. The first edition of this
book came out in 1999, followed by second and third editions in 2002 and early
2005, respectively. Writing the latest edition of this popular title was not an
easy thing. There was an endless exchange of emails back and forth between
the authors before arriving at decisions about the topics to cover, the approach
and the tone that should be used to cover them, and so on. We had to make

Introduction

xxv

03_785415 flast.qxp 6/5/06 6:53 PM Page xxv

Click here to purchase this book.

http://www.amazon.com/gp/product/0471785415/ref=sr_11_1/103-1174895-6545420?%5Fencoding=UTF8
jpiscitelli
cover

some tough calls when writing the second and third editions, and that did not
change in this edition. However, we are confident you’ll like them. Here are
our goals for this edition:

■■ To update the book for EJB 3.0. EJB 3.0 is a sea change from the previous
versions of EJB technology in that the programming and deployment
model is very different from its precursors. We take a top-down
approach in explaining these changes. We do not just talk about the
changes themselves but also discuss the rationale for making these
changes to the existing EJB technology. In addition, this book goes an
extra mile in providing in-depth coverage on the Java Persistence API
and the entities defined therein. The ability to use POJO (plain old Java
object) style entities with enterprise beans is a much sought after fea-
ture, and this book doesn’t save pages when it comes to providing real
implementation tips and best practices on how to use POJO entities
with Enterprise JavaBeans.

■■ To be broad and also deep. We do not regurgitate the complete EJB
specification in this book, nor do we cover every last detail of EJB.
Rather, we cover the most important parts of EJB, leaving room to dis-
cuss advanced issues. For a complete reference while you are coding,
search through the EJB specification using Adobe Acrobat. Readers who
are looking for a well-written book that is interactive and fun to read,
and that covers the basics through advanced subjects in adequate
details have come to the right place.

■■ To be concise. Your time as a reader is extremely valuable, and you’re
likely waiting to read a stack of books besides this one. Given that most
people don’t have time to read 1,000-plus-page books, we actually
wanted to reduce the size of this book as much as possible. So we’ve
tightened things up and eliminated redundant examples. This way, you
can get to actually program with EJB immediately, rather than read a
book for months on end. The irony of this story is that it was harder for
us to write a shorter book than a long book!

■■ To be a book for developers. This book is not intended for high-level
businesspeople. This is a technical book for a technical audience.

■■ To write a book the right way. The authors of this book have taken
their skills in architecture, development, consulting, and knowledge
transfer, and applied them to this book. Thus, we’ve infused this book
with the following attributes:

■■ A conversational style. When you read this book, sometimes you’ll
feel like you’re almost having a discussion with us. We think this is
far superior to spending eons trying to reread a formal writing style
over and over again.

xxvi Introduction

03_785415 flast.qxp 6/5/06 6:53 PM Page xxvi

■■ Use of diagrams and bulleted lists. The adage “a picture is worth a
thousand words” applies here. These tactics are great for breaking
up blocks of text. They keep things varied and make the book a
much faster read.

■■ A consistent voice. Even though several coauthors wrote this book,
you’ll hear one voice. This was done to combine best-of-breed
knowledge from several expert coauthors, while maintaining a
uniform look and feel throughout the book.

■■ To be an introductory book, but also to get quickly into advanced
topics. We figured that the average developer has had enough of books
that merely skim the surface. We wanted to write a book that pushed
beyond the basics. Our approach when writing this book was always to
err on the side of being advanced. To achieve this, we did an immense
amount of research. We have participated in the forums, worked on
many real-world projects, attended conferences and seminars, talked to
the people who have worked on the actual EJB specifications, and net-
worked with the top experts throughout the world.

■■ To be vendor-neutral. The code listings for the examples in this book
will work on any EJB application server, thereby making the book useful
immaterial of the vendor you use. To stay away from the vendor wars,
we have a policy to deploy all of our examples on the Java EE reference
implementation rather than on a specific vendor’s platform.

■■ To take all the source code and make it available online. Because
we’ve made the code available on the Web, you know it’s tested on the
latest version of the EJB application server. This will ensure that the
code you receive works right the first time.

Organization of the Book

The text is organized into the following five parts:

■■ Part I is a whirlwind introduction to EJB programming. Part I serves as a
great overview for people in a hurry. While Part I is essential information
for EJB newcomers, veterans will also find nuggets of useful knowledge.
The following chapters are included:

■■ Chapter 1 is a tour of enterprise computing. We’ll talk about
component-based software, distributed computing frameworks,
application server–class software, service-oriented architectures, and
containers. In this regard, we’ll introduce EJB and Java Enterprise
Edition (Java EE).

Introduction xxvii

03_785415 flast.qxp 6/5/06 6:53 PM Page xxvii

■■ Chapter 2 sets the scene for introducing the changes of EJB 3.0 in
Chapter 3. This chapter is a must read for long timers in EJB in that
it explains why a drastic change was needed in the programming
and deployment model of EJB.

■■ Chapter 3 shows you how to put together a simple EJB 3.0 bean of
the HelloWorld fame. It introduces the EJB technology at a more
fundamental level by bringing the discussions on IIOP, location
transparency, JNDI naming services, annotations, deployment
descriptors, and so on, to the fore.

■■ Part II devotes exclusive attention to programming with EJB. We’ll see
how to use the trio of session beans, session bean Web services, and
message-driven beans. More interestingly, we will learn programming
of the new and cool Java Persistence API based POJO entities. Needless
to say, our discussions are accompanied with working examples.

■■ Chapter 4 introduces session beans. We’ll look at the difference
between stateful and stateless session beans, how to code a session
bean, and what’s going on behind the scenes with session beans.

■■ Chapter 5 shows how Web services can be implemented using the
EJB model. In particular, we show how a stateless session bean can
be made available as a Web service.

■■ Chapter 6 introduces the Java Persistence API, which is a specification
created within the EJB Expert Group hosted at http://www.jcp.
org. The mechanisms for development and deployment of POJO
style entities defined in this specification are crucial in eliminating
the complexity from EJB applications. This chapter explains the
basics of object-relational mapping and the notion of an entity with
respect to Java Persistence API.

■■ Chapter 7 covers message driven beans. We’ll begin with a review
of message-oriented middleware (MOM) and the Java Message
Service (JMS), which forms the backbone of all Java based MOM
software. Underneath, message driven beans use the JMS frame-
work This is followed by an extensive discussion on various aspects
of writing message-oriented EJB applications and their respective
examples.

■■ Chapter 8 discusses the useful bits and pieces of EJB technology
such as how to access resources made available using JNDI naming
services, how to use annotations in conjunction with EJB, and so on.
It further explains the resource and dependency injection mechanisms
as well as interceptors introduced in EJB 3.0 with examples.

xxviii Introduction

03_785415 flast.qxp 6/5/06 6:53 PM Page xxviii

■■ Part III, the most exciting part of the book, covers advanced EJB con-
cepts. The following chapters are included:

■■ Chapter 9 provides a comprehensive discussion on the advanced
concepts of persistent entities such as inheritance, polymorphism,
entity relationships, and EJB Query Language (EJB-QL) enhance-
ments. This chapter has a wealth of information for anyone who
wants to get deeper into the world of persistent entities.

■■ Chapter 10 tackles transactions. Transactions are a crucial topic for
anyone building an EJB application where ACIDity (Atomicity,
Consistency, Isolation, and Durability) is a prerequisite. We’ll discuss
transactions at a conceptual level followed by a discussion on how
to apply them to EJB. We’ll learn a lot about the Java Transaction API
(JTA) in the process.

■■ Chapter 11 provides in-depth coverage of EJB security and covers Java
Authentication and Authorization Service (JAAS), secure interoperability,
and Web Services security, within the purview of enterprise beans.

■■ Chapter 12 introduces the EJB Timer Service, which lets you sched-
ule tasks for automatic execution at given point(s) in time.

■■ Chapter 13 explains guidelines for using various Web application
frameworks, model-driven development tools, and so on, in EJB
applications. It also presents proven best practices for EJB design,
development, and testing.

■■ Chapter 14 covers EJB tips and techniques for designing and
deploying EJB for better performance. You’ll learn about design
strategies that will help you make decisions such as when to choose
between stateful versus stateless session beans, when to choose
between local and remote interfaces, and so on. The chapter also
focuses a great deal on providing performance tuning tips for differ-
ent types of beans as well as for Java Persistence API–based entities.

■■ Chapter 15 covers integration to and from EJB platform in depth.
It provides an introduction to the various styles of integration, fol-
lowed by a discussion of various techniques for integrating EJB with
the outside world. It explains the Java EE Connector Architecture, a
predominant framework for integrating EJB with back-end enter-
prise applications, and discusses a connector example.

■■ Chapter 16 discusses clustering in large-scale EJB systems. You’ll
learn about how clustering works behind the scenes and learn a few
strategies for how containers might support clustering. This is a crit-
ical topic for anyone building a system that involves several machines
working together.

Introduction xxix

03_785415 flast.qxp 6/5/06 6:53 PM Page xxix

■■ Chapter 17 shows how to build a real-world Java EE application
containing EJB components. We’ll see how the EJB components
should be used together with other technologies of the Java EE stack
such as the persistent entities, as in an enterprise, as well as how to
connect them with clients using Java servlets and JavaServer Pages
(JSP) technologies. We’ll also demonstrate how to design an EJB
object model using UML.

■■ The Appendices are a collection of ancillary EJB topics. Some developers
may want to read the appendices, while some may not feel the need to do
so. Appendices A and B are provided in the book, whereas Appendices C,
D, and E have been made available on the companion web site.

■■ Appendix A teaches you Java Remote Method Invocation over the
Internet Inter-ORB Protocol (RMI-IIOP) and the Java Naming and
Directory Interface (JNDI). These technologies are prerequisites for
using EJB. If you’re just starting down the EJB road, you shall find it
very helpful to read this appendix first.

■■ Appendix B discusses the newly introduced annotations feature for
the Java platform. It provides a quick reference of various annota-
tions supported by the EJB 3.0 specification. This can come in handy
while writing EJB code.

■■ Appendix C is a deployment descriptor reference guide. This will
be useful to you especially when you’re examining deployment
descriptors and if you ever find yourself in a situation of modifying
the deployment descriptors manually.

■■ Appendix D covers the EJB query language (EJB-QL) in detail.

■■ Appendix E is an API and diagram reference guide. This is useful
when you need to look up the purpose of a method or a class in the
EJB programming API.

NOTE Throughout the book, this icon will signal a tip, note, or other helpful
advice on EJB programming.

Illustrations in the Text

Almost all of the illustrations in this book are written in the Unified Modeling
Language (UML). UML is the de facto standard methodology for illustrating
software engineering concepts in an unambiguous way. If you don’t know

xxx Introduction

03_785415 flast.qxp 6/5/06 6:53 PM Page xxx

UML, pick up a copy of The Unified Modeling Language User Guide (Addi-
son-Wesley, ISBN 0201571684), which illustrates how to effectively use UML in
your everyday software. UML is a highly important achievement in object-ori-
ented methodology. It’s a common mechanism for engineers to communicate
and design with, and it forces you to abstract your object model prior to imple-
mentation. We cannot stress its use enough.

The Accompanying Web Site

This book would not be complete without a way to keep you in touch after it
was published. A Web site is available for resources related to this book. There
you’ll find:

■■ All of the source code you see in this book. The code comes complete
with Ant scripts, ready to build and run. It can be deployed on any
application server that is Java EE 5–compliant.

■■ Updates to the source code examples.

■■ Error corrections from the text.

■■ A PDF copy of this book.

The Web site is at www.wiley.com/go/sriganesh.

Feedback

When you begin your EJB programming, we’re sure you’ll have many experi-
ences to share with other readers. Feel free to e-mail examples, case studies,
horror stories, or tips that you’ve found helpful in your experience, and we’ll
post them on the Web site.

From Here

Now that we’ve gotten the logistics out of the way, let’s begin our exploration
of Enterprise JavaBeans 3.0.

Introduction xxxi

03_785415 flast.qxp 6/5/06 6:53 PM Page xxxi

03_785415 flast.qxp 6/5/06 6:53 PM Page xxxii

PA R T

In Part I, we introduce the server-side development platform, the Java Enter-
prise Edition (Java EE), of which the Enterprise JavaBeans (EJB) component
architecture is a vital piece. Java EE is a conglomeration of concepts, pro-
gramming standards, and innovations—all written in the Java programming
language. With Java EE, you can rapidly construct distributed, scalable, reli-
able, and portable as well as secure server-side deployments.

■■ Chapter 1 begins by exploring the need for a server-side component
architecture such as EJB. You’ll see the rich needs of server-side com-
puting, such as scalability, high availability, resource management,
and security. We’ll discuss how EJB architecture relates to the Service-
oriented Architecture (SOA) paradigm. We’ll also take a look at the
Java EE server-side development platform.

■■ Chapter 2 focuses on explaining why the existing EJB technology,
especially the programming and deployment model, has to change to
something much simpler. Chapter 2 makes this point by walking us
through an example of developing and deploying an EJB 2.1 bean.

■■ Chapter 3 gets down and dirty with EJB programming. Here, we’ll
write our first truly simple EJB 3.0 bean. In this chapter, we will also
introduce other technologies and concepts that go hand in hand with
EJB such as IIOP, JNDI naming services, annotations, deployment
descriptors, and so on.

Overview

I

04_785415 pt01.qxp 6/5/06 6:54 PM Page 1

Click here to purchase this book.

http://www.amazon.com/gp/product/0471785415/ref=sr_11_1/103-1174895-6545420?%5Fencoding=UTF8
jpiscitelli
cover

04_785415 pt01.qxp 6/5/06 6:54 PM Page 2

3

Enterprise JavaBeans (EJB) is a server-side component framework that simpli-
fies the process of building enterprise-class distributed component applica-
tions in Java. By using EJB, you can write scalable, reliable, and secure
applications without writing your own complex distributed component
framework. EJB is about rapid application development for the server side;
you can quickly and easily construct server-side components in Java by lever-
aging a prewritten distributed infrastructure provided by the industry. EJB is
designed to support application portability and reusability across any ven-
dor’s enterprise middleware services. For the benefit of those new to enter-
prise computing, these concepts will be clarified shortly. EJB is a complicated
subject and deserves a thorough explanation.

This chapter introduces EJB by answering the following questions:

■■ What plumbing do you need to build a robust distributed object
deployment?

■■ What is EJB, and what value does it add?

■■ How does EJB relate to SOA?

■■ Who are the players in an EJB ecosystem?

Let’s kick things off with a brainstorming chapter.

Overview

C H A P T E R

1

05_785415 ch01.qxp 6/5/06 6:54 PM Page 3

A Prelude to Enterprise JavaBeans

Simply put, an EJB is a component. What are components? Unfortunately, over
the years, this question has become a bit rhetorical, especially in the context of
software engineering, because there is no exact or widely accepted answer to
it. Henceforth, we will present our understanding of components.

Software Components
The online WordNet service hosted by Princeton University (http://wordnet
.princeton.edu/perl/webwn) defines component quite simply and suc-
cinctly as “an abstract part of something.” A software component goes one
step beyond. It is a concrete part of something. A software component is a piece
of code written to manifest the behavior of a corresponding abstract concept.
Mostly, these abstract concepts find their underlying basis in the real world.
For example, a MortgageDebt component might emulate the nuances associ-
ated with actual mortgage debts of real-world entities such as people, corpo-
rations, and so on. This explanation of components probably sounds a lot like
how objects were explained in the late 1980s. Even so, components differ from
objects in a substantial manner—they live an independent existence. Therein
lies all the difference between objects and components.

A component is a self-contained entity such that it can be reused in a similar
or a completely different application, as long as the semantics of the compo-
nent are well understood. A component must be packaged with all the requi-
site artifacts so that it can live an independent, reusable existence outside of
the original application. A business or system application can thus be designed
to consist of multiple such reusable software components, each tasked with a
certain functional responsibility.

So what do we stand to gain by designing software applications in terms of
components? How did we reach the conclusion that componentization was
the right approach to take? Well, continue reading.

The Need for Componentization
One of the fortuitous by-products of a more than decade-long U.S. Justice
Department vs. IBM antitrust lawsuit (more details of this landmark trial can be
found at http://www.hagley.lib.de.us/1980.htm) was the emer-
gence of a burgeoning software industry. The U.S. Justice Department based
the antitrust lawsuit on the premise that IBM’s bundling of software, hardware
(including peripherals), and services under a single pricing model marred the
independent players in the software as well as the peripherals markets. Up
until then, IBM and other hardware vendors did not sell software but rather

4 Chapter 1

05_785415 ch01.qxp 6/5/06 6:54 PM Page 4

bundled it with hardware almost for free, thereby making the survival of inde-
pendent software vendors impossible. Even though the Justice Department
eventually withdrew their charges against IBM in 1982, the impact that this
case had on IBM and other players was profound. Suffice it to say that the
1970s marked the dawn of the software industry.

The emergence of the software market led to the advent of new software
architectures and development paradigms. In the ensuing 25-odd years, the
software industry became increasingly sophisticated in terms of architecture
and development methodologies. The industry had begun deploying two-tier
architectures where monolithic applications communicated with large data-
bases running on a different system. Object-oriented development in older as
well as newer languages such as C++ and Java, respectively, was in full swing.
People were trying to fathom the potential of the public Internet. Corporations
were beginning to realize that having a corporate Web site was as important
as having phones and fax machines for communication with customers and
partners.

It was at this juncture that software architects started recognizing the lack of
flexibility and interoperability in existing application deployments. The inflexi-
bility was attributed to the inherent nature of monolithic applications that inhib-
ited the ability to repurpose and reuse existing functionality. Even though these
monolithic applications were developed using object-oriented languages, object
technology by itself was not fully equipped to garner optimum levels of reuse.
Dividing functionality into independent and self-contained components that
can interoperate with each other to assemble an application was deemed the bet-
ter solution for building applications.

The preference for component-based architectural principles gradually gave
way to component frameworks such as Common Object Request Broker Archi-
tecture (CORBA), ActiveX/COM, EJB, and so on. In keeping pace with other
disruptive forces at work in software design (mainly distributed multi-tier
computing), these frameworks ended up providing much more than merely
the mechanisms for component development. Component frameworks
evolved sufficiently to support development and deployment of enterprise
applications comprising components distributed over various tiers.

To dive further, let us identify the infrastructure needs of multi-tier enter-
prise applications that could be provided by component frameworks.

Infrastructure Needs of Distributed Applications

Figure 1.1 shows a typical business application. This application could exist in
any industry and could solve any business problem. It could be an equity trad-
ing system, a corporate banking application, a call center application, a sales
automation application, and so on.

Overview 5

05_785415 ch01.qxp 6/5/06 6:54 PM Page 5

Figure 1.1 A typical multi-tier deployment.

Notice that this enterprise application is a distributed system. We broke up
what would otherwise be a large, monolithic application and divorced each
layer of the application from the other, so that each of these layers is indepen-
dent and serves a distinct purpose. For instance, the presentation layer carries
the logic to provide a user interface to the client, the middleware tier consists
of the logic to provide the actual business functionality and other services,
whereas the database tier provides data services.

Now look at this picture and ask yourself which issues would need to be
taken care of for such a deployment? Take a moment to reflect on this question
before proceeding to the following list of aspects worth considering in such a
distributed deployment.

■■ Remote Method Invocation. We need logic that connects one tier to
another via a network connection—viz. logic to connect presentation
tier to middleware tier and middleware tier to database tier. This
includes dispatching method requests, brokering parameters, dispatch-
ing SQL statements, and more.

■■ Load balancing. Presentation clients must be directed to the middle-
ware (as well as database) servers with the lightest load. If a server is
overloaded, a different server should be chosen.

Client
Presentation Tier

Client
Presentation Tier

Client
Presentation Tier

Business
Logic

Middleware Tier

Business
Logic

Middleware Tier

Database

6 Chapter 1

05_785415 ch01.qxp 6/5/06 6:54 PM Page 6

■■ Transparent failover. If a server crashes, or if the network crashes, can
clients be rerouted to other servers without interruption of service? If
so, how fast does failover happen? Seconds? Minutes? What is accept-
able for your business problem?

■■ Back-end integration. Code needs to be written to persist business data
into databases as well as integrate with legacy systems that may
already exist.

■■ Transactions. What if two clients access the same row of the database
simultaneously? Or what if the database crashes? Transactions protect
you from these issues.

■■ Clustering. What if the server contains state when it crashes? Is that
state replicated across all servers, so that clients can use a different
server?

■■ Dynamic redeployment. How do you perform software upgrades
while the site is running? Do you need to take a system down, or can
you keep it running?

■■ Clean shutdown. If you need to shut down a server, can you do it in a
smooth, clean manner so that you don’t interrupt service to clients who
are currently using the server?

■■ Logging and auditing. If something goes wrong, is there a log that you
can consult to determine the cause of the problem? A log would help
you debug the problem so it does not happen again.

■■ Systems management. In the event of a catastrophic failure, who is
monitoring your system? You want monitoring software that pages a
system administrator if a catastrophe occurred.

■■ Threading. Now that you have many clients connecting to a server, that
server is going to need the capability of processing multiple client
requests simultaneously. This means the server must be coded to be
multithreaded.

■■ Message-oriented middleware. Certain types of requests should be
message-based, where the clients and servers are very loosely coupled.
You need infrastructure to accommodate messaging.

■■ Component life cycle. The components that live within the server need
to be created or destroyed when client traffic increases or decreases,
respectively.

■■ Resource pooling. If a client is not currently using a server, that
server’s precious resources can be returned to a pool to be reused when
other clients connect. This includes sockets (such as database connec-
tions) as well as components that live within the server.

Overview 7

05_785415 ch01.qxp 6/5/06 6:54 PM Page 7

■■ Security. The servers and databases need to be shielded from saboteurs.
Known users must be allowed to execute operations for which they
have adequate rights of execution.

■■ Caching. Let’s assume that there is some database data that all clients
share and make use of, such as a common product catalog. Why should
your servers retrieve that same catalog data from the database over and
over again? You could keep that data around in the servers’ memory
and avoid costly network roundtrips and database hits.

■■ And much, much more.

Each of these aspects should be addressed to enable deployment of robust
large-scale distributed applications. Consequently, each of these aspects can
be thought of as a service—a service to do resource pooling, a service to pro-
vide message-based communications, a service to provide authentication and
other security facilities. These services are termed middleware services due to
the fact that they are commonly required in the middleware layer of a multi-
tier application.

Application Server–Class Software
Clearly middleware services are a must for an enterprise application to function
successfully. So how should one go about availing such infrastructure services?
What greater role can component frameworks play in this regard? IT and tech-
nology organizations around the world can do one of the two things—build
these services or buy them.

Building Middleware Services from Scratch

This approach could be considered perilous because building and maintaining
middleware services is a complicated affair. It requires expertise in system-
level programming semantics such as multithreading, pooling, transaction
management, clustering, and so on. Most business application developers
employed by IT departments are not skilled enough in system programming.
Undertaking such a development would therefore require additional invest-
ment in hiring system programmers proficient in this arena.

Moreover, such infrastructure services are orthogonal to the core business of
most corporations using IT. Therefore, building such infrastructure services in-
house would divert IT departments from the business information services
that they are supposed to be delivering to the rest of the organization.
Nonetheless, quite a few companies have taken this route, mainly due to the
absence of frameworks to provide such distributed computing services, out of
the box, at the time.

8 Chapter 1

05_785415 ch01.qxp 6/5/06 6:54 PM Page 8

Buying Middleware Services via Application Server Software

The increasing popularity of component-based development and distributed
computing gave rise to component frameworks that provided not only the
basic component development facilities but also commonplace infrastructure
services—a.k.a. quality of services (QoS)—for multi-tier enterprise applica-
tions. These QoS are rendered to the components hosted within an environ-
ment, namely application server, which implements a distributed component
framework such as EJB.

Application server–class software came into existence to let you buy these
middleware services rather than build them yourself. Application servers
enable you to focus on your business application and not worry about the
middleware plumbing you need for a robust server-side deployment. You
write the code specific to your business and industry, and deploy that code
into the runtime environment of an application server. You’ve just solved your
business problem by dividing and conquering.

Standardization of Component Frameworks
It has been a number of years since the idea of multi-tier server-side deploy-
ments surfaced. Since then, more than 50 application servers have appeared on
the market. At first, each application server provided component services in a
nonstandard, proprietary way. This occurred because there was no agreed-
upon definition of what a component should be or how it should be provided
with services or how should it interact with the application server. The result?
Once you bet on an application server, your code was locked into that ven-
dor’s solution. This greatly reduced portability and was an especially tough
pill to swallow in the Java world, which has always promoted openness and
portability.

What we need is an agreement, or a set of standard interfaces, between appli-
cation servers and components. This agreement will enable any component to
run within any application server. It will allow components to be switched in
and out of various application servers without having to change code or
potentially even recompile the components themselves. Application server
vendors that implement such a standardized component framework secure
their business by providing a higher quality of implementation of the stan-
dard, rather than locking in their customers.

Figure 1.2 depicts an application server that implements a standard compo-
nent framework such as EJB.

Overview 9

05_785415 ch01.qxp 6/5/06 6:54 PM Page 9

Figure 1.2 A standard component framework.

NOTE Even though software is regarded as one of the most cutting-edge
industries, it has lagged behind in the trend to standardize component
interfaces. Other industries, such as consumer device manufacturers, began
following this path long before the software industry. For instance, television
vendors started supporting NTSC (National TV Standards Committee), a
standard for broadcasting, in TV sets almost five decades before we started
seeing similar design principles in software.

Enterprise JavaBeans Technology

Let us finally define EJB properly. EJB is a standard for developing and deploy-
ing server-side distributed components in Java. It defines an agreement (con-
tract) between components and application servers that enables any
component to run in any compliant application server.

The three main value propositions of EJB are:

■■ It is a ubiquitous industry standard. EJB has benefited from its wide-
spread use—it is easy now to hire staff with a good knowledge of EJB to
develop and maintain your systems. Also, due to the maturity of the
technology, numerous best practices for implementing EJB are available
to those who use it.

■■ Portability is possible. The EJB specification is published and available
freely to all. Since EJB is a standard, you do not need to gamble on the
long-term viability and proprietary architecture of a single vendor. And
although porting applications from one platform to another will never
be without its costs, it is easier to get it done working with a standard
than without it.

Application Server

Components

Interaction with
application
server via
standard
interfaces

10 Chapter 1

05_785415 ch01.qxp 6/5/06 6:54 PM Page 10

■■ Rapid application development. Your application can be built faster
because you get middleware infrastructure services such as transac-
tions, pooling, security, and so on from the application server. Also,
innumerable tools have been made available by vendors as well as the
open source community over the years to do rapid application develop-
ment using EJB.

Note that while EJB does have these virtues, there are also scenarios in
which EJB is overkill. Hopefully, with the simpler programming model intro-
duced in EJB 3.0, its usage in smaller applications will increase. See Chapter 13
for best practices and discussions surrounding the issue of when to (and when
not to) use EJB.

NOTE Physically, EJB is actually two things in one:

■■ Specification. With EJB 3.0, the specification has been divided
into three documents, which are all freely downloadable from
http://www.jcp.org/en/jsr/detail?id=220. The specification
lays out the rules of engagement between components and application
servers. It constricts how you code enterprise beans to enable “write
once, run anywhere” behavior for your EJB application.

■■ A set of Java interfaces. Components and application servers must
conform to these interfaces. Since all components are written to the
same interfaces, they all look the same to the application server. The
application server therefore can manage any EJB-compliant components.

Why Java?
The EJB framework has supported only the Java language thus far, unlike the
.NET framework that supports multiple languages. Though this sounds a bit
restrictive, the good news is that Java is one of the best-suited languages for
building distributed components for the following reasons:

■■ Interface/implementation separation. We need a language that sup-
ports clean separation between the interface and implementation
mainly to keep the component upgrades and maintenance to a mini-
mum. Java supports this separation at a syntactic level through the
interface and class keywords.

■■ Safe and secure. The Java architecture is much safer than traditional
programming languages. In Java, if a thread dies, the application stays
up. Pointers are not an issue since the language never exposes them to
the programmer. Memory leaks occur much less often. Java also has a
rich library set, so that Java is not just the syntax of a language but a
whole set of prewritten, debugged libraries that enable developers to

Overview 11

05_785415 ch01.qxp 6/5/06 6:54 PM Page 11

avoid reinventing the wheel in a buggy way. This safety is extremely
important for mission-critical applications.

■■ Cross-platform. Java runs on any platform. There is a Java Virtual
Machine (JVM) for all platforms. Vendors provide support for their
application servers across all the platforms most of the time. This means
that EJB applications could be deployed on all these platforms. This is
valuable for customers who have invested in a variety of hardware
platforms, such as Intel, AMD X32-X64, SPARC, and mainframes, as
well as operating platforms, including various flavors of UNIX, Win-
dows, and so on, in their data centers.

NOTE If you don’t want to go the EJB route, you have two other choices:

■■ Lightweight open source Java frameworks such as Spring. In Chapter 13
we discuss when to use EJB versus such nonstandard frameworks.

■■ Microsoft .NET–managed components, part of the Microsoft .NET
platform.

EJB as a Business Tier Component
The real difference between presentation tier components, such as standalone
applications and applets, dynamically generated Web pages, or Web service
clients, and enterprise beans is the domain in which they operate. Presentation
components are well suited to handle client-side operations, such as rendering
GUIs, executing client-side validations, constructing appropriate Simple
Object Access Protocol (SOAP) messages to send them back and forth to a Web
service, and so on. They deal directly with the end user or end application.

Enterprise beans, on the other hand, are not intended for the client side; they
are server-side components. They are meant to perform server-side operations,
such as executing complex algorithms or performing highly transactional
business operations. The server side has different kinds of needs than GUI
clients do. Server-side components need to run in a highly available (24x7),
fault-tolerant, transactional, multi-user, secure environment. The application
server provides such a server-side environment for the enterprise beans, and it
provides the runtime services necessary for the functioning of enterprise beans.

Specifically, EJB is used to help write logic that solves business problems. Typi-
cally, EJB components (enterprise beans) can perform any of the following tasks:

■■ Perform business logic. Examples include computing taxes on a
shopping cart, ensuring that the manager has authority to approve
the purchase order, or sending an order confirmation e-mail using the
JavaMail API.

12 Chapter 1

05_785415 ch01.qxp 6/5/06 6:54 PM Page 12

■■ Access a database. Examples include submitting an order for books,
transferring money between two bank accounts, or calling a stored pro-
cedure to retrieve a helpdesk ticket in a customer service application.
Enterprise beans can achieve database access using many techniques,
one of which is the Java Database Connectivity (JDBC) API.

■■ Integrate with other systems. Examples include calling a highly trans-
actional CICS legacy system written in C that computes the risk expo-
sure for a new insurance customer, using a legacy VSAM (Virtual
Storage Access Method) data store, or accessing SAP R/3. Enterprise
beans can be integrated with other applications in multiple ways, one
of which is through the Java EE Connector Architecture, which we will
cover in detail in Chapter 15.

Thus, EJB components sit behind the presentation tier applications or
components and do all the hard work. Examples of EJB clients include the
following:

■■ Application clients. Application clients execute on a user’s desktop,
either within an Internet browser environment as an applet or alone.
They connect through the network to EJB components that live on a
server. These EJB components may perform any of the tasks listed pre-
viously (business logic, database logic, or accessing other systems).

■■ Dynamically generated Web pages. Web sites that are transactional
and personalized in nature need their Web pages generated specifically
for each request. For example, the home page for Amazon.com is com-
pletely different for each user, depending on the user’s personal prefer-
ences. Core technologies such as Java Servlets and Java Server Pages
(JSP) are used to dynamically generate such Web pages. Both servlets
and JSPs live within a Web server and can connect to EJB components
for business logic, thereby generating dynamic Web pages based upon
the results returned from the EJB layer.

■■ Web service clients. Some business applications require no user inter-
face at all. They exist to interconnect with other business partners’
applications, which in turn may provide their own user interface. For
example, consider a scenario where Dell Computer Corporation needs
to procure Intel chips to assemble and distribute desktop computers.
Here, Intel could expose an Order Parts Web service that enables the
Dell Procurement Web service client to order chips. In this case, the Intel
system does not provide a graphical user interface per se, but rather
provides a programmatic Web service interface that can be used by a
system instead of a human user. This scenario is shown in Figure 1.3.

Overview 13

05_785415 ch01.qxp 6/5/06 6:54 PM Page 13

Figure 1.3 EJBs as Web service clients.

Distributed Computing: The Foundation of EJB
EJB enables development and deployment of distributed components. A dis-
tributed component, also commonly referred to as distributed object or remote
object, is callable from a remote system. That is, not only can it be called from
an in-process client but also from an out-of-process client that might be located
on a different system on the network.

A remote invocation of a method on a distributed object follows a common
process that is similar across almost all distributed computing technologies.
The main steps of this remote method invocation process are:

1. The client calls a stub, which is a client-side proxy object. This stub is
responsible for masking network communications from the client. The
stub knows how to call over the network using sockets and also how to
massage parameters from their Java representations to the correspond-
ing network representations.

2. The stub calls over the network to a skeleton, which is a server-side
proxy object. The skeleton masks network communication from the dis-
tributed object. The skeleton understands how to receive calls on a
socket as well as how to massage parameters from their network repre-
sentations to their Java representations.

A Dell customer
orders 100 computers
on dell.com

Dell.com Web application finds
out that chips needs to be
procured for fulfilling the order.
It submits the request for the same
to its internal procurement application.

Dell‘s procurement application
communicates with Intel‘s order
parts Web service.

HTTP

RMI/IIOP

Dell.com

EJB Procurement
Application

EJB acts as
Web service
client

Intel Order Parts
Application

EJB as Web
service

Web service
Wrapper

RMI/IIOP

SOAP/HTTP

14 Chapter 1

05_785415 ch01.qxp 6/5/06 6:54 PM Page 14

3. The skeleton delegates the call to the appropriate implementation
object. This object serves the call and does its work, and returns control
to the skeleton, which returns it to the stub, which finally returns con-
trol to the client.

Figure 1.4 depicts the method invocation on a remote object.
A key point here is that both the stub and the server-side implementation

object implement the same interface (called the remote interface). This means
the stub clones the distributed object’s method signatures. A client who calls a
method on the stub thinks he is calling the distributed object directly; in reality,
the client is calling an empty stub that knows how to go over the network. This
is called distribution transparency. In fact, the distributed object is an abstraction
that is created by the cooperation between the stub, skeleton, and implemen-
tation objects. No single entity in this scenario is the distributed object.

You can develop and deploy distributed objects using many other technolo-
gies, including CORBA (OMG), Distributed Component Object Model or
DCOM (; Microsoft), and Java RMI-IIOP (Sun).

Figure 1.4 Remote method invocation.

Stub

Client
Distributed

Object

Skeleton

Remote Interface

Network

Remote Interface

Overview 15

05_785415 ch01.qxp 6/5/06 6:54 PM Page 15

EJB Middleware Services
Although we expound upon the EJB middleware services such as transaction
management, persistence, messaging, security, clustering, and so on through-
out this book, we think it is about time to introduce you to the approach taken
by EJB in provisioning them.

There are two ways in which a framework such as EJB can provide middle-
ware services—explicitly and implicitly. To use explicit middleware services
you must explicitly call the middleware services’ APIs. Implicit middleware
services can be used without having to write against the middleware APIs viz.
implicitly.

Explicit Middleware Approach

Traditionally, transactional systems such as CORBA, Tuxedo, and COM/
DCOM have made available middleware APIs; your code uses them to request
the framework to provide the requisite services. This explicit approach can be
illustrated using pseudo-code. The following example shows a transfer
method on the Bank distributed component that performs transfer of funds
between two accounts.

transfer(Account account1, Account account2, long amount) {

// 1: Call middleware API to perform a security check

// 2: Call middleware API to start a transaction

// 3: Call middleware API to load rows from the database

// 4: Subtract the balance from one account, add to the other

16 Chapter 1

DISTRIBUTION TRANSPARENCY

Distribution transparency is the Holy Grail in distributed systems technology
and is very hard to achieve. Perfect distribution transparency would mean that
a client never sees any differences between local and remote interactions. In
the presence of the more complex failure modes of remote operations and
network latency, this is not possible. Most of the time, the term distribution
transparency is used rather loosely to mean that the syntax of the client code
making invocations is the same for both remote and local invocations. Even this
is not always the case when you consider the different exceptions found in
remote interfaces that in turn require different exception handling, and the
subtle differences between the pass-by-reference and pass-by-value semantics
that local and remote invocations sometimes exhibit.

For these reasons, most middleware systems settle for a less ambitious form
of transparency, viz. location transparency. We will explore location
transparency further in Chapter 3.

05_785415 ch01.qxp 6/5/06 6:54 PM Page 16

// 5: Call middleware API to store rows in the database

// 6: Call middleware API to end the transaction

}

Clearly, although we are serviced with the requisite middleware by the
framework, our business logic is intertwined with the logic to call these mid-
dleware APIs. This approach has some major downsides:

■■ Lowers developer productivity. Even though the framework provides
middleware services, the developer is still supposed to write the code
to use them. Writing and testing this code obviously takes time, thereby
leading to lower developer productivity.

■■ Difficult to write. The code is bloated. We simply want to perform a
transfer, but it requires a large amount of code due to the mingling of
middleware service interaction code with the business logic code.

■■ Difficult to maintain. If you want to change the way you consume
middleware services, you need to rewrite your code.

Implicit Middleware Approach

Using this approach, the framework would not only provide middleware ser-
vices but also an easier way to use them. An implicit middleware framework
will let you declare the middleware services that you need for your application
in a separate descriptor file or even through simple annotations within the
code. Hence, your code contains no cumbersome API calls to use the middle-
ware services. The code is clean and focused on business logic. To use the ear-
lier illustration, below is how the pseudo-code for the transfer method on
the Bank component will look:

transfer(Account account1, Account account2, long amount) {

// 1: Subtract the balance from one account, add to the other

}

At the time the preceding code is compiled, the framework will peruse the
descriptor and/or annotations within the code (depending on the approach
used) and will provide the requested middleware services. A framework may
or may not prescribe a methodology as to how to implicitly render these ser-
vices. For instance, the EJB framework does not define a specific way of doing
this, and different EJB vendors use different mechanisms to provide these ser-
vices implicitly. For instance, some vendors choose to consolidate all calls to
middleware services in the skeleton of the given EJB component, whereas
some vendors put these calls in a different object, which is then called by the

Overview 17

05_785415 ch01.qxp 6/5/06 6:54 PM Page 17

EJB skeleton. Thus, the mechanism used to provide the middleware services
implicitly is an implementation detail of the EJB server and is left to the prod-
uct vendors to decide individually.

Most contemporary computing frameworks, standard or not, follow this
approach. The examples include EJB, Microsoft .NET, Hibernate, and so on.
The upsides to this approach are:

■■ Increases developer productivity. Developers do not have to write the
code for invoking middleware services. All they have to do is declare
the services they require in a descriptor file or as annotations in the
code itself. This increases their productivity.

■■ Easy to write. Since no code needs to be written to call middleware ser-
vices, your component code is focused on business logic.

■■ Easy to maintain. The separation of business logic and middleware
logic is clean and maintainable. Changing middleware service con-
sumption does not require changing application code.

NOTE Annotations or metadata facilities have been introduced in the Java
platform from J2SE 5.0. Annotations are a powerful concept and play an
important role in EJB 3.0 and Java EE 5.0 at large. We will introduce annotations
in Chapter 3, while discussing the EJB 3.0 programming model.

Implicit vs. Explicit Middleware Services in EJB

EJB uses the implicit middleware approach—however, it also provides a sim-
ple API to explicitly interact with middleware services. Although the API
approach is a complex one, it puts greater control in the hands of a developer.

For instance, imagine a scenario where a developer does not want to mark
an entire method on an EJB as transactional. In this case, he can use the Java
Transaction API to interact with the transaction management services of EJB.
Using this middleware service API, the developer can mark the beginning and
end of the transaction at specific points within the method code, thereby
wielding better control.

Although developers usually use middleware services implicitly, it is help-
ful to know that the EJB framework provides a choice. Also, it is good to know
that you can use some middleware services implicitly and some explicitly,
which leads to a hybrid approach to using middleware.

Roles in the EJB Application Life Cycle
An EJB application’s life cycle involve three main phases—development, deploy-
ment, and administration. Depending on the size and scale of the application, the
activities related to each of these phases can range from simple to complex. In the

18 Chapter 1

05_785415 ch01.qxp 6/5/06 6:54 PM Page 18

latter case, the time required to take an EJB application live can be significantly
reduced if responsibilities across the life cycle are divided among various parties.
Each of these parties will play a role, so to speak, in the EJB application’s life
cycle. These parties can be made up of a single person or groups of 10s or even
100s of developers. As long as the individuals playing these roles are well trained
in the given area of application life cycle, this division of labor can yield the max-
imum possible efficiency. We have seen such role-based development practice
used widely, especially in medium and large-scale projects.

The following sections discuss the responsibilities handled by these roles
and clarify the issues that could surface.

The Bean Provider

The bean provider supplies business components, or enterprise beans. It is
tasked with writing the code of enterprise beans and also unit testing their
beans. The bean provider can be an internal department providing compo-
nents to other departments, or it can be a group of developers in a team
responsible for writing EJB components, which can subsequently be used by
other developers in the same team.

The Application Assembler

The application assembler is the overall application architect. This party is
responsible for understanding how various components fit together and
writes the glue code, if required, to make the components work together in a
meaningful manner. An application assembler may even author a few compo-
nents along the way for this purpose. The application assembler is mostly the
consumer of the beans supplied by the bean provider.

The application assembler could perform any or all of the following tasks:

■■ Using an understanding of the business application to decide which
combination of existing components and new enterprise beans are
needed to provide an effective solution; in essence, plan the application
assembly.

■■ Supply a user interface (perhaps a Swing-based application or applet,
or servlet, or JSP) or a Web service.

■■ Write the client code to access components supplied by bean providers.

■■ Write integration code that maps data between components supplied
by different bean providers. After all, components won’t magically
work together to solve a business problem, especially if different parties
write the components.

The role of application assembler can be played either by a systems integra-
tor, a consulting firm, or an in-house developer.

Overview 19

05_785415 ch01.qxp 6/5/06 6:54 PM Page 19

The EJB Deployer

After the application assembler builds the application, the application must be
deployed (and go into production) in a running operational environment. Many
times, the bean provider or an application assembler is unaware of the issues
involved in a production environment. Invariably, the environment in which
EJB applications are developed is not the same as the one in which they are
deployed. Hence, definite skills are required to take care of such differences in
system and software infrastructure products used in development versus
production to ensure a smooth transition to the live environment. This need is
fulfilled by the role of an EJB deployer. The EJB deployer should be well
acquainted with the portfolio of systems, storage, software, and so on in use in
production, at least for that specific application. For instance, an EJB deployer
should be able to work with the various application server(s) used in the pro-
duction environment.

Some of the responsibilities of an EJB deployer include:

■■ Securing the deployment with a hardware or software firewall and
other such security measures. Usually, enterprise applications are
hosted within managed data centers. In which case, the EJB deployer
will interact actively with the data center staff and co-manage the
deployment of EJB applications.

■■ Choosing hardware that provides the required level of robustness and
quality of service. Again, if your enterprise application lives within the
walls of a data center, the EJB deployer will work with data center staff
to identify the systems that meet the needs in terms of resources such as
storage, network bandwidth, memory, and so on.

■■ Providing redundant hardware and other resources for reliability and
fault tolerance. This involves configuring the EJB deployment for fault
tolerance at the system level and/or application level.

■■ Tuning application performance. EJB deployment is not considered
complete without ensuring that its performance meets the defined
requirements. If the application does not meet the desired performance,
then it will need tuning. Deployers can conduct this exercise in coordi-
nation with other performance experts in their organization.

The System Administrator

Once the deployment goes live, the system administrator steps in to oversee
the stability of the operational solution. The system administrator is responsi-
ble for the upkeep and monitoring of the deployed system and may make use

20 Chapter 1

05_785415 ch01.qxp 6/5/06 6:54 PM Page 20

of various performance monitoring and application management tools in the
process.

For example, in the event of failures or disruptions, a sophisticated EJB
application-monitoring tool can send an alarm to the designated administra-
tor, calling for their immediate attention. Some EJB server vendors have sup-
plemented their server offerings by integrating with widely used management
tool product lines such as OpenView, Tivoli, Unicenter, and so on. Others such
as JBoss have written their own support for EJB application monitoring and
management using technologies such as JMX.

Figure 1.5 highlights the coordination between the various parties through-
out the EJB application’s life cycle.

Note that some of these roles could be combined as well. For example, at a
small startup company, the bean provider, application assembler, and
deployer could all be the same person who is trying to build a business solu-
tion using EJBs.

Overview 21

DATA CENTERS

A data center is a consolidated facility that houses computer systems, storage,
and communication related equipment needed to run information technology
operations. In a typical data center, a dedicated staff manages not just hardware
systems but also the hosted software applications. Depending on how critical
the 24x7 functioning of a hosted application is, a data center would provide
various levels of service agreements to their clients.

In years gone by, almost all companies operated an in-house data center.
Many business models bloomed during the Internet revolution of the late
1990s, and outsourcing data centers was one. Most of the dotcoms at the time
outsourced the hosting and operations of their Web sites to professional data
center businesses. Even today, small as well as most medium-sized businesses
continue to outsource data center operations. However, larger companies, such
as the large commercial banks, continue to manage their own in-house data
centers.

Data centers are one area where these companies are incurring large capital
as well as operational expenditure today—even more than for new IT
development. Therefore, it is one of the prime targets that CFOs are focusing on
to reduce costs and increase efficiency. If you work in the role of an EJB
application architect, a deployer, or even a system administrator who manages
systems hosting EJB applications, it would be beneficial for you to find out
about your company’s data center optimization strategy. Knowing about it will
help you make the right decisions in terms of product and architecture
selection, thereby reducing the cost and complexity of your data centers.

05_785415 ch01.qxp 6/5/06 6:54 PM Page 21

EJB Ecosystem
The EJB ecosystem comprises literally, thousands of tools, servers, utilities,
IDEs, and so on that are available to the developers for all stages of EJB appli-
cation development and deployment. Out of them all, developers most cer-
tainly interact with two categories of products in their EJB projects—EJB
containers and development tools. Let us give you a taste of these two classes
of products in terms of what is available today.

22 Chapter 1

QUALITY OF SERVICE(S) AND THE EJB SPECIFICATION

Quality of Service (QoS) in our industry refers to the types of services offered
by infrastructure software such as operating systems, application servers,
databases, and so on to the applications that run on them. Different QoS levels
will impact the health of applications differently. For example, an application
running on an application server that has support for transparent failover
mechanisms will be much more robust (assuming it uses the facility) than the
one deployed on a product that does not provide such QoS.

The EJB specification has mandated that application server vendors provide
certain crucial QoS such as transaction management, resource pooling,
component life cycle management, and so on to enable faster development of
relatively sound enterprise applications. However, other enterprise-level QoS
are still considered as optional by the EJB specification expert group. QoS such
as clustering or caching of data or load balancing, and monitoring and
management capabilities, fall into this category. The specification does not
force vendors to provide these optional QoS. Vendors provide them if their
customers demand them. However, they do not need to support such optional
QoS to be compliant with the EJB specification.

Because the specification does not mandate the support for such QoS or
even specify how vendors should implement them, the question is—does using
such nonstandard QoS hamper application portability? The answer is—it
depends. If you are making changes in your EJB code to be able to use these
QoS, then you are most likely making your code nonportable. Why? Because
you could be using nonstandard programming APIs supplied by the vendor to
access these vendor provided services. When you hop application servers, the
new application server may or may not provide that QoS. If in fact the new
application server does provide that QoS, it definitely will be using different
APIs to provide for that. However, if you are availing these QoS transparently or
through out-of-the-code configurations, then you are protecting your code from
becoming nonportable.

Bottom line—be aware of the portability issues that could arise when using
proprietary vendor features.

05_785415 ch01.qxp 6/5/06 6:54 PM Page 22

Figure 1.5 EJB role-based development.

Build Provider
System Administrator

(Maintains Deployment)

C
onstruct Enterp

rise Beans

Application Assembler Deployer

Build Application

D
ep

lo
y

Sy
st

em

Overview 23

REBRANDING OF JAVA ENTERPRISE EDITION AND STANDARD EDITION

Sun Microsystems recently rebranded the J2SE and J2EE stacks to Java SE (Java
Platform, Standard Edition) and Java EE (Java Platform, Enterprise Edition),
respectively. This change is in effect from the 6.0 version of Standard Edition
and 5.0 version of Enterprise Edition. This means that what could have been
J2SE 6.0 will now be Java SE 6.0 and what could have been J2EE 5.0 will now be
Java EE 5.0. It is important to get used to calling these platforms by their newer
names, since the entire industry has started using them. Everywhere in this
book, we have used the newer branding for both these technologies wherever
applicable.

Since these naming conventions only apply to the upcoming versions of
standard and enterprise stacks, we should continue using J2SE and J2EE
convention for the older versions. For example, we can refer to version 5.0 of
standard edition as J2SE 5.0 instead of Java SE 5.0. Similarly, we can refer to
version 1.4 of enterprise edition as J2EE 1.4 instead of Java EE 1.4.

05_785415 ch01.qxp 6/5/06 6:54 PM Page 23

EJB Container

The EJB container is the piece of software that implements the EJB specification.
The reason it is called a container is that it provides an environment within
which EJB components live and breath. In other words, it provides contain-
ment to the EJB components. An application server provider usually also pro-
vides an EJB container. The container supplies middleware services to the
beans and manages them. More than 30 application servers have been certified
by Sun Microsystems to date for previous versions of Java EE (J2EE 1.2, 1.3,
and 1.4). A complete list can be obtained from http://java.sun.com/
j2ee/licensees.html, but some of the popular commercial application
servers include BEA WebLogic, Sun Java System Application Server (formerly,
Sun ONE Application Server), IBM WebSphere, and Oracle Application
Server. In the open source arena, JBoss, Glassfish, and Apache Geronimo are
the notable application servers.

NOTE We will use the terms EJB container and EJB server interchangeably in
this book.

EJB Tools

To facilitate EJB development and deployment, there are numerous tools you
can use. The EJB tools ecosystem consists of several integrated development envi-
ronments (IDEs) that assist you in rapidly building, debugging, and deploying
components. IDEs encompass most of the major phases of the EJB application
life cycle, except monitoring and management. Most IDEs provide a mecha-
nism to design, develop, test, document, and deploy EJBs. Some of the popu-
lar commercial and open source EJB IDEs are Borland JBuilder, Oracle
JDeveloper, BEA WebLogic Workshop, IBM WebSphere Studio Application
Developer, Sun Microsystems Java Studio Enterprise, NetBeans, and Eclipse.
This list is by no means exhaustive.

Most of these tools enable you to model components using unified modeling
language (UML), which is the diagram style used in this book. You can also gen-
erate EJB code from these UML models. Some of the examples of specialized
commercial products in this space include Borland Together and IBM Rational
line of products. Also, there are a bunch of open source code utilities and tools,
covered in Chapter 13, that can be used for UML modeling and code generation.

There are other tools as well, which you can use to develop your EJB appli-
cations rapidly and successfully. For example, you can use Junit for testing,
Ant/Xdoclet for building your EJB projects, and performance analyzers (Bor-
land OptimizeIt or Quest Software JProbe).

24 Chapter 1

05_785415 ch01.qxp 6/5/06 6:54 PM Page 24

NOTE Given that this book is technology focused, we will obviously not be
spending much time on in-depth coverage of any specific product. However,
every now and then we will use some interesting products (open source and
closed source), to make our point.

Service-Oriented Architectures and Enterprise
JavaBeans

Service-oriented architecture (SOA) has gained stupendous momentum in the
recent years. As with all new ideas, there is a lot of confusion while everyone
is trying to understand the core principles underlying SOA—while they are
still attempting to discern what characterizes an architecture as SOA-based or
otherwise. The fact that different vendors define SOA in various ways, mostly
to suit their purposes, does not help reduce the SOA tumult either.

In this section, we strive to provide a workable understanding of SOA. It is
essential for EJB developers and architects to understand that SOA and EJB are
not mutually exclusive but rather are symbiotic. You can write robust SOA
architectures using EJB. You might be called upon to implement SOA projects
using EJB. Hence, it is imperative that you understand the basic principles of
SOA and correctly juxtapose SOA and EJB.

Overview 25

JAVABEANS VERSUS ENTERPRISE JAVABEANS

You may have heard of another standard called JavaBeans. JavaBeans is a
different technology from Enterprise JavaBeans.

In a nutshell, JavaBeans are Java classes that have get/set methods on
them. They are reusable Java components with properties, events, and methods
that can be easily wired together to create Java applications.

The JavaBeans framework is lightweight compared to Enterprise JavaBeans. You
can use JavaBeans to assemble larger components or to build entire applications.
JavaBeans, however, are development components and are not deployable
components. You typically do not deploy a JavaBean; rather, JavaBeans help you
construct larger software that is deployable. And because they cannot be
deployed, JavaBeans do not need to live in a runtime environment and hence, in a
container. Since JavaBeans are just Java classes, they do not need an application
server to instantiate them, to destroy them, and to provide other services to them.
An EJB application can use JavaBeans, especially when marshaling data from one
EJB layer to another, say to components belonging to a presentation tier or to a
non–Java EE application written in Java.

05_785415 ch01.qxp 6/5/06 6:54 PM Page 25

Defining Service-Oriented Architectures
At the core of a service-oriented architecture lies the concept of service. A sim-
plistic definition of service is a group of related components that carry out a
given business process function, for example transferring funds between banks
or booking an itinerary. An SOA, thus, is a paradigm focusing on development
of services rather than piecemeal components such that these services provide
a higher level of abstraction from a functional standpoint. Of course, there are
more properties to SOA than mere coarse granularity. One such characteristic
property of SOA is that they are autonomous in nature. These independent
entities can interact with others in spite of differences in the way they have been
implemented or the platform they have been deployed on. The notion of
putting together (integrating) such autonomous and loosely coupled services
to address the changing business needs has a huge value proposition, and it is
well on its way to realization with the emergence of various choreography,
orchestration, and collaboration technologies such as WS-BPEL (Web Services
Business Process Execution Language), EbXML BPSS (Electronic Business XML
Business Process Specification Schema), and WS-CDL (Web Services Choreog-
raphy Description Language)

SOA and Web Services

The terms Web services and SOA are often used interchangeably and wrongly
so. SOA is a paradigm. There are many possible ways of building software so
that it implements salient features of SOA (mainly coarse granularity and
loose coupling). One such way is Web services. Web services are a group of
XML technologies that can be used for implementing SOA. Core Web service
technologies—mainly SOAP and WSDL—form the basis of most of these Web
service implementations today.

Simple Object Access Protocol (SOAP) is an XML-based application-level
protocol intended for exchanging information in a distributed network. SOAP
supports both the models of distributed computing: RPC as well as document-
style messaging. RPC style SOAP allows remote invocation of operations. The
RPC in-out parameters and return values of these operations are serialized into
XML, whereas in document-style SOAP, because an operation’s input and out-
put are XML fragments, serialization of parameters and return values to XML
is not needed. Although most of the Web service applications use SOAP over
HTTP today, the standard does not preclude using SOAP over other Internet
protocols, such as Simple Mail Transfer Protocol (SMTP). The latest version of
SOAP, SOAP 1.2, is a World Wide Web Consortium (W3C) Recommendation.

Web Service Description Language (WSDL) is an XML-based metadata stan-
dard that is used to describe the service interface as well as service binding
information. For RPC style services, a WSDL service interface consists of the
supported operations, the input-output parameters that these operations

26 Chapter 1

05_785415 ch01.qxp 6/5/06 6:54 PM Page 26

accept, and their return values. For document-style services, the service inter-
face description contains the XML schema fragments for the input-output
messages of the service operations, whereas the service binding description
specifies communication protocols, ports, the service URL, and other such
binding information. At the time of this writing, the latest version of WSDL,
WSDL 2.0, is well on its way to becoming a W3C standard.

It is noteworthy that these key Web service technologies are neutral to specific
programming languages or development platforms. Support for these technolo-
gies is ubiquitously found on disparate systems ranging from mainframes to
mobile devices such as cell phones. Web services can thus be employed effec-
tively to implement service architectures encompassing such otherwise incom-
patible language and systems platforms. No doubt Web services present a
powerful technological solution for implementing SOA.

We will spend some more time explaining technical aspects of implementing
Web services on an EJB platform in Chapter 5; however, explaining Web ser-
vices, and SOA for that matter, in their entirety is outside the scope of this book.
If you are new to Web services, there are many books and online papers that
you can refer to get started. Given the widespread adoption of this stack in the
industry, we suggest that you familiarize yourself properly with Web services.

SOA and Component Architectures

SOA is not a replacement for component architecture; rather it neatly comple-
ments the component architecture. While component architectures enhance
reusability at a finer-grained level, SOA can enhance reusability at a coarser-
grained level. Hence, from an implementation standpoint, a service might very
well be developed using well-defined component frameworks such as EJB.
The EJB standard, therefore, has in-built support for Web services, the most
popular stack for building SOA. So EJB is still very much in demand!

Divide and Conquer to the Extreme with Reusable
Services

We have been seeing a slow but steady shift in the “build-from-scratch” trend
for years now. More and more businesses want CIOs to stretch their IT dollars
to the maximum. Naturally, this has led the IT departments to think of reuse;
reuse in terms of systems as well as software. What better candidate than
highly functional and autonomous services to fulfill this promise of reuse?
SOA offers maximum reuse, especially when implemented using ubiquitous
protocols such as those supported by Web services. Architects want to design
their software as a composition of services such that these services can be used
from any platform through well-defined service interfaces.

Overview 27

05_785415 ch01.qxp 6/5/06 6:54 PM Page 27

Why just stop at corporate ITs? Even independent software vendors (ISVs) are
thinking of providing their software as services. Prime examples of “software as
a service” include Salesforce.com and Siebel (now Oracle). Both these compa-
nies have made their enterprise software available to customers as hosted ser-
vices. Many other businesses such as Amazon.com and Google provide their
core business services—e-commerce and Web searching respectively—as
reusable services to customers and end users.

Reusable services are a very powerful concept, because:

■■ Businesses can focus on strategic software development. In cases
where business functionality is horizontal and cuts across multiple
business domains, the related software applications can be treated as a
shared commodity and can be procured from a specialized ISV in the
form of services. For example, each business requires a corporate trea-
sury management and cash management system. For such a commod-
ity business need, it is best to acquire software from an outside vendor
than to build it. This will relieve the IT staff from having to deal with
complex treasury functions involving millions of regulations, which
anyway does not have direct relevance to the business’s core function.

■■ The business processes can be assembled faster. The autonomous and
loosely coupled nature of services makes it easier to assemble them into
business processes. This strength makes services the chosen paradigm
for encapsulating business logic.

■■ There is a lower total cost of ownership. Businesses that build their
software as services end up with a lower total cost of ownership in the
long term because they are building software such that it can be easily
reused and assembled into business processes. This is a definite plus
when businesses are frequently expected to adapt business processes to
swiftly address the changing market needs or when they are required to
integrate with the IT systems of new customers and partners. Businesses
that sell software as services, on the other hand, can benefit their cus-
tomers by offering flexible software RTU (right to use) options, such as
per-month or per-year software subscriptions, thereby setting up their
customers with a lower total cost of ownership for the software solution.

Remember that these services can and should be built using components.
Therefore, the component architectures are very much here to stay. Figure 1.6
depicts a treasury management service built using EJB components.

28 Chapter 1

05_785415 ch01.qxp 6/5/06 6:54 PM Page 28

Figure 1.6 Reusable services built using EJB.

The Java Platform, Enterprise Edition 5.0 (Java EE)

EJB is only a portion of a larger offering called Java Platform, Enterprise Edi-
tion, or Java EE, also known previously as Java 2 Platform, Enterprise Edition,
or J2EE. Java Community Process (JCP) members define Java EE just like all
other standard Java technologies. The mission of Java EE is to provide a plat-
form-independent, portable, multi-user, secure, and standard enterprise-class
platform for server-side deployments written in the Java language.

Java EE is a specification, not a product. It specifies the rules of engagement
that people must agree on when writing enterprise software. Vendors then
implement the Java EE specifications in their Java EE–compliant products.

Because Java EE is a specification (meant to address the needs of many com-
panies), it is inherently not tied to one vendor. It supports cross-platform
development and deployment, since it is based on Java. This encourages ven-
dors to compete, yielding best-of-breed products. It also has its downside,
which is that incompatibilities between vendor products will arise—some
problems due to ambiguities with specifications, other problems due to the
human nature of competition.

Java EE is one of the three different Java platforms. Each platform is a con-
ceptual superset of the next smaller platform.

A corporate finance
personnel uses treasury

management system through
company portal

Rather than building a
treasury management

application from
scratch, the business

buys treasury
management system,
built as a service, from

outside.

All company employees use a
central company portal application

to access various services

HTTP

SOAP/HTTP

Company
Portal Application

Corporate IT

RMI/IIOP

Corporate
Treasury Management
Web Service Wrapper

EJBs providing treasury
management logic

Overview 29

05_785415 ch01.qxp 6/5/06 6:54 PM Page 29

■■ The Java 2 Platform, Micro Edition (J2ME) is a development platform for
applications running on mobile Java-enabled devices, such as phones,
Palm Pilots, pagers, set-top TV boxes, and so on. This is a restricted
form of the Java language due to the inherent performance and capacity
limitations of small-form-factor wireless devices.

■■ The Java 2 Platform, Standard Edition (J2SE) defines a standard for core
libraries that can be used by applets, applications, Java EE applications,
mobile applications, and the like. These core libraries span a much
wider spectrum, including input/output, graphical user interface facili-
ties, networking, and so on. This platform contains what most people
use in standard Java programming.

■■ The Java Platform, Enterprise Edition (Java EE) is an umbrella standard for
Java’s enterprise computing facilities. It basically bundles together tech-
nologies for a complete enterprise-class server-side development and
deployment platform in Java.

Java EE is significant because it creates a unified platform for server-side
Java development. The Java EE stack consists of the following:

■■ Specifications. Each enterprise API within Java EE has its own specifi-
cation, which is a PDF file downloadable from www.jcp.org. Each
time there is a new version of Java EE, the Java EE Expert Group at JCP
locks down the versions of each enterprise API specification and bun-
dles them together as the de facto versions to use when developing
with Java EE. This increases code portability across vendors’ products,
because each vendor supports exactly the same API revision. This is
analogous to a company such as Microsoft releasing a new version of
Windows every few years: Every time a new version of Windows
comes out, Microsoft locks down the versions of the technologies bun-
dled with Windows and releases them together.

■■ Test suite. Sun provides a test suite (a.k.a. Test Compatibility Kit, or
TCK) for Java EE server vendors to test their implementations against.
If a server passes the tests, Sun issues a Java EE compliance brand,
alerting customers that the vendor’s product is indeed Java EE–compli-
ant. There are numerous Java EE–certified vendors, and you can read
reviews of their products for free on TheServerSide.com.

■■ Reference implementation. To enable developers to write code against
Java EE, Sun provides its own free reference implementation for each
version of the stack. Sun is positioning it as a low-end reference plat-
form, because it is not intended for commercial use. You can download
the reference implementation for Java EE 5.0, the latest version of Java,
EE platform that includes EJB 3.0, the technology of focus in this book,
from http://java.sun.com/j2ee/download.html.

30 Chapter 1

05_785415 ch01.qxp 6/5/06 6:54 PM Page 30

The Java EE Technologies
Java EE is a robust suite of middleware services that make life very easy for
server-side application developers. It builds upon the existing technologies in
the J2SE. J2SE includes support for core Java language semantics as well as
various libraries (.awt, .net, .io, and so on). Because Java EE builds on J2SE, a
Java EE–compliant product must not only implement all of Java EE stack but
also implement all of J2SE. This means that building a Java EE product is an
absolutely huge undertaking. This barrier to entry has resulted in significant
industry consolidation in the enterprise Java space, with a few players emerg-
ing from the pack as leaders.

In this book, we discuss EJB 3.0, an integral part of Java EE 5.0. Some of the
major Java EE technologies are shown working together in Figure 1.7.

Figure 1.7 A Java EE deployment.

Firewall

EJBs

Existing System
Legacy System

ERP System

IIOP

Client Tier

J2EE Server

Back-End
Systems

Business
Partner

or Other System

Servlets

Business Partner
or Other System

Applets,
Applications,

CORBA Clients

IIOPWeb services technologies
(SOAP, UDDI, WSDL, ebXML) HTTP

Databases

Proprietary Protocol
Web Services Technologies
(SOAP, UDDI, WSDL, ebXML)

Connectors

SQL

JSPs

Web Browser Wireless Device

HTTP

JMS

Overview 31

05_785415 ch01.qxp 6/5/06 6:54 PM Page 31

To understand more about the real value of Java EE, here are some of the
important technologies and APIs that a Java EE 5.0–compliant implementation
will support for you. Note that this is not a complete list of Java EE technologies.

■■ Enterprise JavaBeans (EJB). EJB defines how server-side components
are written and provides a standard contract between components and
the application servers that manage them. EJB is the cornerstone of
Java EE.

■■ Java API for Web Services (JAX-WS) Previously known as JAX-RPC,
JAX-WS is the main technology that provides support for Web services
on the Java EE platform. It defines two Web service endpoint models—
one based on servlet technology and another based on EJB. It also speci-
fies a lot of runtime requirements regarding the way Web services
should be supported in a Java EE runtime. Another specification called
Web Services for Java EE defines deployment requirements for Web ser-
vices and uses the JAX-WS programming model. Chapter 5 discusses
support of Web services provided by both these specifications for EJB
applications.

■■ The Web Services Metadata for the Java Platform. It specifies the vari-
ous annotations for Web services development and deployment. It is
newly introduced in the Java EE 5.0. Its goal is to provide ease of devel-
opment and an easy model for deployment for Web services on the Java
EE platform.

■■ Java Remote Method Invocation (RMI) and RMI-IIOP. RMI is the Java
language’s native way to communicate between distributed objects,
such as two different objects running on different machines. RMI-IIOP
is an extension of RMI that can be used for CORBA integration. RMI-
IIOP is the official API that we use in Java EE (not RMI). We cover RMI-
IIOP in Appendix A.

■■ Java Naming and Directory Interface (JNDI). JNDI is used to access
naming and directory systems. You use JNDI from your application
code for a variety of purposes, such as connecting to EJB components or
other resources across the network, or accessing user data stored in a
naming service such as Microsoft Exchange or Lotus Notes. JNDI is
covered in Appendix A.

■■ Java Database Connectivity (JDBC). JDBC is an API for accessing rela-
tional databases. The value of JDBC is that you can access any relational
database using the same API.

■■ Java Transaction API (JTA) and Java Transaction Service (JTS). The
JTA and JTS specifications allow for components to be bolstered with
reliable transaction support. JTA and JTS are explained in Chapter 10.

32 Chapter 1

05_785415 ch01.qxp 6/5/06 6:54 PM Page 32

■■ Java Messaging Service (JMS). JMS allows your Java EE deployment to
use message-based communication. You can use messages to communi-
cate within your Java EE system as well as outside your Java EE system.
For example, you can connect to existing message-oriented middleware
(MOM) systems such as IBM MQSeries or Microsoft Message Queue
(MSMQ). Messaging is an alternative paradigm to RMI-IIOP, and has
its advantages and disadvantages. We explain JMS and message-driven
beans (MDB) in Chapter 7.

■■ Java servlets. Servlets are networked components that you can use to
extend the functionality of a Web server. Servlets are request/response
oriented in that they take requests from some client host (such as a Web
browser) and issue a response back to that host. This makes servlets
ideal for performing Web tasks such as rendering a HyperText Markup
Language (HTML) interface. Servlets differ from EJB components in
that the breadth of server-side component features that EJB offers, such
as declarative transactions, are not readily available to servlets. Servlets
are much better suited to handling simple request/response needs, and
they do not require sophisticated management by an application server.
We illustrate using servlets with EJB in Chapter 17.

■■ Java Server Pages (JSP). JSP technology is very similar to servlets. In
fact, JSP scripts are compiled into servlets. The largest difference
between JSP scripts and servlets is that JSP scripts are not pure Java
code; they are much more centered on look-and-feel issues. You would
use JSP when you want the look and feel of your deployment to be
physically separate and easily maintainable from the rest of your
deployment. JSP technology is perfect for this, and it can be easily writ-
ten and maintained by non-Java-savvy staff members (JSP technology
does not require a Java compiler). We illustrate using JSP with EJB in
Chapter 17.

■■ JavaServer Faces (JSF). JSF was made a part of the platform from Java
EE 5 onwards. JSF was designed to support rapid application develop-
ment of Java based Web applications by providing a framework that
allows reuse of server-side user interface components. The JSF user
interface (UI) components can be used in JSF pages, which are basically
JSP pages that use JSF tag libraries, as drag-and-drop components. JSF
also has provisions of a typical Web application framework such as
Struts in that it provides control flow and data flow between various
components of a Web application.

■■ Java EE Connector Architecture (JCA). Connectors enable you to
access existing enterprise information systems from a Java EE applica-
tion. This could include any existing system, such as a mainframe

Overview 33

05_785415 ch01.qxp 6/5/06 6:54 PM Page 33

system running high-end transactions (such as those deployed with
IBM CICS, or BEA TUXEDO), Enterprise Resource Planning (ERP) sys-
tems, or your own proprietary systems. Connectors are useful because
they automatically manage the details of middleware integration to
existing systems, such as handling transactions and security concerns,
life-cycle management, thread management, and so on. Another value
of this architecture is that you can write a connector to access an exist-
ing system once, and then deploy it into any Java EE–compliant server.
This is important because you only need to learn how to access an exist-
ing system once. Furthermore, the connector needs to be developed
only once and can be reused in any Java EE server. This is extremely
useful for ISVs such as SAP, Siebel, Peoplesoft and others who want
their software to be accessible from within Java EE application servers.
Rather than write a custom connector for each application server, these
ISVs can write a standard Java EE connector. We discuss legacy integra-
tion in more details in Chapter 15.

■■ The Java API for XML Parsing (JAXP). There are many applications of
XML in a Java EE deployment. For example, you might need to parse
XML if you are performing B2B interactions (such as through Web ser-
vices), if you are accessing legacy systems and mapping data to and
from XML, or if you are persisting XML documents to a database. JAXP
is the de facto API for parsing XML documents in a Java EE application
and is an implementation-neutral interface to XML parsing technolo-
gies such as DOM and SAX. You typically use the JAXP API from
within servlets, JSP, or EJB components.

■■ The Java Architecture for XML Binding (JAXB). JAXB specifies a bind-
ing of XML documents to JavaBean objects based on XML document’s
XML schema. Also, in the latest version of JAXB 2.0, Java can be
mapped to an XML schema. JAXB is leveraged by JAX-WS as a data-
binding technology.

■■ The Java Authentication and Authorization Service (JAAS). JAAS is a
standard API for performing security-related operations in Java EE.
Conceptually, JAAS also enables you to plug authentication and autho-
rization mechanisms into a Java EE application server. See Chapter 11
for more details on security pertaining to EJB applications.

Summary

We’ve achieved a great deal in this chapter. First, we brainstormed a list of
issues involved in a large, multi-tier deployment. We then understood that

34 Chapter 1

05_785415 ch01.qxp 6/5/06 6:54 PM Page 34

server-side component framework enables us to write complex business appli-
cations without understanding tricky middleware services. We then intro-
duced the EJB standard and fleshed out its value proposition. That was
followed by a discussion of the basics of distributed computing and the vari-
ous approaches used by frameworks to provide middleware services. Then,
we established relationship between SOA and EJB. And last but not least, we
investigated the different players involved in an EJB deployment and
wrapped up the chapter by exploring the various technologies bundled in the
Java EE platform.

That was quite a good beginning (and we’re just getting started)—many
more interesting and advanced topics lie ahead. The next chapter attempts at
providing the rationale for much of the work that has gone into EJB 3.0. It
explains what was wrong with the previous versions of EJB and how and
where the changes to the existing technology should be made in order to
improve it. Thus, the next chapter builds a foundation for you to understand
why EJB 3.0 needed to change the way it did. Let’s go!

Overview 35

05_785415 ch01.qxp 6/5/06 6:54 PM Page 35

05_785415 ch01.qxp 6/5/06 6:54 PM Page 36

37

Chapter 1 introduced you to the motivation behind EJB technology. In this
chapter, we will briefly introduce you to the programming and deployment
model used in the previous versions of EJB technology, viz. version 2.1 and
earlier. EJB 3.0 has undergone major changes; changes of this magnitude have
never been made to EJB, not even when container-managed persistence entity
beans were redesigned in EJB 2.0. It is essential that we take you through the
pre-EJB 3.0 world for you to realize the breadth and depth of enhancements
made in EJB 3.0. After reading this chapter, you will understand what a pre-
EJB 3.0 enterprise bean component was composed of as well as its program-
ming model. We will provide an example of an EJB 2.1 bean to help you
understand further. Most importantly, in this chapter you will recognize the
drawbacks of the present EJB programming model. Comprehending these
limitations will prepare you for the exultation you shall experience peeking at
EJB 3.0 in Chapter 3!

If you are new to EJB technology and so haven’t worked with EJB before,
you might want to proceed straight to Chapter 3. Chapter 3 focuses on
fundamentals—from an EJB 3.0 vantage point.

Pre-EJB 3.0:
The World That Was

C H A P T E R

2

06_785415 ch02.qxp 6/5/06 6:55 PM Page 37

What Constituted a Pre-EJB 3.0 Enterprise Bean?

An enterprise bean is a server-side software component that can be deployed in
a distributed multi-tiered environment, and it will remain that way going for-
ward. Anyone who has worked with Enterprise JavaBeans technology before
knows that there are three types of beans—session beans, entity beans, and
message-driven beans (MDBs). Historically an EJB component implementa-
tion has never been contained in a single source file; a number of files work
together to make up an implementation of an enterprise bean. Let us briefly go
through these EJB implementation artifacts:

■■ Enterprise bean class. The primary part of the bean used to be the
implementation itself—which contained the guts of your logic—called
the enterprise bean class. This was simply a Java class that conformed to
a well-defined interface and obeyed certain rules. For instance, the EJB
specification defined a few standard interfaces that your bean class had
to implement. Implementing these interfaces forced your bean class to
expose certain methods that all beans must provide, as defined by the
EJB component model. The EJB container called these required methods
to manage your bean and alert your bean to significant events. The most
basic interface that all of the session, entity, and message-driven bean
classes implemented is the javax.ejb.EnterpriseBean interface.
This interface served as a marker interface, meaning that implementing
this interface indicated that your class was indeed an enterprise bean
class. Session beans, entity beans, and message-driven beans each had
more specific interfaces that extended the component interface
javax.ejb.EnterpriseBean,viz. javax.ejb.SessionBean,
javax.ejb.EntityBean, and javax.ejb.MessageDrivenBean.

■■ EJB object. When a client wants to use an instance of an enterprise bean
class, the client never invokes the method directly on an actual bean
instance. Rather, the invocation is intercepted by the EJB container and
then delegated to the bean instance. By intercepting requests, the EJB
container can provide middleware services implicitly. Thus, the EJB
container acted as a layer of indirection between the client code and the
bean. This layer of indirection manifested itself as a single network-
aware object called the EJB object. The container would generate the
implementation of javax.ejb.EJBObject or
javax.ejb.EJBLocalObject, depending on whether the bean was
local or remote, that is whether it supported local or remote clients, at
deployment time.

■■ Remote interface. A remote interface, written by the bean provider,
consisted of all the methods that were made available to the remote

38 Chapter 2

06_785415 ch02.qxp 6/5/06 6:55 PM Page 38

clients of the bean. These methods usually would be business methods
that the bean provider wants the remote clients of the bean to use.
Remote interfaces had to comply with special rules that EJB specifica-
tion defined. For example, all remote interfaces must be derived from
the javax.ejb.EJBObject interface. The EJB object interface con-
sisted of a number of methods, and the container would implement
them for you.

■■ Local interface. The local interface, written by the bean provider, con-
sisted of all the methods that were made available to the local clients of
the bean. Akin to the remote interface, the local interface provided busi-
ness methods that the local bean clients could call. The local interface
provided an efficient mechanism to enable use of EJB objects within the
Java Virtual Machine (JVM), without incurring the overhead of RMI-
IIOP. An enterprise bean that expected to be used by remote as well as
local clients had to support both local and remote interfaces.

■■ Home interface. Home interfaces defined methods for creating,
destroying, and finding local or remote EJB objects. They acted as life
cycle interfaces for the EJB objects. Each bean was supposed to have a
corresponding home interface. All home interfaces had to extend stan-
dard interface javax.ejb.EJBHome or javax.ejb.EJBLocalHome,
depending on whether the enterprise bean was local or remote. The
container generated home objects implementing the methods of this
interface at the time of deployment. Clients acquired references to the
EJB objects via these home objects. Even though the container imple-
mented home interfaces as home objects, an EJB developer was still
required to follow certain rules pertaining to the life-cycle methods of a
home interface. For instance, for each createXXX() method in the
home interface, the enterprise bean class was required to have a corre-
sponding ejbCreateXXX() method.

■■ Deployment descriptor. To inform the container about your middleware
needs, you as a bean provider were required to declare your compo-
nents’ middleware needs—such as life-cycle management, transaction
control, security services, and so on—in an XML-based deployment
descriptor file. The container inspected the deployment descriptor and
fulfilled the requirements laid out by you. The deployment descriptor
thus played the key role in enabling implicit middleware services in the
EJB framework.

■■ Vendor-specific files. Since all EJB server vendors are different, they
each have some proprietary value-added features. The EJB specification
did not touch these features, such as how to configure load balancing,
clustering, monitoring, and so on. Therefore, each EJB server vendor

Pre EJB 3.0: The World That Was 39

06_785415 ch02.qxp 6/5/06 6:55 PM Page 39

required you to include additional files specific to that vendor, such as
a vendor specific XML or text-based deployment descriptor that the con-
tainer would inspect to provide vendor-specific middleware services.

■■ The Ejb-jar file. The Ejb-jar file, the packaging artifact, consisted of all
the other implementation artifacts of your bean. Once you generated
your bean classes, your home interfaces, your remote interfaces, and
your deployment descriptor, you’d package them into an Ejb-jar file. It
is this Ejb-jar file that you, as a bean provider, would pass around for
deployment purposes to application assemblers.

Figure 2.1 schematizes an Ejb-jar file, the EJB artifact that is ultimately
deployed.

With this primer on the pre-EJB 3.0 constituents, let us go through with the
development and deployment of a simple stateless session bean. This will set
the stage for us to explore further the shortcomings of the programming model
of the previous versions of the technology.

Figure 2.1 Pre-EJB 3.0 constituents.

Enterprise Bean
Classes

Home Interfaces

Remote Interfaces

Deployment
Descriptor

Jar File Creator EJB Jar File

Local Interfaces

Vendor-specific
files

40 Chapter 2

06_785415 ch02.qxp 6/5/06 6:55 PM Page 40

Developing and Deploying a Pre-EJB 3.0 Enterprise
Java Bean

In this section, we will conduct a simple exercise: developing and deploying
the universal HelloWorldEJB stateless session bean using EJB 2.1. The fol-
lowing are the typical steps involved:

1. Write the Java code for the files composing your bean—the remote
and/or local interface, the bean class, and the home interface.

2. Write the deployment descriptor or have it generated by using an IDE
or tools such as XDoclet.

3. Compile the Java source codes from step 1.

4. Using the jar utility, create an Ejb-jar file containing the deployment
descriptor and the .class files from step 3.

5. Deploy the Ejb-jar file into your container in a vendor-specific manner,
perhaps by using a vendor-specific tool or perhaps by copying your
Ejb-jar file into a folder where your container looks to load Ejb-jar files.

6. Configure your EJB server so that it properly hosts your Ejb-jar file. You
might tune things such as database connections, thread pools, and so
on. This step requires vendor-specific configuration and might be done
through a Web-based console or by editing a configuration file.

7. Check your EJB container and confirm that it has loaded your Ejb-jar file.

8. Optionally, write a standalone test client .java file and let vendor tools
generate stub classes for remote access, if required. Compile that test
client into a .class file. Run the test client from the command line,
and have it exercise your bean’s APIs.

Figure 2.2 shows the class diagram for our HelloWorldEJB stateless ses-
sion bean.

Now, let us go through the programming artifacts, one by one.

Pre EJB 3.0: The World That Was 41

06_785415 ch02.qxp 6/5/06 6:55 PM Page 41

Figure 2.2 HelloWorldEJB class diagram.

The Remote Interface
The remote interface for HelloWorldEJB extends javax.ejb.EJBObject,
which in turn extends java.rmi.Remote. Note that the container imple-
ments the bean’s remote interface, not us. Also HelloWorldEJB remote inter-
face consist of one business method, hello(), which needs to be
implemented in the bean class. Because the remote interface is an RMI-IIOP
interface, that is it indirectly extends java.rmi.Remote, all its methods must
throw a java.rmi.RemoteException. However, the implementation of
hello() in the bean class does not have to throw a remote exception. Why? It
is not directly accessed by the client over the network and hence does not need
to foresee a networking-related issue.

The source for Hello.java, the remote interface of HelloWorldEJB, is
given below in Source 2.1.

/**

* This is the HelloBean remote interface.

*

* This interface is what clients operate on when

* they interact with EJB objects. The container

Source 2.1 Hello.java. (continued)

Hello World Bean
Implementation

Class

<<interface>>
Hello World

Remote Interface

Hello World
EJB Object

<<interface>>
Hello World

Home Interface

Hello World
Home Object

Supplied by Bean provider (we will write)

Generated for us by container vendor's tools

<<interface>>
java.rmi.Remote

<<interface>>
java.io.Serializable

<<interface>>
javax.ejb.EnterpriseBean

<<interface>>
javax.ejb.SessionBean

<<interface>>
javax.ejb.EJBHome

<<interface>>
javax.ejb.EJBObject

Comes with EJB distribution

Comes with Java 2 platform

<<interface>>
Hello World

Local Home Interface

Hello World
Local Home Object

<<interface>>
javax.ejb.EJBLocalHome

<<interface>>
Hello World

Local Interface

Hello World
EJB Local Object

<<interface>>
javax.ejb.EJBLocalObject

42 Chapter 2

06_785415 ch02.qxp 6/5/06 6:55 PM Page 42

* vendor will implement this interface; the

* implemented object is the EJB object, which

* delegates invocations to the actual bean.

*/

public interface Hello extends javax.ejb.EJBObject

{

/**

* The one method - hello - returns a greeting to the client.

*/

public String hello() throws java.rmi.RemoteException;

}

Source 2.1 (continued)

The Local Interface
If HelloWorldEJB were to support access by local clients within the same
JVM, it would need a local interface.

Source 2.2 shows the local interface for HelloWorldEJB.

/**

* This is the HelloBean local interface.

*

* This interface is what local clients operate

* on when they interact with EJB local objects.

* The container vendor will implement this

* interface; the implemented object is the

* EJB local object, which delegates invocations

* to the actual bean.

*/

public interface HelloLocal extends javax.ejb.EJBLocalObject

{

/**

* The one method - hello - returns a greeting to the client.

*/

public String hello();

}

Source 2.2 HelloLocal.java.

Pre EJB 3.0: The World That Was 43

06_785415 ch02.qxp 6/5/06 6:55 PM Page 43

Notice that there are differences between the local and the remote interface
for the same bean:

■■ The local interface extends javax.ejb.EJBLocalObject instead of
javax.ejb.EJBObject.

■■ Our business method, hello(), does not throw a java.rmi.Remote
Exception, since there is no need to take care of network contingencies
in local JVM communication.

The Home Interface
The home interface has methods to create and destroy EJB objects of the bean.
The EJB container generates the home interface implementation.

The code for home interface is given in Source 2.3.

/**

* This is the home interface for HelloBean. This interface

* is implemented by the EJB Server’s tools - the

* implemented object is called the Home Object, and serves

* as a factory for EJB Objects.

*

* One create() method is in this Home Interface, which

* corresponds to the ejbCreate() method in HelloBean.

*/

public interface HelloHome extends javax.ejb.EJBHome

{

/*

* This method creates the EJB Object.

*

* @return The newly created EJB Object.

*/

Hello create() throws java.rmi.RemoteException,

javax.ejb.CreateException;

}

Source 2.3 HelloHome.java.

Notice the following in the home interface:

■■ It extends javax.ejb.EJBHome as required for all home interfaces.

■■ We provided a create() method that will act as a factory method for
getting a reference to an EJB object; the EJB container initializes the
bean when this method is called.

44 Chapter 2

06_785415 ch02.qxp 6/5/06 6:55 PM Page 44

■■ The create() method throws remote exception given that the home
object is a networked object. Also, javax.ejb.CreateException is
thrown, to cover for situations where creation of a bean failed due to
some application-level error.

The Local Home Interface
The local clients use a local home interface in order to access the local EJB
object of the bean.

The local home interface code is shown in Source 2.4.

/**

* This is the local home interface for HelloBean.

* This interface is implemented by the EJB Server’s

* tools - the implemented object is called the

* local home object, and serves as a factory for

* EJB local objects.

*/

public interface HelloLocalHome extends javax.ejb.EJBLocalHome

{

/*

* This method creates the EJB Object.

*

* @return The newly created EJB Object.

*/

HelloLocal create() throws javax.ejb.CreateException;

}

Source 2.4 HelloLocalHome.java.

Notice the differences between local and remote home interfaces for the bean:

■■ Whereas the remote home interface extends javax.ejb.EJBHome
interface, the local home interface extends javax.ejb.EJBLocalHome.
This means that the generated local home object is not a remote object.

■■ Unlike the methods on the remote home interface, the local home inter-
face methods, such as create(), do not throw remote exceptions.

The Bean Class
Now let us take a look at our bean class code, shown in Source 2.5.

Pre EJB 3.0: The World That Was 45

06_785415 ch02.qxp 6/5/06 6:55 PM Page 45

/**

* Demonstration stateless session bean.

*/

public class HelloBean implements javax.ejb.SessionBean {

private javax.ejb.SessionContext ctx;

//

// EJB-required methods

//

public void ejbCreate() {

System.out.println(“ejbCreate()”);

}

public void ejbRemove() {

System.out.println(“ejbRemove()”);

}

public void ejbActivate() {

System.out.println(“ejbActivate()”);

}

public void ejbPassivate() {

System.out.println(“ejbPassivate()”);

}

public void setSessionContext(javax.ejb.SessionContext ctx) {

this.ctx = ctx;

}

//

// Business methods

//

public String hello() {

System.out.println(“hello()”);

return “Hello, World!”;

}

}

Source 2.5 HelloBean.java.

This is, of course, a simplistic bean, and hence our bean class, which holds
the logic for the bean, is quite simple. Notice the following:

■■ It implements a javax.ejb.SessionBean interface, since it is a session
bean. The bean class therefore must implement SessionBean interface
methods, most of which are the hooks for the container to manage the
bean. Via such methods, the container lets the bean know of its life cycle—
when it is being created, destroyed, passivated, activated, and so on.

46 Chapter 2

06_785415 ch02.qxp 6/5/06 6:55 PM Page 46

■■ The bean has an ejbCreate() method that matches the home object’s
create() method and takes no parameters.

■■ The setSessionContext() method provides a way for the container
to set the EJB context-specific to your bean, which in the case of our ses-
sion bean, is a session context. The bean can then use this context object
to get information about its status changes from the container.

Deployment Descriptor
The deployment descriptor carries the configuration information about the
bean, things such as its middleware requirements, which the container could
use to set up an appropriate environment for the bean. It is an XML document,
usually generated by the tools. The deployment descriptor for our bean is
shown in Source 2.6.

<?xml version=”1.0” encoding=”UTF-8”?>

<ejb-jar

xmlns=”http://java.sun.com/xml/ns/j2ee”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd”

version=”2.1”>

<enterprise-beans>

<session>

<ejb-name>HelloWorldEJB</ejb-name>

<home>examples.ejb21.HelloHome</home>

<remote>examples.ejb21.Hello</remote>

<local-home>examples.ejb21.HelloLocalHome</local-home>

<local>examples.ejb21.HelloLocal</local>

<ejb-class>examples.ejb21.HelloBean</ejb-class>

<session-type>Stateless</session-type>

<transaction-type>Container</transaction-type>

</session>

</enterprise-beans>

</ejb-jar>

Source 2.6 ejb-jar.xml.

Deploying The Bean
Once we have all the required artifacts for the HelloWorldEJB, we will
package them into an Ejb-jar file. Typically, your EJB development environ-
ment would do this packaging, so that you don’t have to use another jar tool
exclusively to do it. We then deploy this Ejb-jar file on the container of our

Pre EJB 3.0: The World That Was 47

06_785415 ch02.qxp 6/5/06 6:55 PM Page 47

choice. The steps of deployment, though tentatively are the same, vary in
specifics from container to container.

Once the bean is deployed and working, develop, compile, and test the bean
with a client.

HelloWorldEJB Client
Examine the code for the bean client. It is a standalone Java application, as
shown in Source 2.7.

import javax.naming.Context;

import javax.naming.InitialContext;

import java.util.Properties;

/**

* This class is an example of client code that invokes

* methods on a simple stateless session bean.

*/

public class HelloClient {

public static void main(String[] args) throws Exception {

/*

* Setup properties for JNDI initialization.

*

* These properties will be read in from

* the command line.

*/

Properties props = System.getProperties();

/*

* Obtain the JNDI initial context.

*

* The initial context is a starting point for

* connecting to a JNDI tree. We choose our JNDI

* driver, the network location of the server, etc.

* by passing in the environment properties.

*/

Context ctx = new InitialContext(props);

/*

* Get a reference to the home object - the

* factory for Hello EJB Objects

*/

Object obj = ctx.lookup(“HelloHome”);

/*

Source 2.7 HelloClient.java. (continued)

48 Chapter 2

06_785415 ch02.qxp 6/5/06 6:55 PM Page 48

* Home objects are RMI-IIOP objects, and so

* they must be cast into RMI-IIOP objects

* using a special RMI-IIOP cast.

*

* See Appendix A for more details on this.

*/

HelloHome home = (HelloHome)

javax.rmi.PortableRemoteObject.narrow(

obj, HelloHome.class);

/*

* Use the factory to create the Hello EJB Object

*/

Hello hello = home.create();

/*

* Call the hello() method on the EJB object. The

* EJB object will delegate the call to the bean,

* receive the result, and return it to us.

*

* We then print the result to the screen.

*/

System.out.println(hello.hello());

/*

* Done with EJB Object, so remove it.

* The container will destroy the EJB object.

*/

hello.remove();

}

}

Source 2.7 (continued)

HelloClient.java does some interesting things:

■■ It creates a JNDI initial context object by supplying the container with
the appropriate information such as the network location of the JNDI
service, JNDI driver, and so on.

■■ It looks up the home object for the bean, HelloHome, implemented and
registered by the container under the name specified in <ejb-name> of
the deployment descriptor in a JNDI directory, so that it can create EJB
object for HelloWorldEJB.

■■ Once it gets the home object for HelloWorldEJB, it gets a reference to
the EJB object by calling create() method on the home object.

Pre EJB 3.0: The World That Was 49

06_785415 ch02.qxp 6/5/06 6:55 PM Page 49

■■ After calling the business method, hello(), on the Hello EJB object,
it informs the container that it is done using the EJB object and that the
container can destroy it or return to the object pool, if it so desires.

The client is then compiled and run. This brings our example to completion.

Dissecting EJB 2.x

The preceding example is a good preamble to start our discussion of the short-
comings of the EJB 2.x model. Mind you, our example is a session bean—a
stateless session bean to be more specific. However, the way we develop and
deploy a stateful session bean is quite similar to that of the stateless session
bean, so our examination is relevant to both stateless and stateful session
beans, as well as to the greater EJB architecture.

The message-driven beans slightly differ in that they do not have a home or
a remote interface. However, some of the issues are applicable to MDBs as
well. So let’s begin!

Complexity: The Overarching Issue of EJB 2.x
As a consultant, a compatriot once gave me the key to his booming consulting
practice. His mantra: complexity is a virtue you could never have enough of.
Of course, this mantra was convenient for his consulting business. However,
imagine yourself in the position of an IT manager hiring one of his consultants.
Well, you get the picture. You do not want code that is so complicated to
develop, deploy, test, and maintain, that you’d rather sell it at a dime a pound,
assuming there were such a junk code marketplace, and be rid of it. And the
last thing you’d want is architecture such as EJB to aid to make this nightmare
a reality.

50 Chapter 2

WHAT ABOUT ENTITY BEANS?

Entity beans in EJB 2.x do have issues, as all of us who have worked with that
technology are aware. After much contemplation, the EJB 3.0 specification expert
group decided to leave entity beans alone in this version. That is, entity beans
will remain as they were in EJB 2.x without undergoing any enhancements.
Instead, the expert group worked on making available another API called Java
Persistence API to EJB developers. This API aims at providing a very simple yet
effective persistence technology for EJB applications. Therefore, our scrutiny of
EJB 2.x drawbacks will not address entity beans, even though it might be
applicable to entity beans as such.

06_785415 ch02.qxp 6/5/06 6:55 PM Page 50

EJB was designed to meet almost all of an enterprise application’s middle-
ware needs. In doing so, it also ended up adopting leviathan ways for enter-
prise programming. In all fairness, EJB visionaries have continually improved
the technology from what it was at the time of its debut in early 1998. How-
ever, to deal with the all-encompassing convolutions of EJB, serious measures
are called for. These measures are the sole focus of EJB 3.0 and Java EE 5.0
enhancements, and most rightly so.

Development Complexities

Developing a typical enterprise bean consisted of three—and many times
more than three—Java sources. For our simplistic HelloWorldEJB, we were
required to write five Java sources, including the sources for home and EJB
object interfaces to support local clients, remote clients, and a bean class. The
concern is that often these sources contain boilerplate stuff and yet they are
cumbersome to write without the help of IDE wizards. Below are some of the
examples of vanilla coding requirements that exist throughout the EJB pro-
gramming model. To reduce development complexity, such coding require-
ments should be made the first targets of any simplification exercise.

■■ For session beans, home interfaces exist so that the clients can look
them up and create references to the bean, which they can then use.
Now EJB programming restrictions mandate that every stateless session
bean have exactly one create() method. This create() method
needs to be without arguments, since stateless session beans are with-
out state and hence don’t need to be equipped with a state-passing
mechanism such as arguments. Therefore, given a way to somehow cre-
ate and pass the stateless session bean reference to the client, stateless
session bean development can be simplified by getting rid of this other-
wise unnecessary home interface.

Similarly, for a stateful session bean, its home interface serves the pur-
pose of creating bean references and initializing their states via the cre-
ate methods. If there were a way of putting these create methods
elsewhere, we could get the home interface completely out of the ses-
sion bean programming model. This would save developers the time
and effort of developing home interfaces.

■■ The remote interface for HelloWorldEJB carries methods that are
made available to the remote clients. Similarly, the methods that should
be made available to the local clients are provided as part of local inter-
face. And the ones invoked by Web service clients are made available
via a Web service endpoint interface. Almost always the business meth-
ods that go into remote and local interfaces are the same, except that the
former has remote invocation semantics with regard to serialization,
exception handling, and so on taken into consideration, while the latter

Pre EJB 3.0: The World That Was 51

06_785415 ch02.qxp 6/5/06 6:55 PM Page 51

doesn’t. If somehow the client view of the session bean can be provided
irrespective of the client invoking its business methods, this can further
help simplify the EJB programming model. In short, EJB need not
worry about the location of the client invoking it. It should just be able
to provide the business methods in a business interface and leave it up
to the container to handle the support for local or remote client invoca-
tion of the beans using this business interface.

■■ The HelloWorldEJB bean class requires implementation of component
interface, javax.ejb.SessionBean. As a result, our bean class has to
provide implementation for four methods, namely ejbActivate(),
ejbPassivate(), ejbRemove(), and setSessionContext().
The ejbPassivate() and ejbActivate() callback methods are
called before the container passivates your bean and after it activates
it, respectively. Naturally, these methods are not applicable to
stateless session beans, which are never passivated or activated. The
ejbRemove() callback method is invoked by the container before it
removes your bean instance. The setSessionContext() callback is
called right after the bean class instance is created. The bean can then
do whatever it chooses to do with this SessionContext object—get
access to the transaction object and manage transactions for the bean
manually, get access to the local and remote home objects associated
with the bean instance, get access to local and remote EJB objects associ-
ated with the bean instance, and so on. The SessionBean interface,
thus, can have an important role to play in your bean’s existence in that
it provides your bean with useful information about its environment as
well as letting the bean find out about its life cycleevents and take
action appropriately.

In spite of all this, however, there are times when implementing this
interface can be overkill. Not all the beans need these callbacks. In our
HelloWorldEJB example for instance, we simply did not have a
reason to use the callbacks and so we ended up putting pointless
System.out.println() calls in their implementation. Nonetheless
the restrictions of EJB programming made us take on the extra burden
of implementing the SessionBean interface. Therefore, if there were a
way to implement such callbacks if need be and not have to implement
them when there is no need, this would clean up a lot of bean classes
with unnecessary implementations of SessionBean component inter-
face methods.

■■ Let us talk about the HelloWorldEJB client now for a moment. In order
to use the bean, the client has to work with the JNDI APIs. The JNDI
registry holds the EJB home object references and all the other resources
such as JMS topics, JMS queues, JDBC connection factories, JMS
connection factories, and so on in a Java EE server. Making available

52 Chapter 2

06_785415 ch02.qxp 6/5/06 6:55 PM Page 52

the factories and other distributed resources in a registry such as JNDI
registry is a good thing. However, the EJB client programmer shouldn’t
have to learn JNDI intricacies. The client programmer shouldn’t have to
know how to work with JNDI APIs. This is definitely one area where EJB
programming can be simplified; provide an easier way to get resources
such that using JNDI APIs isn’t a requirement for clients.

The preceeding list of major EJB development complexity issues hints at the
areas of focus for EJB 3.0 enhancements.

Deployment Complexities

The original EJB designers thought of a wonderful architectural concept that
separates middleware issues and concerns and how these concerns are
addressed from the actual business logic. In doing so, they realized that there
has to be a way for a bean to let the container know about the middleware ser-
vices that it will need for successful execution. The designers thought of a con-
figuration file that is essentially used by the bean to put its needs in terms of
middleware. This configuration came to be known as a deployment descriptor.
It is uncanny how an artifact born of such an incandescent idea can come to be
so disliked by almost all EJB programmers on the planet!

The separation of deployment information from the actual business logic in
itself was a brilliant idea; however, its implementation isn’t exactly to the lik-
ing of a good many EJB architects and developers. The reasons are many; some
of these are:

■■ A deployment descriptor is a piece of XML and as such is not very
straightforward to edit; a single misplaced or mistyped character can
render XML invalid and lead to errors in the deployment process.
Although tools usually generate these deployment descriptors, the fact
that descriptors are the only way of letting the container know about
bean’s deployment needs means that developers are required to have a
good understanding of them. If there were yet another way—a more
programmer-friendly alternative—of specifying the bean’s deployment
needs, it would surely provide a choice for those of us who are XML-
phobic.

■■ One of the main purposes of making the deployment descriptor a part
of the EJB specification was to devise a standard way of communicating
configuration information from the bean to the container such that even
if the bean were to be ported to a different container, the deployer
would not need to change this configuration and the deployer could
deploy the bean as is. Although this has been achieved, the question is,
to what extent? For example, even though our bean can specify its
needs to the container with regard to transaction in a vendor agnostic
way, it is not yet possible to let the container know about the clustering

Pre EJB 3.0: The World That Was 53

06_785415 ch02.qxp 6/5/06 6:55 PM Page 53

or caching needs of a bean without resorting to vendor-specific deploy-
ment descriptors. Over the years, EJB application implementers have
felt a surging need to insert more and more of such configuration infor-
mation into the standard to make the write once, deploy anywhere
promise of enterprise Java a reality.

Not all of the deployment descriptor flaws mentioned above have been rec-
tified in EJB 3.0. However, the fact remains that enhancing a technology as
comprehensively defined and widely deployed as EJB is not going to be an
overnight process. We will get there, nonetheless, slowly and steadily.

Debugging and Testing Complexities

Debugging and testing EJB introduces us to a different set of issues. No won-
der there are dozens of EJB testing and debugging utilities available, both in
open source as well as in commercial/closed source domains. The reason we
have to fall back on using these utilities and tools for something as intrinsic to
the software development life cycle as testing and debugging is because the
EJB architecture doesn’t facilitate these to developers out of the box, not with-
out ramifications.

There are two ways in which a bean could be tested—within the container
or outside the container. For the former, we have to deploy the tests within the
container, that is, essentially our tests have to become Java EE components
such as servlets/JSPs or an EJB that implements the test case. For the latter, we
need to deploy the EJB in the container such that it supports remote invoca-
tions. What if you have an EJB that supports only local interface? Would you
put remote interfaces on your bean just to support the remote test clients? As
you can see, testing is not as simple as it ought to be. Test frameworks, utilities,
and IDEs have tried over the years to make testing enterprise beans simpler
and provide an out-of-the-box experience. We are reaching that destination,
but we are not there yet.

By the same token, there are two ways in which debugging an enterprise
application deployed on an EJB container is accomplished—by reading the
application server log files or by attaching a debugger process with the appli-
cation server’s JVM. Most times, especially if an application server is config-
ured to be verbose (which, by the way, needs to be done if we want to know
what is going on inside the application server), log files tend to get bulky.
Scouring such log files to find exactly where your application could have gone
wrong is an inefficient technique for debugging. The latter approach of attach-
ing a debugger with an application server sure sounds more promising, and it
is. Most of the IDEs today come with debuggers that attach to EJB containers
so as to be able to write and debug code from within the IDE. The only issue
here is that not all EJB compliant application servers are supported by the

54 Chapter 2

06_785415 ch02.qxp 6/5/06 6:55 PM Page 54

IDEs. The IDE-to-EJB-server integration is posing issues to developers who
want ubiquitous debugging support across all EJB server platforms from their
favorite IDE.

What Needs to Be Done to Improve EJB 2.x?
Our example and the examination of EJB technology that followed it, specifi-
cally session beans, make one thing very clear—EJB needs to be simplified to
address the issues surrounding development, deployment, testing, and
debugging. Please don’t mistake us; we are not in the least suggesting that EJB
be made into a child’s play. On the contrary, we believe that EJB programming
model should be changed so as to make mundane things simpler, thereby
increasing developer productivity. Developer productivity sits right at the
heart of every IT organization that is a consumer of technology. Indeed, the
time has come for us to make life easier for developers, so that their resulting
increase in productivity can make life easier for businesses, which in turn is
good for all of us.

We do believe that enterprise software development is no fool’s business,
although we don’t think that it should be made into a rocket science either. We
do acknowledge that enterprise software development demands sound
knowledge of architectural principles; however, our task would be made
much easier if we could get cooperation from frameworks to implement these
principles.

Summary

In this chapter, we examined the past; we looked at a very simplistic example
of a 2.x stateless session bean, which helped us understand the development
and deployment shortcomings of the EJB 2.x model. It helped in setting us to
the right speed for diving into the depths of EJB 3.0.

We are now fully prepared to get into the ocean of EJB 3.0!

Pre EJB 3.0: The World That Was 55

06_785415 ch02.qxp 6/5/06 6:55 PM Page 55

06_785415 ch02.qxp 6/5/06 6:55 PM Page 56

57

Okay, so now we have witnessed the excessively difficult development of a
very simple EJB in Chapter 2. What did that make you want? EJB 3.0 should be
the answer there. Without further ado, here is brand new introduction to the
EJB technology within the context of EJB 3.0.

NOTE It is of the utmost necessity that you understand that while a lot of
changes have been made to the programming model in EJB 3.0, fundamentally
EJB technology continues to address the same need, that is, it serves as the
server-side software component framework. The development and deployment
model of EJB has been revamped, not its core framework and architectural
principles. Obviously, some current best practices and design patterns might
lose their applicability to EJB 3.0 solutions; however, many of them still hold
water in EJB 3.0.

Introducing EJB 3.0

An enterprise bean is a server-side software component that can be deployed
in a distributed multi-tier environment. A bean is written using the EJB APIs
(The javax.ejb.* package) and is deployed into an EJB container. The
EJB container then provides the bean with various services such as life cycle

The New Enterprise JavaBean

C H A P T E R

3

07_785415 ch03.qxp 6/5/06 6:55 PM Page 57

management, security, transaction management, and much more. The client of
an EJB bean could be anything—a servlet, a JSP, a standalone Java application,
an applet, a SOAP-based Web service client, or even another EJB. One can
divide a complex task into multiple beans such that a client invokes an entry
point method on one of these beans, which in turn invokes the others in the
group. Thus, one can use a divide-and-conquer strategy in the EJB application
design.

As a real-world example, imagine for a moment what happens when you go
to an ATM to withdraw some money from your checking account. Imagine
what takes place underneath the ATM screen from the architecture standpoint.
The ATM front-end user application can very well be a standalone Java appli-
cation running on the client-side JVM. This Java application takes details such
as your debit card info, pin, withdrawal amount, and so on and sends that data
across the wire (often in a compressed format) to a Web service hosted by the
ATM host processor, also known as the acquirer. It is the acquirer that then
communicates with the ATM user’s financial institution (bank, credit card
company, and so on) to accomplish the payment transaction. The acquirer Web
service can be implemented as an enterprise bean and as part of the invocation
of a method—named as, say, processWithdrawal()—on this bean, a bunch
of other invocations potentially on a number of different beans ensues.

1. Call logTransaction() on ATMLog bean, to log the date, time, and
coordinates of the withdrawal transaction.

2. Invoke doEFT() on ElectronicFundsTransfer bean to transfer the
withdrawal amount from ATM user’s checking account to the
acquirer’s account.

3. Invoke dispenseCash() on CashRegister bean once the EFT trans-
action goes through successfully and the acquirer receives an approval
code from the ATM user’s financial institution authorizing it to dis-
pense cash.

This flow is depicted in Figure 3.1. As is evident, this is a powerful way to
design complex applications using EJBs.

For those who are EJB veterans, it is important to note that the core partici-
pants have remained the same for EJB 3.0, that is, a bean, a container, and a
client. The difference between the old and the new is apparent when we exam-
ine the development and deployment semantics of these participants across
the versions of EJB.

58 Chapter 3

07_785415 ch03.qxp 6/5/06 6:55 PM Page 58

Figure 3.1 ATM cash withdrawal scenario accomplished using EJBs.

EJB Container
As you know by now, an EJB container is responsible for managing your enter-
prise bean. The most important responsibility of the container is to provide a
secure, transactional, distributed environment in which enterprise beans can
execute. However, neither the beans nor the clients that call these beans are
required to explicitly code against the EJB container APIs to avail themselves
of these container services. They can instead let the container know about their
needs implicitly by specifying the necessary configuration information within
an XML-based deployment descriptor or within the bean’s code using deployment
annotations (discussed later in this chapter). In essence, EJB containers act as
invisible middlemen between the client and the bean. They provide the beans
with suitable services implicitly. Described in the following list are just a few of
the many services that are made available by the bean container.

Transaction management. Transactions enable you to perform robust,
deterministic operations by setting attributes on your enterprise beans.
The EJB container provides a transaction service, a low-level implementa-
tion of transaction management and coordination. The transaction ser-
vice is exposed through the Java Transaction API (JTA). JTA is a
high-level interface that you can use to control transactions. We will get
into the details of EJB transactions, JTA, and much more in Chapter 10.

Client Java
Application

ATM

processWithdrawal() Acquirer
Web Service

Interface

Acquirer
Web Service

EJB

ATMLog
EJB

CashRegister
EJB

Electronic
FundsTransfer

EJB

lo
g

Tr
an

sa
ct

io
n

()

D
o

EF
T(

)

d
is

p
en

se
C

as
h

()

The New Enterprise JavaBean 59

07_785415 ch03.qxp 6/5/06 6:55 PM Page 59

Security. Security is a major consideration for multi-tier deployments. The
Java SE platform already enables a secure environment that authenti-
cates and authorizes access to the Java code. EJB adds to this the notion
of transparent security such that the access to the bean methods is
secured by setting the security attributes instead of coding against a
security API.

Resource and life cycle management. The EJB container manages
resources, such as threads, sockets, and database connections, on behalf
of the enterprise beans. In fact, the container manages the life cycle of
enterprise beans as well. The container creates the bean instances,
destroys them, passivates them by serializing them to a secondary stor-
age (when needed), activates them by reading their serialized state from
the secondary storage, and so on. Thus, the container has the ability to
reuse the bean instances as and how it wants.

Remote accessibility. Clients located in a remote JVM can invoke methods
on an enterprise bean. As with everything else, the container makes this
happen without requiring the bean provider to code for such remote

60 Chapter 3

ORGANIZATION OF EJB 3.0 SPECIFICATION DOCUMENTS

The EJB 3.0 specification developed under Java Specification Request (JSR) 220
has been divided into three specification documents, as under:

◆ The EJB Core Contracts and Requirements document defines the service
provider interfaces (SPIs) between the bean instance and the container;
application programming interfaces (APIs) between the bean provider
and the container, protocols, component and container contracts, system
level issues, various infrastructure services to be provided by the con-
tainer to the bean; and other such details regarding the development,
packaging, and deployment for all the types of beans.

◆ The EJB 3.0 Simplified API document provides guidelines on the areas
where simplification to the preexisting EJB APIs and SPIs have been done
to achieve simplified development and deployment model in EJB 3.0. For
developers who are familiar with the previous versions of EJB technol-
ogy, we recommend quickly skimming through this document to get a
very good idea of how and where the EJB 3.0 technology has been
simplified.

◆ The Java Persistence API document specifies the POJO-style persistent
entity development guidelines. Even though the Persistence API specifi-
cation was developed within the EJB 3.0 Expert Group, we believe that
any enhancements or changes to this work would be carried out in a
separate working group in the future. It makes a lot of sense to evolve
this work independent of EJB technology in the future, given that Persis-
tence API–based entities can be used not just in EJB applications but in
any other kind of Java application.

07_785415 ch03.qxp 6/5/06 6:55 PM Page 60

accessibility of the bean. The container converts our networkless beans
into distributed, network-aware objects in order to service the remote
clients.

Support for concurrent requests. The container also takes care of servicing
concurrent requests from clients without making the bean provider
write multithreading code to handle them. EJB containers provide built-
in thread management support. For instance, it can instantiate multiple
instances of the bean—maintain a pool of bean instances, so to speak—to
efficiently service the concurrent client requests. If multiple clients call
the methods on a bean’s instance, the container can also serialize the
requests, thereby allowing only one client to call the bean instance at a
time. When this happens, other clients are either routed to a different
bean instance or are forced to wait till the original bean instance
becomes available. This thread management performed by container has
a lot of value to the EJB developer, because after all, who enjoys writing
synchronized multithreaded code?

Clustering and load-balancing. Although, an EJB container is not required
by the specification to provide these, most of the containers come
equipped with clustering and load-balancing support. Obviously, this is
a tremendous value addition to any deployment that wants to handle a
large number of requests in a fail-safe and scalable manner. At the same
time, because these are essentially nonstandard services, their configura-
tion varies from container to container. Also, if your code relies on these
services for smooth functioning, porting it to another container can
become a little tricky. But all things considered, these services still make
a highly scalable and fail-safe deployment possible.

Types of Beans
Enterprise JavaBeans are categorized into various types. Depending on the
design requirements you can use the suitable bean type.

Session beans. Session beans model business processes. They are like verbs
because they perform actions. The action could be anything, such as
adding numbers, accessing a database, calling a legacy system, or calling
other enterprise beans. Examples include a pricing engine, a workflow
engine, a catalog service, a credit card authorization service, or a stock-
trading service. Session beans are further divided into two categories—
stateful session beans and stateless session beans. As their names suggest,
stateful session beans maintain state, encapsulated within the bean
instance, across multiple client requests, whereas stateless session beans
are not tasked with retaining the state across multiple client requests.
Chapter 4 explores both stateless and stateful session beans in detail.

The New Enterprise JavaBean 61

07_785415 ch03.qxp 6/5/06 6:55 PM Page 61

Message-driven beans (MDBs). Message-driven beans are similar to ses-
sion beans in that they perform actions. The difference is that you can
call message-driven beans only implicitly by sending messages to those
beans. That is to say that there is no direct way of invoking a method on
the message-driven bean. Examples of MDBs include beans that receive
stock trade messages such as trade acknowledgment messages, credit
card authorization messages, or messages within a given workflow or a
business process where interactions are loosely coupled. These MDBs
can in turn call the invoke methods directly on other EJBs or indirectly
by sending a message to be received by another MDB. Chapter 7 pro-
vides a comprehensive discussion of message-driven beans.

Entity beans. Entity beans model business data. They are like nouns
because they are data objects, that is, Java objects that cache database
information. Examples include a product, an order, an employee, a
credit card, or a stock. Session beans can harness entity beans to accom-
plish business transactions. Note that entity beans haven’t been
enhanced in EJB 3.0. Since there have been no changes made to entity
beans in EJB 3.0, we have decided that this edition of our book shall not
address entity beans at all. For readers who wish to educate themselves
on entity beans, we suggest reading the third edition of this book. The
third edition provides up-to-date guidance on developing and deploy-
ing entity beans, as well as related best practices and performance-tun-
ing guidelines. Please read the sidebar “The Future of Entity Beans” to
get an idea of where we think entity beans are headed and what made
us drop entity beans coverage from this edition.

When we compare EJB architecture to other component based computing
architectures such as DCOM, .NET, and CORBA, one of the obvious questions
that arises is: Why does EJB have different types of components when other
architectures don’t? In other words, why does EJB have session beans, message-
driven beans, and entity beans instead of just having, say, a generic bean? EJB is
the only component framework that differentiates between components that
represent domain business logic versus components that represent domain
model versus components that react to messages passed as part of some busi-
ness process. We think that this differentiation, even though not called out
explicitly in other frameworks, is one of the salient features of EJBs. We can uti-
lize various component types to suit specific purposes in accordance with the
designated functions of our components right at the design time. This, in turn,
further clarifies our component model and that directly translates into a better
design. Admittedly this does increase the learning curve for EJB, however, it
pays off in the long run with increased functionality.

Figure 3.2 is an illustration of various types of clients tapping into an EJB
application comprising different types of EJBs. Also notice the protocol that is
used by these clients to communicate with enterprise beans in a distributed

62 Chapter 3

07_785415 ch03.qxp 6/5/06 6:55 PM Page 62

environment. This brings us to our next topic, RMI-IIOP, the protocol of the
enterprise bean.

NOTE EJB 3.0 style POJO EJB programming is only applicable to session beans
and message-driven beans. Entity beans, as noted previously, have not been
enhanced to benefit from the simplicity of the POJO model in EJB 3.0. Hence,
even though entity beans are very much a part of the EJB 3.0 specification, they
are not “POJO-fied” as is the case with session beans and message-driven
beans. Instead, Persistence API–based entities are recommended for
applications that want to utilize POJO entities. This basically means that there
is no real notion of “EJB 3.0 entity beans”; there is only “EJB 2.1 entity beans”
given that entity beans as specified in the EJB 3.0 specification are exactly the
way they were in EJB 2.1 specification. Hence, anywhere in this book, the term
EJB 3.0 bean essentially implies session beans or message-driven beans but
not entity beans.

Figure 3.2 EJB sub-system: The various clients and beans.

Message-Driven
Bean

Session Bean Entity Entity

Session Bean Session Bean

EJB Tier

Client Tier

Messaging
Client

C++ CORBA
Client

Java Application
Client Servlet JSP

Messaging
protocol CORBA-IIOP RMI-IIOP RMI-IIOP RMI-IIOP

SOAP/HTTP HTTP

Web Service Client HTML Client

Firewall

The New Enterprise JavaBean 63

07_785415 ch03.qxp 6/5/06 6:55 PM Page 63

64 Chapter 3

THE FUTURE OF ENTITY BEANS

Entity beans have been a part of EJB technology ever since it was introduced.
Throughout their history, entity beans have managed to cause ambivalent
feelings among the industry experts and EJB application architects/developers
alike. Mostly, entity beans have been projected as a heavyweight approach to
handling persistence in enterprise applications. Many times entity beans have
been accused, rightly or wrongly, of poor performance and heavy resource
consumption of the enterprise servers. Entity beans, in short, are controversial
and not surprisingly, many architects and developers tried to steer clear of
using them in their applications.

Meanwhile, the rapid adoption of alternative persistence technologies and
products fashioned around POJO-style entities roused the EJB community to
demand that POJO-style entities be blessed by the EJB Expert Group, that the
EJB Expert Group undertake providing a standard mechanism to develop and
deploy such lightweight yet fully functional POJO entities. As a result, when the
EJB 3.0 Expert Group was formed, one of their loftiest goals was to provide a
standard lightweight persistent entity alternative to entity beans. Thus was born
the Persistence API specification under the EJB 3.0 umbrella. Hence, EJB 3.0
gives you multiple alternatives for persistence:

◆ Use entity beans for persistence. If your application presently uses entity
beans and you are happy with the way it performs, you can migrate that
application as it is to EJB 3.0. All EJB 3.0 containers have to support en-
tity beans in their entirety. Now, if you are designing a new application
and if you and your developers truly feel comfortable and confident
using entity beans, there is no reason not to use them in the new appli-
cations. Also note that right now there are no plans to deprecate entity
beans from the EJB specification. In fact, even though there are no en-
hancements made to entity beans in EJB 3.0 specification, there could
very well be enhancements made to them in the future versions of EJB
specification. It is all based on what the industry desires and needs at
the time. For now, the Expert Group has decreed that we have everything
we need to get going with entity beans.

◆ Use Persistence API entities, also known simply as entities. Persistence
API has been defined in response to the heavy demand for a standard
lightweight mechanism of persistence in EJB applications. If this style of
persistence suits your needs, go for Persistence API. We believe that enti-
ties are a way to go because of the sheer simplicity and ease of develop-
ment and productivity that they provide, so we provide a lot of in-depth
information about entities in this edition. Not only do we discuss API-
level details of developing entities, but we also provide a lot of guide-
lines and best practices to help you optimally design and deploy the
entity-based EJB applications.

◆ Use other persistence technologies such as Java Data Objects (JDO) or
JDBC in your applications for persistence.

07_785415 ch03.qxp 6/5/06 6:55 PM Page 64

RMI-IIOP: The Protocol of the Bean
Internet Inter-ORB Protocol, also known in short as IIOP, was originally intro-
duced within the Object Management Group (OMG), the standard-setting
organization for the CORBA world, as a mechanism to enable ORB-to-ORB
internetworking. The IIOP protocol connects CORBA products from different
vendors, thereby ensuring interoperability among them. Later on, the precep-
tors of EJB understood that a similar need for interoperability among the con-
tainers from different vendors existed in the EJB world as well. They looked
around to see if a solution in the form of an inter-ORB protocol already existed
and that exercise brought IIOP to the EJB world.

Today every EJB container has to support IIOP. To be precise, it is RMI-IIOP
that they are required to support. So what is RMI-IIOP? It is essentially mar-
riage of CORBA’s IIOP with the RMI programming model. CORBA and RMI
were developed independently as distributed object programming models.
RMI served as a foundation for EJB. In fact, the early days, EJB containers were
based on RMI’s native JRMP (Java Remote Method Protocol) protocol for
remote method invocation. Although JRMP is good enough for interoperabil-
ity as long as both ends of the wire are Java based, it is inadequate in scenarios
where either of the client or server belong to a different programming plat-
form. Moreover, JRMP did not address the critical question of intercontainer
interoperability. However, in spite of its shortcomings, RMI did provide a very
simple-to-use API for developing distributed applications on a Java platform.
Hence, instead of discarding RMI completely, the Java community moved on
to defining RMI-IIOP, a combination of RMI distributed computing APIs with
IIOP as a protocol underneath. This way, the Java world got the best of both
these technologies.

An EJB vendor can provide support for another protocol in addition to RMI-
IIOP. An EJB deployer can use this vendor-specific protocol for his application
as long as the communication is between the components deployed in the same
vendor’s container and both ends of the wire can understand RMI. However, if

The New Enterprise JavaBean 65

Again, we want to emphasize that we have made a conscious decision of not
addressing entity beans in this edition. Our reasoning is that entity beans
haven’t changed a bit in EJB 3.0. There was no need to duplicate the same
entity bean information across the two editions. Besides, we believed that
using the space freed up by entity beans to cover Persistence API entities better
served our readers. Hence our decision to discard entity beans related
information from this edition. But this in no way reflects our take on entity
beans as a less or a more viable technology for handling persistence. That
decision needs to be made after considering your architecture and design
requirements.

07_785415 ch03.qxp 6/5/06 6:55 PM Page 65

an EJB gets requests from other EJBs deployed in a different vendor’s container
or if it services requests from CORBA clients written in a different language,
RMI-IIOP protocol is needed to enable interoperable communications to take
place. Appendix A discusses RMI-IIOP in further detail.

EJB and Location Transparency
Distributed computing systems that offer location transparency essentially
offer an ability for the clients to communicate with the remote object without
them having to be aware of the remote object’s machine location. The servicing
object can be located on the same machine or on a different machine; the client
doesn’t have to care. The location transparency is usually attained via an inter-
mediary, such as a registry, wherein the distributed objects are registered along
with information such as their exact machine location. All the client has to do
is search this registry for the requisite remote object, and it is the registry that
hands over the remote object to the client.

In the EJB world, location transparency translates to the ability of the client
to communicate with the EJB that is deployed in a JVM other than the client’s
JVM. The clients of the EJB that support remoting are not required to be
located within the same JVM; they can be in the same JVM, but they don’t have
to be. JNDI is an enabler of location transparency in the EJB framework. A
remote client of a bean can be located on any system—as long as it can com-
municate with the JNDI service of the EJB container, it can get to the bean.

EJBs also support local client view. This functionality was added in the 2.0
version of EJB technology so that the clients co-located in the same JVM as the
bean can bypass the performance inefficiencies of pass-by-value semantics
inherent to the distributed programming models. For such invocations on the
bean’s local client view, the container passes method parameters by reference.
Similarly, the container passes method return values by reference from bean to
the client. Pass-by-reference basically leads to sharing of the state between
caller and the called. Hence, if the bean does not want the client to modify the
returned value, it needs to explicitly copy the return data into another variable
and pass that to the client. Local clients of EJB do not benefit from location
transparency as such, since they have to be, by definition, co-located in the
same JVM as the bean.

EJB 3.0 does support both local and remote client views, as it did in the pre-
vious versions, except that the bean developer is no longer required to provide
definitions of EJBObject interfaces for local and remote client views. Instead,
the bean developer is just required to define POJI (plain old Java interface)
business interfaces for local and remote clients of the bean. Alternatively, the
same business interface can be used to serve both local and remote clients.

66 Chapter 3

07_785415 ch03.qxp 6/5/06 6:55 PM Page 66

Enterprise Bean Environment
The enterprise bean’s environment provides a way for a bean to refer to any
externally defined name-value property, resource, or even another bean such
that the bean’s code can remain independent of the actual referred object. In
other words, an environment enables the bean to access properties; resources
such as connection pools, connection factories, topics/queues, and so on; and
enterprise beans, from within the bean’s code without actually resolving them.
The resolution can happen at the time of deployment, when the actual values
of the environmental properties or references are set. The bean’s environment
thus provides a level of indirection to enable the bean to stay independent of
referred objects so that any change to the referred object’s configuration does
not have to trickle down to the bean’s code. The container implements the

The New Enterprise JavaBean 67

JAVA NAMING AND DIRECTORY INTERFACES (JNDI)

JNDI provides a standard API to access different kinds of naming and directory
services within a Java program. It is not specific to a specific naming or
directory service and instead can be used to access any given naming
or directory service, such as a Lightweght Directory Access Protocol (LDAP)
directory, COS (CORBA Object Services) naming, and so on, from within Java
code as long as a corresponding JNDI provider for that specific naming or
directory service is used. JNDI provides two APIs—one for accessing naming
services, called Naming API, and another for accessing directory services, called
Directory API. The power of JNDI is in the fact that a Java developer only needs
to learn one set of APIs to access almost any naming or directory service, that
is to say that the knowledge once acquired can be reused again and again. The
question to ask henceforth is what are naming and directory services?

A naming service maintains a set of name-object bindings. Basically, these
bindings associate names with objects such that a naming service client can
provide this name to the service and the service retrieves the corresponding
object bound to this name and sends it to the client. Some of the examples of
naming services include COS Naming (naming services for CORBA objects), DNS
(naming service for IP addresses), NIS/NIS+ (naming services developed by Sun
as part of enabling network access of files and applications), and so on.

A directory service, on the other hand, provides an information model to
organize and store the objects and a protocol to query and manipulate this
information model. A very well-known example of directory service is LDAP.
LDAP is a subset of X.500 directory services designed to address the directory
services needs of smaller clients. Another example is Active Directory from
Microsoft.

JNDI provides a single abstraction in the form of an API to these various
naming and directory services. JNDI plays an important role in EJB
programming, as we shall see in this chapter and throughout this book.
Appendix A discusses the further details of JNDI technology.

07_785415 ch03.qxp 6/5/06 6:55 PM Page 67

enterprise bean’s environment and makes it available to the bean through the
JNDI context, java:comp/env/

Why do we need such an indirection? As we know, enterprise beans are
designed to be reusable components from the get-go. And potentially, the
beans can be reused in different operational environments too. Also, most of
the beans have a need to access external world. The key issue then is how to
enable an enterprise bean to locate this external information/resources with-
out it requiring knowledge of how this information/resources are named and
organized in various operational environments.

For example, take an independent software vendor (ISV) that ships an EJB
application to multiple customers. Obviously, the ISV expects the application
to be deployed in different operational environments. In this case, any access
to externally defined properties and resources from within the bean’s code
should be shielded of the differences in the actual environments. So if say one
of the beans is trying to access a JMS topic, the code can refer to this topic as
MyTopic, which then can be mapped to the actual JMS topic, named say
MyJMSTopic, at the time of deployment. This ensures that the code does not
have to change the reference to the topic from MyTopic to MyJMSTopic or
from MyTopic to MyWonderfulJMSTopic and so on, each time it is
deployed in a different environment.

Thus, a bean’s environment is a powerful enabler of its reusability promise.

Anatomy of the “New” Bean
So what does an EJB 3.0 bean look like? What artifacts are required to develop
this new bean? As we have hinted many times before this point, EJB 3.0 beans
are POJO styled as opposed to their precursors that used to constitute multiple
Java classes per EJB. The EJB 3.0 bean has all its code contained in a single Java
class.

An enterprise bean can be a distributed component—its clients can live in
the same virtual machine as the bean (say, another codeployed bean) or it can
reside in another JVM potentially on a different machine. EJBs that want to ser-
vice remote clients have to be equipped to handle the nitty-gritty of distrib-
uted communication ranging from error handling to marshaling and
unmarshaling method parameters and return types. And as we already know,
the enterprise bean is a managed component due to the fact that the container
in which the bean is deployed manages the services that the bean needs as well
as the environment in which the bean lives. The container takes care of such
things as when to create the bean’s instance, how to make available a reference
to this instance to the remote and/or local clients of the bean, how to make
available the various resources—such as connection factories, messaging
queues/topics, connection pools, transaction contexts, security contexts, and

68 Chapter 3

07_785415 ch03.qxp 6/5/06 6:55 PM Page 68

so on—that the bean is dependent on within its environment and so on. The
bean should thus be prepared to take notifications from the container about
changes to its environment and should in general be provisioned to communi-
cate with the container during its lifetime. Another remarkable feature of EJB
architecture is location transparency, explained later in this chapter.

Up until now the enterprise beans exposed developers to a lot of these intri-
cacies. The developer had to take care of handling system exceptions that a
bean is susceptible to, given its distributed nature, within the bean code. So
also, the developer had to write code for implementing the various component
interfaces such as javax.ejb.SessionBean or javax.ejb.Message
DrivenBean to enable the container management of the bean. In addition to
these, the bean developer had to deal with the complexity involved around
coming up with the rightly configured deployment descriptor, a bunch of
XML-based metadata, to further specify how the container should manage the
bean. An EJB client wasn’t excused from this web either; a client was required
to possess knowledge of working with JNDI registry services and deal with
JNDI APIs to obtain a reference to the EJB factory (EJB home interface) in order
to construct a reference to the actual bean (EJB object interface).

Yielding to the popular demand of the developer community, the Expert
Group had to come up with a way to take all these complications out of the EJB
developer’s hands and yet retain the power and flexibility that the distributed
component model of EJB APIs as well as implicit middleware services of the
EJB container provided. The new bean therefore is anatomized into a single
Java source that almost exclusively consists of only the business logic code. In
other words, this POJO class is devoid of the code that handles the horizontal
concerns pertaining to distributed computing such as throwing RMI remote
exceptions from all methods that could be invoked remotely or the code to
implement component interfaces so that the container can provide its implicit
middleware services such as life cycle management, transaction, security, and
so on to the bean. Similarly, the EJB 3.0 bean developer can also forgo a deploy-
ment descriptor file and get away from that morass.

Let us take another moment and examine Figure 3.3, which illustrates the
old EJB programming model, and then compare it with the new EJB 3.0 pro-
gramming model given in Figure 3.4.

Figure 3.3 highlights the flow of the business method invocation in EJB 2.x
as under:

■■ Steps 1a and 1b show a local or remote client application of the EJB—
might be a servlet/JSP, a standalone application client, an application
container client, or another enterprise bean—creating a corresponding
local or remote EJB object reference using the EJB home reference. The
client gets hold of the EJB home reference from JNDI registry and nam-
ing services. Depending on whether the client is local or remote, the

The New Enterprise JavaBean 69

07_785415 ch03.qxp 6/5/06 6:55 PM Page 69

client retrieves local or remote EJB home reference from JNDI. In steps 2
and 3, an EJB object is created and returned back to the client. During
EJB deployment, it is the container that generates implementations for
EJB home and EJB object interfaces provided by the EJB developer.

■■ The client makes a business method invocation on the local/remote EJB
object interface in step 4.

■■ In old-style EJB, the container generates implementations for EJB home
and EJB object interfaces, written by the bean provider, at the time of
deployment. The business method invocation on EJB object reference
thus is handled by the container-generated EJB object implementation.
This implementation calls container-specific APIs to provide implicit
middleware services prior to calling the actual business method on the
EJB developer provided bean class. Similarly, the container-generated
EJB object implementation will call upon container middleware services
APIs after the business method invocation on the bean class. This
sequence is shown in steps 5, 6, 7, and 8.

■■ Step 9 concludes the method invocation with a return value (if any).

Figure 3.3 Pre–EJB 3.0 programming model.

Remote Client

EJB Home

Local Client

Enterprise Bean
Class

Implicit Middleware
Services

• Lifecycle managment
• Transaction management

• Persistence services
•Sercurity services

• Much more

3.a: Return
EJB object
reference

1.b: Create
EJB object

3.b: Return EJB
object reference

9.b: Return from
method call

2: Get EJB
object

1.a: Create
EJB object

4.a: Call a
method

Remote
Inferface

Remote
Inferface

9.a: Return from
method call

EJB Object

Local
Inferface

Local
Inferface

4.b: Call a method

5: Call container
specific APIs that
provide implicit

middleware
before invocation

8: Call container
specific APIs that
provide implicit

middleware
after invocation

6: Invoke method on bean class

7: Return value

EJB Container JVM

70 Chapter 3

07_785415 ch03.qxp 6/5/06 6:55 PM Page 70

Figure 3.4 EJB 3.0 programming model.

Figure 3.4 highlights the invocation from an EJB 3.0 client’s perspective.

■■ Steps 1a and 1b show a local or remote client application of the EJB call-
ing a business method on the local or remote business interface. Clients
retrieve this business interface reference from the JNDI naming and reg-
istry services (using JNDI APIs or dependency injection mechanisms
discussed later in this chapter).

■■ Obviously, EJB container services have to be applied to the business
method invocation. Hence, figuratively speaking, some kind of a
container-generated wrapper class for remote and/or local business
interface is needed so that it will call the various container middleware
APIs both before and after invoking the actual business method on the
bean class. This flow is shown in steps 2, 3, 4, and 5.

■■ The call finally concludes upon the method return.

Remote Client

Business Interface

Local Client

Enterprise Bean
Class

Implicit Middleware
Services

• Lifecycle managment
• Transaction management

• Persistence services
•Sercurity services

• Much more

1.b: Call a
method

6.b: Return from
method call

2: Invoke
corresponding

method on
the wrapper

class

1.a: Call
a method

Remote
Client View

6.a: Return from
method call

Local
Client View

3: Call container
specific APIs that
provide implicit

middleware
before invocation

5: Call container
specific APIs that
provide implicit

middleware
after invocation

4: Invokes the corresponding
business method on bean class

EJB Container JVM

Container Generated
Wrapper Classes

The New Enterprise JavaBean 71

07_785415 ch03.qxp 6/5/06 6:55 PM Page 71

NOTE Java EE application clients are standard Java applications that execute
within their own JVM. They are invoked via the static main() methods like their
standalone Java application brethren. The only difference between the two is
that the Java EE application clients run within a container, albeit a lightweight
container, which is devoid of many middleware services such as transactions,
as compared to a full-fledged Java EE container that provides such services.
Java EE application clients are packaged with their own deployment descriptor
within a .jar file.

The Role of EJB Home and Object Interfaces
The major difference between the old and the new bean is that while the old
bean was exposed to a lot of contractual requirements, such as providing a
home interface, an EJB object interface, and a bean class, the new bean is lim-
ited in its contractual obligations. As you can see in Figure 3.4, it only has to
provide a business interface (for local and remote clients) and a bean class that
provides definitions of the methods on this business interface. The big ques-
tion is why doesn’t an EJB 3.0 bean require a home interface and an object
interface? How can it get away with these requirements? The answers lie in
understanding the purpose of home and remote interfaces and how that pur-
pose is served in EJB 3.0 without them.

In previous versions of EJB, the home interface served as a factory for creat-
ing references to the EJB object. Now the home interface could practically be
the same for all stateless session beans and message-driven beans, since all
stateless session bean and message-driven bean objects are created equal.
Thus, there is no need to make the bean developer provide a specific home
interface for each specific stateless and message-driven bean. As for stateful
session beans, their EJB objects aren’t created equal; the state of a stateful ses-
sion bean EJB object varies across different clients. In pre–EJB 3.0, the per-
instance state of the stateful session bean was initialized by defining a special
create method on the home interface such that it takes state via the method
parameters from the clients and initializes the bean instance to it. In 3.0,
instead of subjecting the stateful session bean provider to defining a home
interface simply as a mechanism to transfer state from client to the bean
instance, the bean provider can define a special method right in the bean class
that would be called by the container right before invoking the first business
method on the bean instance. This eliminates the need for a home interface as
a factory for stateful session beans, too.

Now we come to the EJB object interface. The main purpose of the EJB object
interface was to provide the client view for an EJB, meaning that the EJB object
carried all the business methods that the bean wanted to expose to its local or
remote clients. Depending on the clients it intends to serve, the EJB object
could provide local client view, remote client view, or both. The container

72 Chapter 3

07_785415 ch03.qxp 6/5/06 6:55 PM Page 72

provided implementation for EJB object interfaces, and the bean class imple-
mented all the EJB object’s business methods implicitly by declaring and
defining methods with the exact same method signatures. The container
implementation of the EJB object called upon the appropriate container ser-
vices before invoking the actual business method implementation on the bean
class. Similarly, after invocation the container services were applied to bring a
fruitful end to the invocation (by committing the current transaction, updating
the cache across the cluster, and so on).

Thus, the container-generated implementation of EJB object interfaces
served as a nice hook for invoking container services. However, from EJB
developers’ perspective, they had to write an EJB object interface containing
business methods that they didn’t implement directly but rather indirectly.
The developers had to be extra careful in providing the implicit implementa-
tion of the EJB object interface by making sure that the signatures of business
methods declared in EJB object interface exactly matched those declared in the
bean class. This extra caution required on the part of the developers was not
worth it. As far as providing a hook for injecting container services is con-
cerned, it is an implementation detail of the container; it is expected that the
container implementations will provide their services through one or another
such hook, as long as the programming model is kept simple for the developer.
Hence, in EJB 3.0, the bean provider no longer has to supply an EJB object
interface and then implement it implicitly in the bean class. Instead, the bean
provider has to write a simple Java interface, also known as business interface,
consisting of business methods it wants to expose to the clients of the bean.
The bean provider then writes a POJO that implements this business interface,
and it is as simple as that. The container can internally use generated wrapper
classes to intercept the calls to the bean instance and thereby provide middle-
ware services, or it can use other design patterns to achieve this. In conclusion,
how the container injects various middleware services before and after the
business method invocation is a container-specific detail and need not concern
the EJB developer.

The EJB 3.0 Simplified API

Now it is time to look at the new EJB 3.0 API, which offers ample simplification
over the previous EJB API. Simplicity in EJB 3.0 has been achieved in various
ways:

■■ No home and object interfaces are required.

■■ No component interface is required.

■■ Use of Java metadata annotations.

■■ Simplification of APIs for accessing bean’s environment.

The New Enterprise JavaBean 73

07_785415 ch03.qxp 6/5/06 6:55 PM Page 73

In the following sections, we go through each of these aspects of simplifica-
tion of the EJB programming model.

Elimination of Home and Object Interfaces
As discussed previously, getting rid of home and object interfaces eases devel-
opment on behalf of the bean provider. The new session beans put all the busi-
ness methods into a business interface. Depending on whether the clients of the
bean are local or remote, the bean provider can designate the business interface
as a remote business interface or local business interface or both. Whereas the meth-
ods on a remote business interface can throw arbitrary application exceptions,
they are not allowed to throw java.rmi.RemoteException. This is unlike
the definition of EJB home and object interfaces for EJB 2.1 remote client view
where all the methods were required to throw java.rmi.RemoteException.
Any system-level problems, protocol or otherwise, would be encapsulated
within javax.ejb.EJBException and returned to the client by the container.
Given that EJBException is a subclass of java.lang.RuntimeException,
it does not have to be listed in the throws clause of the business methods.

A message-driven bean doesn’t need a business interface because there are
no direct client invocations on a message-driven bean and hence there is no
need to define a business interface with business methods in it. Also for the
same reason, whenever an MDB runs into unexpected problems, the container
will log the error and communicate it, within a javax.ejb.EJBException,
to the underlying resource adapter instead of the client.

Elimination of Component Interface
Component interfaces in the previous versions of EJB, javax.ejb.Session
Bean and javax.ejb.MessageDrivenBean, existed for a reason—they pro-
vided a way through which the container notified the bean instance of various
life cycle events affecting it. A session or message-driven bean class had to
implement the respective component interface in order to stay abreast of the
events in its life cycle. These component interfaces carried the various life cycle
methods that the bean class would implement. All that the container had to do
then is call the appropriate method of the component interface to provide an
opportunity to the bean instance to handle the life cycle event the way it wants.
For example, the container can notify the message-driven bean instance that it
is about to destroy it by invoking the ejbDestroy() method on the message-
driven bean’s corresponding bean class. Within the ejbDestroy() method
the bean class can close an open JDBC database connection and thereby free
some resources. Similarly, the container that is about to associate a client with a
stateful bean instance can notify the bean instance by calling ejbCreate() on
the bean class, and the bean class can instantiate the state of the bean instance
within this method’s implementation.

74 Chapter 3

07_785415 ch03.qxp 6/5/06 6:55 PM Page 74

The issue with this mechanism is: What if the bean does not want container
notifications of its life cycle events? In that case the bean still has to implement
the component interfaces because that is the contractual agreement between
the container and the bean instance. This enforcement on the bean provider to
implement the component interface regardless of whether it is needed or not
has been removed in EJB 3.0. Going forward, the bean class does not have to
implement javax.ejb.SessionBean, in case of a session bean, or
javax.ejb.MessageDrivenBean, in case of a message-driven bean. It will
be a plain Java class, which only has to implement a business interface if the
EJB is a session bean.

The question then is how can a bean class get notifications from the con-
tainer if interested? There are two ways it can get that—the first is for a bean
provider to write a separate class consisting of all the callback notification
methods and then inform the container to treat this class as the bean’s callback
listener class. The second way is for the bean provider to implement notifica-
tion methods right inside the bean class and designate these methods to han-
dle appropriate events. Both these approaches require the bean to use
annotations. Annotations are the biggest and most radical addition to EJB 3.0
specification. They are used not only for event notifications but also for many
other purposes. The next topic focuses on annotations and their contribution
in simplifying EJB 3.0 programming model.

The New Enterprise JavaBean 75

PRE–EJB 3.0 AND EJB 3.0 COMPATIBILITY

One of the notable goals of EJB 3.0 Expert Group was to maintain compatibility,
both backward and forward, between the new and the old EJB worlds. The
older EJB applications can be deployed as is on an EJB 3.0 container without
rewriting them, thereby accommodating forward compatibility. This is because
the pre–EJB 3.0 APIs have been made available in EJB 3.0 containers. Also a
bean written against EJB 3.0 APIs can service clients written to use earlier
versions of EJB APIs, thereby providing backward compatibility. This is achieved
by adapting the client views provided by the EJB 3.0 beans to suit the older
clients.

These provisions for compatibility and portability in the EJB 3.0 specification
enable four possible scenarios of deployment within an EJB 3.0 container:

◆ EJB 3.0 bean with EJB 3.0 client view

◆ EJB 2.1 bean with EJB 2.1 client view

◆ EJB 3.0 bean with EJB 2.1 client view

◆ EJB 2.1 bean with EJB 3.0 client view

◆ Various combinations of the above three scenarios—for example, EJB 3.0
beans and EJB 2.1 beans deployed in the same application where EJB 2.1
clients not only make requests to EJB 2.1 beans but also to EJB 3.0 beans.

07_785415 ch03.qxp 6/5/06 6:55 PM Page 75

Use of Annotations
Annotation, also known as metadata, stands for additional definition that can
be attached to an element within the code to help further explain or character-
ize it. Annotations are used to provide additional context to the program. We
in the software industry have used annotation for the longest time in the form
of code comments. Comments are used to provide additional information
about the code to the reviewer. At the same time, comments are ignored by the
compiler/interpreter of the code. That is the way code comments, the annota-
tions that we use to explain our code better to the readers, are designed to be
processed. Annotation processing typically occurs when code consisting of
annotations is compiled or interpreted by compilers, deployment tools, devel-
opment tools, and so on. The outcome of annotation processing can be many
different things. For example, processing annotations can result in creation of
code documents (remember JavaDocs?) or the generation of other code arti-
facts (XDoclet) or performing various compile-time checks (C language pre-
processor directives).

Java language did support annotations in the form of code comments and
JavaDocs. Also, Java frameworks such as XDoclet, which used annotations to
generate code artifacts and much more, came into existence over the course of
time. What Java lacked though, up until Java SE 5.0 (Tiger), was a standard
framework within the language platform that could be used to create and
process new annotations; a facility that can be leveraged by rest of the Java lan-
guage technologies as well as by custom programs. This need was addressed
in J2SE 5.0 release by including JSR-175 (A Metadata Facility for the Java Pro-
gramming Language) as part of the platform.

Java SE 5.0 annotations can be applied to various elements of the Java code
such as methods, variables, constructors, package declarations, and so on.
Annotations begin with an @ sign followed by the annotation name which in
turn is followed by annotation data (if any). Shown below is a hypothetical
example of a @Failsafe annotation that when applied to a distributed RMI
object will instruct the RMI compiler to generate the stubs and skeletons so
that they can connect to a different RMI instance in the event of a failure.

@Failsafe

public interface SomeRMIExample extends java.rmi.Remote

{

...

}

Annotation programming is a vast subject and as such does not belong to
this book on enterprise beans. What we do cover in this book are built-in anno-
tations that are a part of EJB 3.0 and related specifications and how to use them
to ease development and deployment of enterprise beans.

76 Chapter 3

07_785415 ch03.qxp 6/5/06 6:55 PM Page 76

Annotations and Bean Development

EJB 3.0 has defined a lot of built-in annotations for use in EJB development.
This changes EJB programming quite significantly in that it is now a mix of
metadata tags and code constructs. The specification has also defined meta-
data to annotate deployment information within the code. Below is an exam-
ple of a bean class that uses metadata to designate the callback listener
methods for the stateful bean.

@Stateful

public class exampleBean implements BeanBusinessInterface

{

@Remove

public void removeBean()

{

// Close any resources that were opened to service requests.

}

}

The @Stateful annotation indicates to the EJB compiler that the given
bean is a stateful session bean and that the bean artifacts should be generated
so as to suit the semantics of a stateful bean. Also, @Remove is another annota-
tion used within the code, which indicates that the following method,
removeBean(), should be called by the container when it is about to destroy
the bean instance. These annotations have a special meaning to the EJB com-
piler. In this fashion, the annotations are used in EJB 3.0 programming.

EJB 3.0 development has been made a lot simpler as is evident from the
example above. A developer can annotate the code and expect the compilers,
code generators, deployment tools, or whatever is the processor working
behind the scenes to take care of the appropriate semantics. Chapter 8 dis-
cusses some other nuances of using annotations in EJB 3.0, while Appendix B
provides a good reference to annotation basics as well as an entire list of built-
in annotations in EJB 3.0.

Annotations and Deployment Descriptors

The biggest contribution of annotations with respect to simplification is that
they have made deployment descriptors redundant. EJB 3.0 annotations can
be used in lieu of deployment descriptors. A deployment descriptor is an XML
document consisting of information related to deployment of the bean. It spec-
ifies instructions to the container such as the kind of runtime services that
would be needed by the bean for its successful execution.

Deployment descriptors were introduced for a very good reason. They
enabled a mechanism through which a bean can be deployed on different EJB
containers and yet can be expected to behave the same across these different

The New Enterprise JavaBean 77

07_785415 ch03.qxp 6/5/06 6:55 PM Page 77

containers. This is because at the time of deployment the container will read
the bean’s deployment descriptor and provide a standard environment for the
bean’s execution. The deployment descriptor thus guarantees that certain run-
time aspects of the bean’s execution would remain uniform as long as the bean
is deployed in a standard EJB container.

The challenge that developers faced with deployment descriptors was with
regard to their complexity. A deployment descriptor is XML, and XML by its
very nature is prone to error when subjected to human editing. Therefore, only
tools were considered capable of handling these chunks of deployment infor-
mation. Most of the EJB deployment tools thus were enabled to generate
deployment descriptors. Now if the bean provider wants to change the behav-
ior of the bean, he will have no choice but to modify the deployment descrip-
tor. For this, most of the time the bean provider will use a deployment tool GUI
to change properties on the bean, which in turn will convert the bean’s settings
to the respective deployment descriptor XML. If the deployment tool GUI is
not available, then the provider will manually edit the descriptor’s XML
thereby making it susceptible to syntactical errors.

To help developers who find themselves in this situation and largely to take
the complexity of the deployment descriptor out of the development life cycle,
the EJB Expert Group came up with the notion of defining deployment meta-
data so that it can replace the deployment descriptor. Deployment metadata
can be embedded within the EJB code (bean class or business interface) such
that at the time of deployment this metadata could be used to provide the
appropriate behavior to the bean. Hence, instead of working with clumsy
XML constructs, the developers can utilize easy to use Java metadata to spec-
ify the deployment configuration of their beans right in the bean class. This
also helps in speeding up the development because now the developer does
not have to undergo an extra step of generating a deployment descriptor.

Does this mean that deployment descriptors are out of the game in EJB 3.0?
The answer is a resounding no. Deployment descriptors are very much a part
of EJB 3.0. If the bean provider so desires, he can put all of the bean’s configu-
ration information in deployment descriptor or he can distribute this informa-
tion across the bean class and the deployment descriptor or he can choose not
to put any configuration information in the deployment descriptor and
instead use deployment metadata in the bean class to specify it, and that
would be fine too. So there are quite a few options available to the bean
provider. In the scenario where the bean provider uses both the metadata and
the deployment descriptor, the latter will always override the former if both
have redundantly specified configuration information. For example, if trans-
action setting of a certain bean method is specified in both the bean class and
the deployment descriptor, the one specified in the descriptor will always take
precedence over the one specified using the metadata in the bean class. If a
developer doesn’t provide a deployment descriptor, at the time of deploy-
ment, a container can choose to generate a skeleton deployment descriptor.

78 Chapter 3

07_785415 ch03.qxp 6/5/06 6:55 PM Page 78

Container Specific Deployment Descriptor

The EJB container provides a lot of container services in a standard, uniform
fashion, and the bean provider asks the container to make these services avail-
able by using the metadata in the bean class or by defining a standard deploy-
ment descriptor. In addition to these standard container services, there are
certain value-added services that the container can provide, such as load bal-
ancing, clustering, caching of relatively static information, and so on that are
over and above the container services that are defined as part of the specifica-
tion. The configuration information of these value-added services is described
usually in a container-specific deployment descriptor. Hence, a typical bean
deployment consists of a standard deployment descriptor, a file named ejb-
jar.xml, and a nonstandard proprietary container-specific deployment
descriptor, whose file name varies from container to container. With EJB 3.0, a
container can also choose to provide respective metadata for the value-added
services, which can then be used by the bean provider in the bean class.

As should be clear by now, annotations are used pervasively in EJB 3.0. And
such pervasive use of deployment annotations certainly warrants a discussion
on what are the pros and cons of using deployment annotations.

The Good, the Bad, and the Ugly of Deployment Annotations

Using annotations to describe the deployment configuration of the bean can be
convenient and tricky at the same time. Convenient because the bean provider
can place the configuration along with the bean’s logic, right at the time of
developing bean. Both the activities—developing the bean and describing the
deployment configuration of the bean—can be accomplished at the same time
and place, thereby increasing the developer productivity. Tricky because if not
done properly the convenience of deployment annotations can also quickly
turn into a process nightmare, and here is why.

Conventionally, EJB application life cycle is divided into various tasks, and
a separate role is accorded to accomplishing each of these tasks. For instance,
the role of a bean provider is to develop the bean and supply it to the applica-
tion assembler who then takes the bean’s Ejb-jar and assembles it with rest of
the components such as other enterprise beans (supplied by other bean
providers), JSP/servlets, and so on. The assembler then passes down the
assembled components to the deployer who is responsible for deploying and
postdeployment tuning of the components. In a given EJB project, these roles
can be played by the same individual or by different people. In a scenario
where the bean is developed and deployed by the same individual, using
deployment metadata within the bean’s code can work out fine. Because it is
the same individual who is in charge of development and deployment of the
bean, there is less chance of problems arising due to miscommunication and
misunderstanding regarding the division of labor with respect to deployment
configuration specification. However, in a scenario where the bean provider is

The New Enterprise JavaBean 79

07_785415 ch03.qxp 6/5/06 6:55 PM Page 79

a separate entity from the bean deployer, embedding deployment metadata
within the code might lead to various issues. For one, before the deployer can
generate the bean’s deployment descriptor, he will now be required to go
through the bean’s code to make sure that the deployment descriptor does not
mistakenly override the bean provider’s deployment metadata–specified con-
figuration. However, the most important issue when using deployment meta-
data is that each time a change in deployment is needed, the bean’s code will
need to be changed, leading to the recompilation and repackaging of the bean.

Our suggestion is that in projects where different individuals play the roles
of bean provider and deployer, make one party responsible for specifying all
the deployment configuration. If the bean provider is chosen for the job, all the
deployment information should be provided as metadata within the bean
class. The deployer then should be exempt from generating a deployment
descriptor. And if the deployer is chosen, the bean provider should be exempt
from providing deployment metadata within the bean class. In conclusion, a
well-defined division of responsibilities should be done to avoid any potential
chaos resulting from scattering the deployment configuration across the bean
class and deployment descriptor.

Simplified Access to Environment
Accessing the environment to gain references to externally defined resources
and enterprise beans, and other entries such as properties, is a chore that
almost every EJB needs to perform. Up until now, an EJB had to rely solely on
the JNDI APIs to get hold of these environmental entries. In EJB 3.0, other
mechanisms, namely dependency injection and a simple lookup() method on
the EJBContext interface have been added to solve the age-old problem of
having to use JNDI APIs from within bean class to access the bean’s depen-
dencies.

Dependency injection is a mechanism followed by the container to inject the
requested environmental entry and make it available to the bean instance
before any business methods are invoked on that particular instance. The con-
tainer injects these entries into the bean’s variables or methods. The bean
provider has to convey to the container where these dependencies should be
injected at the runtime, such as in which variables or methods. The provider
can use a deployment descriptor and annotations to specify this. Bean meth-
ods that are targets of dependency injection should be defined using the Jav-
aBeans naming convention for properties in that they should follow the
setXXX() convention.

So what happens if the dependency injection fails for some reason? If the
container is not able to make available the environmental entry on which the
bean is dependent for proper functioning? Well, the container will discard that
bean instance and try creating the bean instance again.

80 Chapter 3

07_785415 ch03.qxp 6/5/06 6:55 PM Page 80

The lookup() method of EJBContext interface is another alternative to
the JNDI API for obtaining access to the environmental entries.

A bean can still use JNDI APIs to access the environmental dependencies,
but that is done by choice and not by mandate. We will discuss dependency
injection and related topics in further detail in Chapter 8.

NOTE The examples of environmental entries typically include references to
enterprise beans, Web services, connection factories, message destinations
(JMS topics or queues), persistence units, persistence contexts, transaction
contexts, EJB timer service, and last but not least, EJBContext. The container
provides tools to create and initialize the environment entries. For example, a
deployer will use some container-provided tool to create a message
destination, say, a JMS topic. The bean can ask the container to inject this
resource into a variable, say, MyTopic, using dependency injection,
EJBContext lookup, or JNDI lookup.

Packaging and Deployment of the “New” Bean

Once the bean is developed, you need to package it into an Ejb-jar file. Jar files
are a convenient way of distributing Java software, and what better choice
than to use them for packaging the enterprise beans? Usually, your IDE or the
EJB deployment tool bundled with your container comes with a capability to
package the bean’s artifacts into an Ejb-jar file. Figure 3.5 shows the creation of
an Ejb-jar file consisting of an EJB 3.0 bean.

The New Enterprise JavaBean 81

EJBCONTEXT

During runtime, the bean does need to know about its environment in terms of
the transaction context within which its method is being invoked, security
attributes of the caller such as its security principal, and so on. The
javax.ejb.EJBContext API is like a window for the bean to the outside
world with which it is interacting, that is, the container. EJBContext is further
subclassed into SessionContext and MessageDrivenContext for session
beans and message-driven beans, respectively.

Bean instances can use dependency injection mechanism to access the
EJBContext instance. The previous versions all the beans got access to the
EJBContext instance as part of the mandatory implementation of the
setSessionContext() or setMessageDrivenContext() methods of the
javax.ejb.SessionBean and javax.ejb.MessageDrivenBean component
interfaces, respectively.

07_785415 ch03.qxp 6/5/06 6:55 PM Page 81

Figure 3.5 Creating an Ejb-jar file.

An Ejb-jar can contain artifacts for more than one enterprise beans. If your
bean class and/or local/remote business interfaces are dependent on other
user classes, then the Ejb-jar file must also contain them. Also remember that
an EJB 3.0 Ejb-jar can contain pre–EJB 3.0 beans along with the new beans. This
means that an Ejb-jar can contain EJB home and EJB object interfaces, old-style
bean classes, and so on.

Upon creating an Ejb-jar, you will need to deploy it within the container. It
is at this time that various container artifacts, such as stubs, skeletons, wrapper
classes, and so on, are generated to provide an environment suitable to the
bean’s existence. Also during this time the container reads the deployment
descriptor and/or the deployment metadata to generate the container artifacts
in accordance with the services requested by the bean provider. All containers
provide some kind of a deployment tool for deploying Ejb-jar within the con-
tainer. Once the Ejb-jar is deployed, the deployer can then tweak and tune the
beans.

Example of EJB 3.0 Bean

So far in this chapter we have explained several important aspects of EJB
development and deployment and how they have been simplified a lot in EJB
3.0. However, what better way to realize the extent of simplicity than to wit-
ness the code itself?

EJB Jar FileJar File
Generator

Standard
Deployment
Descriptor

(if any)

Bean
Class

Remote
Business
Interface
(if any)

Local
Business
Interface
(if any)

Vendor-
Specific

Deployment
Descriptor

EJB Container JVM

82 Chapter 3

07_785415 ch03.qxp 6/5/06 6:55 PM Page 82

We will undertake a very simple exercise of developing and deploying the
proverbial HelloBean. It is a stateless session bean that has one method in its
remote business interface, hello(), which when called returns a greeting to
the client. The following are the steps involved in this exercise:

1. Write the Java code for the business interface, only making it remote in
this case, and the bean class.

2. Compile the Java sources in step 1.

3. Provide a deployment descriptor.

4. Create the Ejb-jar file, containing the classes generated in step 2, using
the jar utility or tools provided by your container.

5. Deploy the Ejb-jar file on the container, either using auto-deploy feature
(if container supports it) or by using a container provided deployment
tool.

6. Check your container to verify the EJB’s deployment.

7. Write and execute a client to check the functioning of the bean.

Now let us go through the programming artifacts one by one.

The Business Interface
The business interface, Hello, is a very straightforward POJI consisting of
method declaration for hello(). Source 3.1 is a listing of Hello.java.

package examples.session.stateless;

/**

* This is the Hello business interface.

*/

public interface Hello {

public String hello();

}

Source 3.1 Hello.java.

The Bean Class
The bean class, HelloBean, is also a straightforward POJO consisting of an
implementation of hello(). In addition, it also has annotations that config-
ures the bean appropriately. Source 3.2 shows the listing of HelloBean.java.

The New Enterprise JavaBean 83

07_785415 ch03.qxp 6/5/06 6:55 PM Page 83

package examples.session.stateless;

import javax.ejb.Remote;

import javax.ejb.Stateless;

/**

* Stateless session bean.

*/

@Stateless

@Remote(Hello.class)

public class HelloBean implements Hello {

public String hello() {

System.out.println(“hello()”);

return “Hello, World!”;

}

}

Source 3.2 HelloBean.java.

Notice the two annotations—@Stateless and @Remote—in Hello
Bean.java. @Stateless annotation configures the bean as a stateless
session bean, whereas @Remote annotation lets us configure the bean’s sup-
port for remote client view via the remote business interface Hello. Instead of
using deployment descriptor to specify these, we use annotations. Had we
cared to, we could have put in much more deployment configuration infor-
mation using annotations, for transaction, security, access to other resources,
and so on, for our bean. In the following chapters, you will see a lot of exam-
ples where we do use metadata for this purpose, too.

The Deployment Descriptor
In this example, we do make use of deployment descriptor, although not very
meaningfully. Our deployment descriptor is just a skeleton, as shown in
Source 3.3.

<?xml version=”1.0” encoding=”UTF-8” ?>

<ejb-jar xmlns=”http://java.sun.com/xml/ns/j2ee”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-

instance”xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/ejb-jar_3_0.xsd”

version=”3.0”>

<enterprise-beans>

</enterprise-beans>

</ejb-jar>

Source 3.3 Ejb-jar.xml.

84 Chapter 3

07_785415 ch03.qxp 6/5/06 6:55 PM Page 84

As you can see, this deployment descriptor is not used to specify any mean-
ingful configuration. Where previously we would have declared the business
interface and bean class and the like for an EJB in a deployment descriptor,
now we use annotations in the bean class to do the same. In fact, we would
have been able to deploy this bean even without one, but we left it here to
showcase how the deployment descriptor can be rendered redundant by use
of deployment annotations.

The Client
Now let us see how a Java application client of EJB 3.0 invokes the hello()
method on the bean. Source 3.4 shows the listing of HelloClient.java.

package examples.session.stateless;

import javax.naming.Context;

import javax.naming.InitialContext;

/**

* This class is an example of client code which invokes

* methods on a simple, remote stateless session bean.

*/

public class HelloClient {

public static void main(String[] args) throws Exception {

/*

* Obtain the JNDI initial context.

*

* The initial context is a starting point for

* connecting to a JNDI tree.

*/

Context ctx = new InitialContext();

Hello hello = (Hello)

ctx.lookup(“examples.session.stateless.Hello”);

/*

* Call the hello() method on the bean.

* We then print the result to the screen.

*/

System.out.println(hello.hello());

}

}

Source 3.4 HelloClient.java.

The New Enterprise JavaBean 85

07_785415 ch03.qxp 6/5/06 6:55 PM Page 85

The client code is fairly simple. Although we are required to work with the
JNDI interfaces given that HelloClient is a standalone Java client, had this
been a client deployed within the container’s managed environment we could
have used the injection mechanism to make container inject the reference to
HelloBean. This would have even further simplified the client code.

When one compares the code for EJB 3.0 bean to that for the EJB 2.1 bean
provided in Chapter 2, one cannot help but feel awe for the extent to which the
complexity of development and deployment has been reduced. We have bun-
dled the code for this example in the code that accompanies this book.

NOTE All the code bundled with this book can be downloaded from
www.wiley.com/go/sriganesh. The code is configured to run on the
open source Glassfish Application Server, which forms the basis of the Java EE
5 reference implementation. The code can be built and executed by running the
packaged Ant scripts. Each code sample comes with a Readme.txt,
describing the various steps needed to compile, package, deploy, and execute
the code samples.

Summary of Terms

For your convenience, we now list the definitions of each term we’ve used so
far. As you read future chapters, refer to these definitions whenever you need
quick clarification. You might want to bookmark this page.

The enterprise bean instance is a plain old Java object instance of an enter-
prise bean class. It contains business method implementations of the
methods defined in the remote/local business interface, for session
beans.

The business interface is a plain old Java interface that enumerates the busi-
ness methods exposed by the enterprise bean. Depending on the client
view supported by the bean, the business interface can be further classi-
fied into a local business interface or a remote business interface.

The deployment descriptor is an XML file that specifies the middleware
requirements for your bean. You use the deployment descriptor to
inform the container about the services you need for the bean, such as
transaction services, security, and so on. Alternatively, you can specify
the middleware requirements using deployment annotations within the
bean class as well.

The Ejb-jar file is the packaging unit for an enterprise bean, consisting of all
the above artifacts. An EJB 3.0 Ejb-jar file can also consist of the old-style
beans, if your application uses components defined using pre–EJB 3.0
technologies.

86 Chapter 3

07_785415 ch03.qxp 6/5/06 6:55 PM Page 86

The vendor-specific deployment descriptor lets you specify your bean’s needs
for proprietary container services such as clustering, load balancing, and
so on. A vendor can alternatively provide deployment metadata for these
services, which, like standard metadata, can be used within the bean
class to specify the configuration for these services. The vendor-specific
deployment descriptor’s definition changes from vendor to vendor.

Summary

We began this chapter by providing a real-world application example that can
be designed using enterprise beans, and then introduced you to the various
concepts surrounding EJB development, such as containers, types of beans, the
wire protocol of EJB—RMI-IIOP, and the EJB environment. We then provided a
comprehensive discussion on the various new approaches adopted by the EJB
Expert Group in simplifying the EJB 3.0 development and deployment. Finally,
we journeyed through the development of the elementary HelloBean EJB.

This chapter marks an end to the first part of this book. In this part, we
extensively introduced you to EJB technology. In Part I, we accomplished two
objectives:

1. Established a good understanding for the core concepts of EJB
architecture—such as components and component frameworks; distrib-
uted computing; middleware services; fundamental technologies such
as RMI-IIOP, JNDI, and Java annotations; various roles involved in EJB
application development life cycle; the service-oriented architecture
and its synergy with EJB framework; the role of EJB vis-à-vis the Java
EE technology, and much much more.

2. Provided a strong understanding of the encumbrances of previous ver-
sions of EJB technology and how its complexity prevented developers
from achieving higher productivity. This discussion was then followed
by introduction to EJB 3.0 technology and how it tries to take the com-
plexity out of the EJB development and deployment equation. We pro-
vided examples of both, old-style EJB and the new EJB, to explain to the
reader why certain decisions to change things in EJB 3.0 were made.

We begin Part II with a chapter on session beans, followed by a chapter each
on session bean–based Web services, the Persistence API, and message-
driven beans. Whereas Part I endeavored to set the stage right for understand-
ing EJB technology, Part II strives to provide further details on this. We hope
you enjoy the journey!

The New Enterprise JavaBean 87

07_785415 ch03.qxp 6/5/06 6:55 PM Page 87

07_785415 ch03.qxp 6/5/06 6:55 PM Page 88

PA R T

In Part II of this book, we’ll focus on the development details for implement-
ing an EJB application. We’ll discuss the two types of enterprise beans: session
beans (Chapter 4) and message driven beans (Chapter 7). We’ll also explore
their subtypes: stateless session beans, stateful session beans, and session
beans as Web services (Chapter 5). Not only will we cover each of these con-
ceptually, but we’ll also write an example for each bean type. In addition, we
cover in detail the new Java Persistence API defined entity programming,
again with examples, in Chapter 6. We’ll end Part II with a discussion in
Chapter 8 of various other functionalities of EJB technology such as access
to the environment, interceptors, and resource injection.

Part II is essential for those of you who are ready to go deep into EJB pro-
gramming fundamentals. It provides essential groundwork for the more
advanced topics such as transactions, EJB design and performance best
practices, advanced persistence concepts, and so on, which are coming in
Part III.

The Triad of Beans
and Entities

II

08_785415 pt02.qxp 6/5/06 6:56 PM Page 89

Click here to purchase this book.

http://www.amazon.com/gp/product/0471785415/ref=sr_11_1/103-1174895-6545420?%5Fencoding=UTF8
jpiscitelli
cover

08_785415 pt02.qxp 6/5/06 6:56 PM Page 90

91

A session bean performs work on behalf of client code that is calling it. Session
beans are reusable components that contain logic for business processes. For
example, a session bean can perform price quoting, order entry, video com-
pression, banking transactions, stock trades, database operations, complex cal-
culations, and more.

Let’s examine the characteristics of session beans in detail and then code up
a stateful session bean.

Session Bean Lifetime

A key difference between session beans and other bean types is the scope of
their lives. A session bean instance is a relatively short-lived object. It has
roughly the lifetime equivalent of a session or of the client code that is calling
the session bean. Session bean instances are not shared between multiple
clients, and they do not represent data in a database.

For example, if the client code contacted a session bean to perform order
entry logic, the EJB container is responsible for creating an instance of that ses-
sion bean component. When the client later disconnects, the application server
may destroy the session bean instance. From the client’s point of view, the
bean’s life starts after the client obtains a reference, and it ends when the

Introduction to Session Beans

C H A P T E R

4

09_785415 ch04.qxp 6/5/06 6:56 PM Page 91

client’s session ends. There are no guarantees about the existence of the bean
instance before the client session begins or after the client session ends.

A client’s session duration could be as long as a browser window is open,
perhaps connecting to an e-commerce site with deployed session beans. It
could also be as long as your Java applet is running, as long as a standalone
application is open, or as long as another bean is using your bean.

The length of the client’s session generally determines how long a session
bean is in use—that is where the term session bean originated. The EJB con-
tainer manages the bean’s life cycle and is empowered to destroy session
beans if clients time out. If your client code is using your beans for 10 minutes,
your session beans might live for minutes or hours, but probably not weeks,
months, or years. Typically, session beans do not survive application server
crashes, nor do they survive machine crashes. They are in-memory objects that
live and die with their surrounding environments.

In contrast, entity beans can live for months or even years because entity
beans are persistent objects. Entity beans are part of a durable, permanent stor-
age, such as a database. Entity beans can be constructed in memory from data-
base data, and they can survive for long periods of time.

Session beans are nonpersistent. This means that session beans are not saved
to permanent storage, whereas entity beans are. Note that session beans can
perform database operations, but the session bean itself is not a persistent
object.

Session Bean Subtypes

All enterprise beans hold conversations with clients at some level. A conversa-
tion is an interaction between a client and a bean, and it is composed of a num-
ber of method calls between the client and the bean. A conversation spans a
business process for the client, such as configuring a Frame Relay switch, pur-
chasing goods over the Internet, or entering information about a new cus-
tomer.

The two subtypes of session beans are stateless session beans and stateful ses-
sion beans. Each is used to model different types of these conversations.

Stateless Session Beans
Some business processes naturally lend themselves to a single request conver-
sation. A single request business process is one that does not require state to be
maintained across method invocations.

A stateless session bean is a bean that holds conversations that span a single
method call. They are stateless because they do not hold state that would be

92 Chapter 4

09_785415 ch04.qxp 6/5/06 6:56 PM Page 92

client-visible between invocations. After each method call, the container may
choose to destroy a stateless session bean, or recreate it, clearing out all infor-
mation pertaining to past invocations. It also may choose to keep your
instance around, perhaps reusing it for all clients who want to use the same
session bean class. The exact algorithm is container-specific. The point to take
away is this: Expect your bean to forget everything after each method call, and
thus retain no conversational state from method to method. If your bean hap-
pens to hang around longer, then great—but that’s your container’s decision,
and you shouldn’t rely on it.

For a stateless session bean to be useful to a client, the client must pass all
client data that the bean needs as parameters to business logic methods. Alter-
natively, the bean can retrieve the data it needs from an external source, such
as a database.

NOTE Stateless really means no conversational state. Stateless session beans
can contain state that is not specific to any one client, such as a database
connection factory that all clients would use. You can keep this around in a
private variable. As long as you’re willing to lose the data in your private
variable at any time, you’ll be fine.

An example of a stateless session bean is a high-performance engine that
solves complex mathematical operations on a given input, such as compres-
sion of audio or video data. The client could pass in a buffer of uncompressed
data, as well as a compression factor. The bean returns a compressed buffer
and is then available to service a different client. The business process spanned
one method request. The bean does not retain any state from previous
requests.

Another example of a stateless session bean is a credit card verification com-
ponent. The verifier bean takes a credit card number, expiration date, card-
holder’s name, and dollar amount as input. The verifier then returns a yes or
no answer, depending on whether the card holder’s credit is valid. Once the
bean completes this task, it is available to service a different client and retains
no past knowledge from the original client.

Because stateless session beans hold no conversational state, all instances of
the same stateless session bean class are equivalent and indistinguishable to a
client. It does not matter who has called a stateless session bean in the past,
since a stateless session bean retains no state knowledge about its history. This
means that any stateless session bean can service any client request because
they are all exactly the same. In fact, stateless session beans can be pooled,
reused, and swapped from one client to another client on each method call! We
show this in Figure 4.1. Instance pooling is the prime technique used by con-
tainer vendors to implement efficient bean processing.

Introduction to Session Beans 93

09_785415 ch04.qxp 6/5/06 6:56 PM Page 93

Figure 4.1 Stateless session bean pooling.

Since EJB 2.1, stateless session beans can also provide Web services inter-
faces to clients. We will examine this important option in detail in Chapter 5.

Stateful Session Beans
Some business processes are naturally drawn-out conversations over several
requests. An example is an e-commerce Web store. As a user peruses an online
e-commerce Web site, the user can add products to the online shopping cart.
Each time the user adds a product, we perform another request. The conse-
quence of such a business process is that the components must track the user’s
state (such as a shopping cart state) from request to request.

Another example of a drawn-out business process is a banking application.
You may have code representing a bank teller who deals with a particular
client for a long period of time. That teller may perform a number of banking
transactions on behalf of the client, such as checking the account balance,
depositing funds, and making a withdrawal.

A stateful session bean is a bean that is designed to service business processes
that span multiple method requests or transactions. To accomplish this, state-
ful session beans retain state on behalf of an individual client. If a stateful ses-
sion bean’s state is changed during a method invocation, that same state will
be available to that same client upon the following invocation. Stateful session
beans are a little more sophisticated than their simpler stateless cousins, so
let’s take a closer look at them in the next section.

Special Characteristics of Stateful Session Beans

So far, we’ve seen session beans in general. We also coded up a simple stateless
session bean to the old EJB 2.1 API in Chapter 2. Now let’s look at the trickier
flavor, stateful session beans.

Client

Business
Interface

Bean
Instance

Bean
Instance

Bean
Instance

invoke ()invoke ()

Stateless Session Bean Pool

94 Chapter 4

09_785415 ch04.qxp 6/5/06 6:56 PM Page 94

Achieving the Effect of Pooling with Stateful Beans
With stateful session beans, pooling is not as simple as with stateless session
beans. When a client invokes a method on a bean, the client is starting a con-
versation with the bean, and the conversational state stored in the bean must be
available for that same client’s next method request. Therefore, the container
cannot easily pool beans and dynamically assign them to handle arbitrary
client method requests, since each bean is storing state on behalf of a particu-
lar client. But we still need to achieve the effect of pooling for stateful session
beans so that we can conserve resources and enhance the overall scalability of
the system. After all, we only have a finite amount of available resources, such
as memory, database connections, and socket connections. If the conversa-
tional state that the beans are holding is large, the EJB server could easily run
out of resources. This was not a problem with stateless session beans because
the container could pool only a few beans to service thousands of clients.

This problem should sound quite familiar to operating systems gurus.
Whenever you run an application on a computer, you have only a fixed
amount of physical memory in which to run. The operating system still must
provide a way for many applications to run, even if the applications take up
more aggregate memory than is available physically. To provide for this, oper-
ating systems use your hard disk as an extension of physical memory. This
effectively extends your system’s amount of virtual memory. When an applica-
tion goes idle, its memory can be swapped out from physical memory and onto
the hard disk. When the application becomes active again, any needed data is
swapped in from the hard disk and into physical memory. This type of swap-
ping happens often when switching between applications (called context
switching).

EJB containers exploit this very paradigm to conserve stateful session bean
resources. To limit the number of stateful session bean instances in memory,
the container can swap out a stateful bean, saving its conversational state to a
hard disk or other storage. This is called passivation. After passivating a state-
ful bean, the conversational state is safely stored away, allowing resources like
memory to be reclaimed. When the original client invokes a method, the pas-
sivated conversational state is swapped in to a bean. This is called activation.
This bean now resumes the conversation with the original client. Note that the
bean that receives the activated state may not be the original bean instance. But
that’s all right because the new instance resumes its conversation from the
point where the original instance was passivated.

Thus, EJB does indeed support the effect of pooling stateful session beans.
Only a few instances can be in memory when there are actually many clients.
But this pooling effect does not come for free—the passivation/activation
steps could entail an input/output bottleneck. Contrast this to stateless session
beans, which are easily pooled because there is no state to save.

Introduction to Session Beans 95

09_785415 ch04.qxp 6/5/06 6:56 PM Page 95

How does the container decide which beans to activate and which beans to
passivate? The answer is specific to each container. Most containers employ a
least recently used (LRU) passivation strategy, which simply means to passivate
the bean that has been called the least recently. This is a good algorithm
because remote clients have the habit of disconnecting from the network, leav-
ing beans stranded without a client, ready to be passivated. If a bean hasn’t
been invoked in a while, the container writes it to disk.

Passivation can occur at any time, as long as a bean is not involved in a
method call. It’s up to the container to decide when passivation makes sense.
There is one exception to this rule: Any bean involved in a transaction (see
Chapter 10) cannot be passivated until the transaction completes.

To activate beans, most containers commonly use a just-in-time algorithm.
Just in time means that beans should be activated on demand, as client
requests come in. If a client request comes in, but that client’s conversation has
been passivated, the container activates the bean on demand, reading the pas-
sivated state back into memory.

In general, passivation and activation are not useful for stateless session
beans. Stateless beans do not have any state to passivate/activate, so the con-
tainer can simply destroy stateless beans arbitrarily.

The Rules Governing Conversational State
More rigorously, the conversational state of a bean follows the rules laid out by
Java object serialization. At passivation time the container uses object serializa-
tion (or an equivalent protocol) to convert the bean’s conversational state to a
bit-blob and write the state out to disk. This safely tucks the state away. The
bean instance (which still exists) can be reassigned to a different client, and can
hold a brand-new conversation with that new client.

Activation reverses the process: A serialized blob that had been written to
storage is read back into memory and converted to in-memory bean data.

For every Java object that is part of a bean’s conversational state, the previ-
ous algorithm is reapplied recursively on those objects. Thus, object serializa-
tion constructs an entire graph of data referred to by the main bean. Note that
while your beans must follow the rules for object serialization, the EJB con-
tainer itself does not necessarily need to use the default serialization protocol;
it could use a custom protocol to allow for flexibility and differentiation
between container vendors.

More concretely, every member variable in a bean is considered to be part of
the bean’s conversational state if one of the following is true:

■■ The member variable is a nontransient primitive type.

■■ The member variable is a nontransient Java object (extends java
.lang.Object).

96 Chapter 4

09_785415 ch04.qxp 6/5/06 6:56 PM Page 96

Your bean might also hold references to container-implemented objects. The
container must preserve each of the following upon passivation/activation:

■■ References to other beans’ local or remote business interfaces

■■ References to other beans’ local or remote home interfaces (for code
using the EJB 2.1 client view)

■■ References to the SessionContext object, the UserTransaction, an
EntityManager or EntityManagerFactory object, or a Timer
object (see Chapter 12)

■■ JNDI naming contexts

For example, let’s say you have the following stateful session bean code:

@Stateful public class MySessionBean

{

// State variables

private Long myLong;

private MySessionBeanRemoteInterface mySessionBean;

private javax.naming.Context envContext;

// Business methods

...

}

The container must retain the values of the preceding member variables
across passivation and activation operations.

In many cases, the container will simply do this without your code having
to bother, but sometimes your beans may contain state that is not covered by
this contract with the container. For example, if your bean holds JDBC connec-
tions or open sockets or other nonserializable objects, then the container will
not be able to properly activate and passivate the bean without a little assis-
tance from the bean itself.

This assistance comes in the form of bean code that the container can call
back during activation and passivation. The bean provider (that is, we, the
developers) can provide this code as either individual callback methods in the
bean, or as one or more separate callback listener classes. As you might expect
by this time, we will mark the code as callback code using metadata annota-
tions, or in the deployment descriptor files.

Activation and Passivation Callbacks
Let’s now look at what actually happens to your bean during passivation and
activation. When an EJB container passivates a bean, the container writes the
bean’s conversational state to secondary storage, such as a file or database. The
container informs the bean that it’s about to perform passivation by calling the
bean’s optional PrePassivate callback method. The PrePassivate callback

Introduction to Session Beans 97

09_785415 ch04.qxp 6/5/06 6:56 PM Page 97

is a method that is marked with the @PrePassivate annotation. The container
uses this callback method to warn the bean that its held conversational state is
about to be swapped out.

It’s important that the container inform the bean using PrePassivate so
that the bean can relinquish held resources that the container cannot handle
itself. These held resources include database connections, open sockets, open
files, or other resources that it doesn’t make sense to save to disk or that can’t
be transparently saved using object serialization. The EJB container calls the
PrePassivate method to give the bean a chance to release these resources or
deal with the resources as the bean sees fit. Once the container’s PrePassi-
vate callback method into your bean is complete, your bean must be in a state
suitable for passivation. For example:

@Stateful

public class MyBean {

@PrePassivate

public void passivate() {

<close socket connections, etc...>

}

...

}

The passivation process is shown in Figure 4.2. This is a typical stateful bean
passivation scenario. The client has invoked a method on a bean’s business
interface that does not have a bean tied to it in memory. The container’s pool
size of beans has been reached. Thus, the container needs to passivate a bean
before handling this client’s request.

Exactly the opposite process occurs during the activation process. The seri-
alized conversational state is read back into memory, and the container recon-
structs the in-memory state using object serialization or the equivalent. The
container then calls the bean’s optional PostActivate callback method. The
PostActivate callback method gives the bean a chance to restore the open
resources it released during PrePassivate. For example:

@Stateful

public class MyBean {

@PostActivate

public void activate() {

<open socket connections, etc...>

}

...

}

The activation process is shown in Figure 4.3. This is a typical just-in-time
stateful bean activation scenario. The client has invoked a method on an EJB
object whose stateful bean had been passivated.

98 Chapter 4

09_785415 ch04.qxp 6/5/06 6:56 PM Page 98

Figure 4.2 Passivation of a stateful bean.

Figure 4.3 Activation of a stateful bean.

Client

Business
InterfaceRemote

Interface

1. invoke business

method
Bean

Instance
4: call

@PostActivated

5: invoke business method

3: reconstruct bean

Other
Bean

Instances

2: Retrieve serialized
bean state

A typical just-in-time statefule session
bean activation scenario. The client has
invoked a method on a business
interface reference whose stateful bean
had been passivated.

Client

Business
InterfaceRemote

Interface

1. invoke business

method
Bean

Instance
3: call

@PrePassivate

4: serialize
bean state

2: pick the least
recently used bean

Other
Bean

Instances

5: Store serialized
bean state

A typical bean passivation scenario.
The client has invoked a method on
a business interface reference that
does not have a bean instance tied
to it in memory. The container’s
pool size of bean instances been
reached. Thus the container needs
to passivate a bean before handling
this client’s request.

Introduction to Session Beans 99

09_785415 ch04.qxp 6/5/06 6:56 PM Page 99

The code snippets that we just saw all showed a simple method in the bean
class itself. You will see an example of a separate callback listener class in the
section “The Count Bean’s Callback Interceptor” later in this chapter.

You don’t need to worry about providing methods annotated as Pre
Passivate and PostActivate callbacks unless you are using open
resources, such as socket connections or database connections, that must be
reestablished after activation.

NOTE The following rules apply to the life-cycle callback methods:

■■ They take the form public void <METHOD()> in the bean class.

■■ They take the form public void <METHOD(BeanClass bean)>
in a callback listener class for bean class BeanClass.

■■ They must not throw application exceptions, but may throw runtime
exceptions. If thrown within a transaction, it will cause the transaction
to roll back.

■■ There is no dependency injection for callback listener classes.

Summary of Callback Methods
Table 4.1 summarizes the life-cycle callbacks for session bean classes. All of
these are optional, so you need to provide implementations only if your bean
needs to take part in the management of its life cycle.

A Simple Stateful Session Bean
Let’s put our stateful session bean knowledge to use by programming a sim-
ple stateful bean. Our bean will be a counter bean, and it will be responsible for
simply counting up one by one. The current count will be stored within the
bean and will increment as client requests arrive. Thus, our bean will be state-
ful and will hold a multimethod conversation with a particular client.

The Count Bean’s Remote Interface

First let’s define our bean’s remote business interface. The code is shown in
Source 4.1.

100 Chapter 4

09_785415 ch04.qxp 6/5/06 6:56 PM Page 100

Ta
b

le
 4

.1
Li

fe
-C

yc
le

 C
al

lb
ac

ks
 fo

r
Se

ss
io

n
B

ea
n

C
la

ss
es

A
N

O
TA

TI
O

N
D

ES
C

R
IP

TI
O

N
TY

P
IC

A
L

IM
P

LE
M

E
N

TA
TI

O
N

TY
P

IC
A

L
IM

P
LE

M
E

N
TA

TI
O

N
(S

TA
TE

LE
S

S
 S

ES
S

IO
N

 B
EA

N
S

)
(S

TA
TE

FU
LL

 S
ES

S
IO

N
 B

EA
N

S
)

@
Po

st
C

on
st

ru
ct

C
al

le
d

af
te

r
th

e
co

nt
ai

ne
r

ha
s

Pe
rf

or
m

 a
ny

 in
iti

al
iz

at
io

n
yo

ur
 b

ea
n

Pe
rf

or
m

 a
ny

 in
iti

al
iz

at
io

n
yo

ur
 b

ea
n

cr
ea

te
d

a
ne

w
 in

st
an

ce
 o

f
ne

ed
s,

 s
uc

h
as

 s
et

tin
g

m
em

be
r

ne
ed

s,
 s

uc
h

as
 s

et
tin

g
m

em
be

r
th

e
be

an
 c

la
ss

.
va

ria
bl

es
 to

 th
e

ar
gu

m
en

t v
al

ue
s

va
ria

bl
es

 to
 th

e
ar

gu
m

en
t v

al
ue

s
pa

ss
ed

 in
.

pa
ss

ed
 in

.

@
Pr

eP
as

si
va

te
C

al
le

d
im

m
ed

ia
te

ly
 b

ef
or

e
U

nu
se

d
be

ca
us

e
th

er
e

is
 n

o
Re

le
as

e
an

y
re

so
ur

ce
s

yo
ur

 b
ea

n
yo

ur
 b

ea
n

is
 p

as
si

va
te

d
co

nv
er

sa
tio

na
l s

ta
te

. S
ta

te
le

ss

m
ay

 b
e

ho
ld

in
g.

(s

w
ap

pe
d

ou
t t

o
di

sk

Se
ss

io
n

B
ea

ns
 a

re
 n

ot
 p

as
si

va
te

d.
be

ca
us

e
th

er
e

ar
e

to
o

m
an

y
in

st
an

tia
te

d
be

an
s)

.

@
Po

st
Ac

tiv
at

e
C

al
le

d
im

m
ed

ia
te

ly
 a

fte
r

U
nu

se
d

be
ca

us
e

th
er

e
is

 n
o

Ac
qu

ire
 a

ny
 r

es
ou

rc
es

 y
ou

r
be

an

yo
ur

 b
ea

n
is

 a
ct

iv
at

ed

co
nv

er
sa

tio
na

l s
ta

te
. S

ta
te

le
ss

ne

ed
s,

 s
uc

h
as

 th
os

e
re

le
as

ed

(s
w

ap
pe

d
in

 fr
om

 d
is

k
se

ss
io

n
be

an
s

ar
e

no
t a

ct
iv

at
ed

.
du

rin
g

Pr
eP

as
si

va
te

.
be

ca
us

e
a

cl
ie

nt
 n

ee
ds

yo

ur
 b

ea
n)

.

@
Pr

eD
es

tr
oy

C
al

le
d

by
 th

e
co

nt
ai

ne
r

Pr
ep

ar
e

yo
ur

 b
ea

n
fo

r
de

st
ru

ct
io

n.

Pr
ep

ar
e

yo
ur

 b
ea

n
fo

r
de

st
ru

ct
io

n.

im
m

ed
ia

te
ly

 a
fte

r
an

y
Fr

ee
 a

ll
re

so
ur

ce
s

yo
u

m
ay

 h
av

e
Fr

ee
 a

ll
re

so
ur

ce
s

yo
u

m
ay

 h
av

e
@

R
em

ov
e

m
et

ho
d

ha
s

al
lo

ca
te

d.
al

lo
ca

te
d.

fin
is

he
d

an
d

be
fo

re
 y

ou
r

be
an

 is
 d

es
tr

oy
ed

.

09_785415 ch04.qxp 6/5/06 6:56 PM Page 101

package examples.session.stateful;

/**

* The business interface - a plain Java interface with only

* business methods.

*/

public interface Count {

/**

* Increments the counter by 1

*/

public int count();

/**

* Sets the counter to val

* @param val

*/

public void set(int val);

/**

* removes the counter

*/

public void remove();

}

Source 4.1 Count.java.

Our business interface defines three business methods, count(), set(),
and remove(), which we will implement in the enterprise bean class. For
those familiar with prior versions of EJB, note that the business interface is an
ordinary Java interface that does not extend any EJB-specific framework inter-
faces. EJB3 imposes no restrictions on interface design, so our business inter-
face could have one or more superinterfaces.

Also note that, although we intend to use the business interface remotely,
the interface does not extend java.rmi.Remote, and that our business
methods do not declare the java.rmi.RemoteException. We will instead
declare it as a remote business interface in the implementation class Count-
Bean.java below.

The Count Bean

Our bean implementation has a business method, count(), which is respon-
sible for incrementing an integer member variable, called val. The set()
method is used to initialize and reset the counter. The remove() method,
finally, ends the conversation with the bean. The conversational state is the
val member variable. Source 4.2 shows the code for our counter bean.

102 Chapter 4

09_785415 ch04.qxp 6/5/06 6:56 PM Page 102

package examples.session.stateful;

import javax.ejb.*;

/**

* A Stateful Session Bean Class that shows the basics of

* how to write a stateful session bean.

*

* This Bean is initialized to some integer value. It has a

* business method which increments the value.

*

* The annotations below declare that:

*

* this is a Stateful Session Bean

* the bean’s remote business interface is <code>Count</code>

* any lifecycle callbacks go to the class

* <code>CountCallbacks</code>

*

*/

@Stateful

@Remote(Count.class)

@Interceptors(CountCallbacks.class)

public class CountBean implements Count {

/** The current counter is our conversational state. */

private int val;

/**

* The count() business method.

*/

public int count() {

System.out.println(“count()”);

return ++val;

}

/**

* The set() business method.

*/

public void set(int val) {

this.val = val;

System.out.println(“set()”);

}

/**

* The remove method is annotated so that the container knows

* it can remove the bean after this method returns.

*/

@Remove

Source 4.2 CountBean.java. (continued)

Introduction to Session Beans 103

09_785415 ch04.qxp 6/5/06 6:56 PM Page 103

public void remove() {

System.out.println(“remove()”);

}

}

Source 4.2 (continued)

Note the following about our bean:

■■ The bean is a plain Java class adorned with a few metadata annotations.
If we had used a deployment descriptor to hold the information con-
veyed by these annotations, the code would contain nothing else but
business method implementations.

■■ The bean class implements the business interface. While this is not sur-
prising, it is not actually required: a session bean class may simply
declare rather than implement its remote or local interface using the
@Remote or @Local annotations (or the deployment descriptor). We
recommend that you always implement the business interface for clar-
ity and compile-time error checking. This also lets you reuse both your
business interface and implementation outside of an EJB container.

■■ In the example, we declare Count as our remote business interface.
Without the explicit declaration, a business interface would have been
assumed to be local as long as there was only one business interface. If
the bean class has more than one business interface, these interfaces all
need to be explicitly declared as either remote or local.

■■ The val member variable obeys the rules for conversational state
because it is serializable. Thus, it lasts across method calls and is auto-
matically preserved during passivation/activation. Because there is no
other state, there is not really any reason to implement life-cycle call-
backs. We still do this, but for demonstration purposes only.

■■ The @Remove annotation tells the container that after calling remove()
the client does not need the session bean anymore so the container may
destroy the bean.

The Count Bean’s Callback Interceptor

To complete our stateful bean code, we define the simple life-cycle callback
interceptor class that was already declared using the @Interceptors anno-
tation on the bean class. The code for our callback interceptor is in Source 4.3.

104 Chapter 4

09_785415 ch04.qxp 6/5/06 6:56 PM Page 104

package examples.session.stateful;

import javax.ejb.PostActivate;

import javax.ejb.PrePassivate;

import javax.ejb.PostConstruct;

import javax.ejb.PreDestroy;

/**

* This class is a lifecycle callback interceptor for the Count

* bean. The callback methods simply print a message when

* invoked by the container.

*/

public class CountCallbacks {

/**

* Called by the container after construction

*/

@PostConstruct

public void construct(InvocationContext ctx) {

System.out.println(“cb:construct()”);

}

/**

* Called by the container after activation

*/

@PostActivate

public void activate(InvocationContext ctx) {

System.out.println(“cb:activate()”);

}

/**

* Called by the container before passivation

*/

@PrePassivate

public void passivate(InvocationContext ctx) {

System.out.println(“cb:passivate()”);

}

/**

* Called by the container before destruction

*/

@PreDestroy

public void destroy(InvocationContext ctx) {

System.out.println(“cb:destroy()”);

}

}

Source 4.3 CountCallbacks.java.

Introduction to Session Beans 105

09_785415 ch04.qxp 6/5/06 6:56 PM Page 105

The Count Bean’s Deployment Descriptor

As an alternative to annotating the bean class, we could have relied on an XML
deployment descriptor file exclusively. The deployment descriptor settings
that are equivalent to the bean class annotations shown above are listed in
Source 4.4.

<?xml version=”1.0” encoding=”UTF-8” ?>

<ejb-jar xmlns=”http://java.sun.com/xml/ns/javaee” version=”3.0”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:schemaLocation=”http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd”>

<description>Stateful Session Bean Example</description>

<display-name>Stateful Session Bean Example</display-name>

<enterprise-beans>

<session>

<ejb-name>CountBean</ejb-name>

<business-remote>examples.session.stateful_dd.Count

</business-remote>

<ejb-class>examples.session.stateful_dd.CountBean</ejb-class>

<session-type>Stateful</session-type>

<transaction-type>Container</transaction-type>

</session>

</enterprise-beans>

<interceptors>

<interceptor>

<interceptor-class>examples.session.stateful_dd.CountCallbacks

</interceptor-class>

<post-construct>

<lifecycle-callback-method>construct

</lifecycle-callback-method>

</post-construct>

<post-activate>

<lifecycle-callback-method>activate</lifecycle-callback-method>

</post-activate>

<pre-passivate>

<lifecycle-callback-method>passivate

</lifecycle-callback-method>

</pre-passivate>

</interceptor>

</interceptors>

<assembly-descriptor>

<interceptor-binding>

<ejb-name>CountBean</ejb-name>

<interceptor-class>examples.session.stateful_dd.CountCallbacks

</interceptor-class>

Source 4.4 ejb-jar.xml. (continued)

106 Chapter 4

09_785415 ch04.qxp 6/5/06 6:56 PM Page 106

</interceptor-binding>

</assembly-descriptor>

</ejb-jar>

Source 4.4 (continued)

Note that a deployment descriptor file, if present, overrides any metadata
annotations on the bean class. The rationale here is that it should be possible to
declare EJB properties without access to the source code.

If you need to refer to the specifics of the deployment descriptor syntax, you
may need to either consult the EJB 3.0 specification itself or use the XML
schema file for EJB 3 descriptors. This schema is available online at http://
java.sun.com/xml/ns/j2ee/ejb-jar_3_0.xsd.

The Count Bean’s Proprietary Descriptor and Ejb-jar File

To complete the component, we need to write any proprietary files that the
application server may require and package those files and the bean together
into an Ejb-jar file. These steps are similar to our Hello, World! example.

One special setting we will try to make (which is vendor-specific) is to force
the container to limit the number of bean instances that it will keep active to
two beans. Note that this may or may not be possible with your particular
application server. We will then create three beans and observe how the con-
tainer passivates instances to service requests.

To save space, in future examples we’ll consider that the proprietary
descriptors, the Ejb-jar file, and the deployment itself are implied steps. If
you’re really curious about how this is achieved, take a look at the source code
accompanying the book.

The Count Bean’s Client Code

Now that our bean is deployed, we can write some Java code to test our beans.
Our client code performs the following steps:

1. We acquire a JNDI initial context.

2. We locate a reference to the bean’s business interface using JNDI.

3. We lookup three different count beans. Thus, we are creating three dif-
ferent conversations and are simulating three different clients.

4. We limited the number of active bean instances in the EJB server to two
beans, so during the previous step some of the three beans must have
been passivated. We print out a message during the PrePassivate
callback to illustrate this.

Introduction to Session Beans 107

09_785415 ch04.qxp 6/5/06 6:56 PM Page 107

5. We call count() on each bean instance. This forces the container to
activate the instances, restoring the conversations to memory once
again. We print out a message during the PostActivate callback to
illustrate this.

6. Finally, all the beans are removed.

The code appears in Source 4.5.

package examples.session.stateful;

import javax.naming.*;

/**

* This class is a simple client for a stateful session bean.

*

* To illustrate how passivation works, configure your EJB server

* to allow only 2 stateful session beans in memory. (Consult your

* vendor documentation for details on how to do this.) We create

* 3 beans in this example to see how and when beans are passivated.

*/

public class CountClient {

public static final int noOfClients = 3;

public static void main(String[] args) {

try {

/* Get a reference to the bean */

Context ctx = new InitialContext(System.getProperties());

/* An array to hold the Count beans */

Count count[] = new Count[noOfClients];

int countVal = 0;

/* Create and count() on each member of array */

System.out.println(“Instantiating beans...”);

for (int i = 0; i < noOfClients; i++) {

count[i] = (Count) ctx.lookup(Count.class.getName());

/* initialize each bean to the current count value */

count[i].set(countVal);

/* Add 1 and print */

countVal = count[i].count();

System.out.println(countVal);

/* Sleep for 1/2 second */

Thread.sleep(100);

Source 4.5 CountClient.java. (continued)

108 Chapter 4

09_785415 ch04.qxp 6/5/06 6:56 PM Page 108

}

/*

* Let’s call count() on each bean to make sure the

* beans were passivated and activated properly.

*/

System.out.println(“Calling count() on beans...”);

for (int i = 0; i < noOfClients; i++) {

/* Add 1 and print */

countVal = count[i].count();

System.out.println(countVal);

/* let the container dispose of the bean */

count[i].remove();

/* Sleep */

Thread.sleep(50);

}

} catch (Exception e) {

e.printStackTrace();

}

}

}

Source 4.5 (continued)

Running the Client

To run the client, you need to know the parameters your JNDI service provider
uses. This should also be part of your container’s documentation. See the
book’s accompanying source code for scripts.

Client-Side Output

After running the client, we see the following output:

Instantiating beans...

1

2

3

Calling count() on beans...

2

3

4

Introduction to Session Beans 109

09_785415 ch04.qxp 6/5/06 6:56 PM Page 109

We first created three beans and then called count() on each. As expected,
the beans incremented their values by one each during the second pass, so out-
put is as expected. But were our beans really passivated and activated? Let’s
check the server log.

Server-Side Output

As mentioned earlier, we configured the server to only allow two bean
instances to be active at a time using vendor-specific configuration means. If
the container log now yields the following results:

cb:construct()

set()

count()

cb:construct()

set()

count()

cb:construct()

set()

count()

count()

remove()

cb:destroy()

count()

remove()

cb:destroy()

count()

remove()

cb:destroy()

Then, as you can see from the passivation/activation messages in the log,
the container is indeed passivating and activating beans to conserve system
resources. Because the client-side output is correct, each of our beans’ conver-
sational state was retained properly.

Life-Cycle Diagrams for Session Beans
Now that we’ve written a complete stateless session bean (in Chapter 2) and a
complete stateful session bean (in this chapter), let’s see what’s happening
behind the scenes.

Figure 4.4 shows the life cycle of a stateless session bean inside the container.
Note that in this diagram, the client is not calling methods on the bean, since
the client never accesses a bean directly. (The client always goes through the
container.) In the diagram, the container is calling methods on the bean.

110 Chapter 4

09_785415 ch04.qxp 6/5/06 6:56 PM Page 110

Figure 4.4 The life cycle of a stateless session bean.

Let’s walk through this diagram:

1. At first, the bean instance does not exist. Perhaps the application
server has just started up.

2. The container decides it wants to instantiate a new bean. When does
the container decide it wants to instantiate a new bean? It depends on the
container’s policy for pooling beans. The container may decide to instanti-
ate 10 beans all at once when the application server first starts because
you told the container to do so using the vendor-specific files that you
ship with your bean. Each of those beans are equivalent (because they are
stateless), and they can be reused for many different clients.

3. The container instantiates your bean. The container calls
Class.newInstance(“HelloBean.class”) on your session bean
class, which is the dynamic equivalent of calling new HelloBean().
The container does this so that the container is not hard-coded to any

Bean Instance
does not exist

Pool of equivalent,
method-ready
bean instances

1. new instance()
2. dependency injection, if any
3. PostConstruct callback, if any

1. new instance()
2. dependency injection, if any
3. PostConstruct callback, if any

Container decides it
needs more instances
in the pool to service
clients.

PreDestroy callback, if anyPreDestroy callback, if any

Container decides it
does not need so
many instances in the
pool anymore.

Business methodBusiness method

Any client calls a
business method on
any bean’s business
interface.

Introduction to Session Beans 111

09_785415 ch04.qxp 6/5/06 6:56 PM Page 111

specific bean name; the container is generic and works with any bean.
This action calls your bean’s default constructor, which can do any nec-
essary initialization.

4. The container injects any required context dependencies. Context
dependencies can be declared using metadata annotations or XML
descriptor files so the container knows what other objects are required
by the bean class and can provide them. We’ll discuss dependency
injection in detail in Chapter 8.

5. The container calls the optional PostConstruct callback method.
This gives the bean instance a chance to perform additional initializa-
tion. Note that because the stateless session beans’ PostConstruct
callback methods take no parameters, clients never supply any critical
information that bean instances need to start up. EJB containers can
exploit this and precreate instances of your session beans. In general
when a client creates or destroys a bean, that action might not necessar-
ily correspond with literally creating or destroying in-memory bean
objects, because the EJB container manages their life cycles to allow for
pooling between heterogeneous clients.

6. The container can call business methods on your bean on behalf of
clients. The container can call as many business methods as it wants to
call. Each business method could originate from a completely different
client because all bean instances are treated exactly the same. All state-
less session beans think they are in the same state after a method call;
they are effectively unaware that previous method calls happened.
Therefore, the container can dynamically reassign beans to client
requests at the per-method level. A different stateless session bean can
service each method call from a client. Of course, the actual implementa-
tion of reassigning beans to clients is container-specific.

7. Finally, the container calls the PreDestroy callback methods. When
the container is about to remove your session bean instance, it calls
your bean’s PreDestroy callback methods. PreDestroy is a clean-up
method, alerting your bean that it is about to be destroyed and allowing
it to end its life gracefully. It takes no parameters. Your implementation
of PreDestroy can prepare your bean for destruction. This means you
need to free all resources you may have allocated.

Figure 4.5 shows the life cycle of a stateful session bean. Remember that in
the diagram, the container (not the client) is calling methods on our bean
instance.

112 Chapter 4

09_785415 ch04.qxp 6/5/06 6:56 PM Page 112

Figure 4.5 Life cycle of a stateful session bean.

The life cycle for stateful session beans is similar to that of stateless session
beans. The big differences are as follows:

■■ There is no pool of equivalent instances because each instance contains
state.

■■ There are transitions for passivating and activating conversational state.

Bean Instance
does not exist

1. new instance()
2. dependency injection (opt.)
3. PostConstruct (opt.)

PreDestroy (opt.) 1. new instance()
2. dependency injection (opt.)
3. PostConstruct (opt.)

PreDestroy (opt.)

Ready Passive

PrePassivate (opt.)

PostActivate (opt.)

Client obtained a
reference to the
business interface

A client called the
remove method or
timed out

The container’s limit
of instantiated beans is
reached and the bean
was chosen as a victim

Client’s call business
methods on the bean’s
business interface

A client called a method
on a passivated bean’s
business interface, so
container must swap it
back in.

Timeout

Introduction to Session Beans 113

DON’T RELY ON @PREDESTROY

Your container can call the @PreDestroy method at any time, even if the
container decides that the bean’s life has expired (perhaps due to a very long
timeout). Note that the container may never call your bean’s @PreDestroy
method, for example if the container crashes or if a critical exception occurs.
You must be prepared for this contingency. For example, if your bean performs
shopping cart operations, it might store temporary shopping cart data in a
database. Your application should provide a utility that runs periodically to
remove any abandoned shopping carts from the database because otherwise
the database resources associated with the abandoned shopping carts will
never be freed.

09_785415 ch04.qxp 6/5/06 6:56 PM Page 113

Summary

In this chapter, you learned the general concepts behind session beans. You
learned about achieving instance pooling with session beans, activation, and
passivation. You wrote a stateful session bean that counted up and touched on
session beans’ life cycle.

In the next chapter, we will continue our inspection of session beans with
another thrilling experience: We will let our session bean expose a Web service
interface!

114 Chapter 4

09_785415 ch04.qxp 6/5/06 6:56 PM Page 114

115

One of the most important enhancements introduced by EJB 2.1 was the sup-
port for Web services. EJB 3.0 now makes writing and using Web services both
simpler and more flexible.

In this chapter, we will discuss central Web services concepts and then
explain how EJB supports the writing of Web service implementations and
Web services clients. We will show how EJB enables you to build Web services
from stateless session beans and take a closer look at the Java API for XML Web
services (JAX-WS) that enables you to access Web services from Java clients.

Web Services Concepts

Let’s take a quick look at some fundamental concepts. As mentioned in Chap-
ter 1, Web services are a way of building a Service-Oriented Architecture (SOA).
SOA is an architectural approach to structuring large-scale, distributed sys-
tems that integrate heterogeneous applications behind service interfaces.

Figure 5.1 shows the basic model of a service lookup in a Service-Oriented
Architecture as supported by Web services technologies:

■■ A service provider creates an abstract service definition that can publish
in a service registry. With Web services, the description is a Web Services

Writing Session Bean
Web Services

C H A P T E R

5

10_785415 ch05.qxp 6/5/06 6:59 PM Page 115

Definition Language (WSDL) file, and the registry follows the Universal
Description, Discovery, and Integration (UDDI) standard.

■■ A service requestor can find the service description, possibly using a set
of selection criteria to query the registry.

■■ If a suitable description is found, the requestor can bind to and use the
service.

You can find simple examples of Web services collected on Web sites such as
xmethods.org, for example, a service to determine if a given Internet
domain name is taken, or to convert temperature values from Fahrenheit to
Celsius. More realistic Web services are built today in larger-scale, in-house
architectures that interconnect existing, heterogeneous applications, for exam-
ple, a billing application and a report generator.

A service interface is similar to an object interface, but the contract between
the interface and its clients is more flexible, and the client and the service
implementation are less closely coupled, than in EJB or other distribution plat-
forms. This looser coupling allows client and service implementations to run on
very different platforms, for example, a Microsoft .NET client could access a
service running in a JavaEE application server. Also, services are generally
coarser-grained entities than objects are. From a client perspective, their life
cycles are more static because services don’t just pop up and go away but stay
around longer than your average object, even if services are implemented
using object technology.

Figure 5.1 Service-Oriented Architecture with Web services.

Service Registry

Service Requestor Service Provider
SOAP

WSDL + UDDI

WSDL + UDDI

Bind

PublishFind

Service
Description

Service
Description

Service

116 Chapter 5

10_785415 ch05.qxp 6/5/06 6:59 PM Page 116

SOAs emphasize modularity through standardized interfaces, flexibility
through looser coupling, and extensibility through using XML. All of this is
important in B2B scenarios, which are the primary targets of Web services.
Web services are not just another RPC mechanism for your intranet applica-
tions but rather a great help in settings where no single middleware platform
is applicable.

As an example, consider the B2B relationships between a car manufacturer
and its suppliers. Each of these companies has its own IT infrastructure and set
of applications, such as payroll, inventory, order processing, and so on. Also,
each supplier builds parts for more than just a single car manufacturer, and
each manufacturer buys parts from different suppliers. In a situation like this,
it is highly unlikely that any of the involved parties will be able to switch to a
specific middleware for the sake of the business relationship with just a single
partner. For any given supplier, building a middleware X adapter (for example
CORBA) to its order-processing application to interoperate with customer A,
and then building another adapter Y (say, MQSeries) to interoperate with cus-
tomer B, and so on is going to be too much effort and too expensive.

This is what standardization efforts in the past (such as EDI) tried but failed
to tackle on a larger scale. Web services can thus be seen as a new attempt at
building universally agreed-upon standards that hide the differences behind
standardized interfaces. This time, the standards are going to be based on
XML and on established Internet protocols.

So why do we talk about integration and interoperability so much in the
context of Web services? Aren’t EJBs interoperable already, thanks to the stan-
dardization of the RMI/IIOP protocol and the container and bean APIs? EJBs
are interoperable in the sense of vendor and platform independence: there are
Java EE/EJB products from many different vendors that run on different plat-
forms and still talk to each other. These containers can host your beans no mat-
ter which product they were written for, so you also get portability. But there
is language dependency: EJBs are coded in Java and nothing else, so you can-
not create interoperable bean implementations written in different languages.

On the one hand, this is great because of Java’s portability (write once run
anywhere). On the other hand, portability is not always an issue, and you may
actually need a specific language for your project if you wanted to leverage,
say, a large amount of C++ or COBOL code for business objects that your com-
pany has investments in. With EJB, a common approach is to build wrapper
beans that talk to an adapter in C++, most likely based on CORBA. Another
way of putting this is to say that EJBs prescribe not only the component inter-
faces and client contracts but also an implementation model. With Web ser-
vices, there is no single implementation framework; a contract with a Web
service involves only its interface. Web services interfaces are defined in the
Web Services Description Language (WSDL). Web services can be implemented
in any language. Of course, we will be building them with EJB in this book, so
they will be written in Java.

Writing Session Bean Web Services 117

10_785415 ch05.qxp 6/5/06 6:59 PM Page 117

Web Services Standards
The set of de facto standards that make up Web services today can be summa-
rized in a simple equation:

Web Services = WSDL + SOAP + UDDI

Let’s take a quick look at WSDL and SOAP. We won’t cover UDDI here
because it is not necessarily required: Note that the actual service usage in Fig-
ure 5.1 does not depend on the existence of UDDI. The requestor may actually
have known the service and its endpoint address without the registry. Also
note that the registry is not simply a naming service but supports queries for
services that obey a given predicate. At this stage in the life of Web services,
however, it is unclear whether dynamic service lookups in UDDI registry will
ever happen on a larger scale than within enterprises. It did not happen with
similar concepts that were available earlier, such as CORBA Trading Service.

NOTE If you have been around in distributed computing for a while, some of
the technology in the Web services arena will give you a feeling of déja vu.
Figure 5.1, for example, looks a lot like the RM-ODP trader and later CORBA
Trading Service. Many aspects that Web services address are not new per se but
have simply not been solved on a larger scale.

WSDL

To give you a first impression of a service description in WSDL, following is
the definition of a HelloWorld service like the one we used in Chapter 3.

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>

<definitions targetNamespace=”http://ws.session.examples/”

name=”Greeter” xmlns:tns=”http://ws.session.examples/”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”

xmlns=”http://schemas.xmlsoap.org/wsdl/”>

<types>

<xsd:schema>

<xsd:import namespace=”http://ws.session.examples/”

schemaLocation=”Greeter_schema1.xsd”/>

</xsd:schema>

</types>

<message name=”hello”>

<part name=”parameters” element=”tns:hello”/>

</message>

<message name=”helloResponse”>

<part name=”parameters” element=”tns:helloResponse”/>

</message>

<portType name=”HelloBean”>

<operation name=”hello”>

118 Chapter 5

10_785415 ch05.qxp 6/5/06 6:59 PM Page 118

<input message=”tns:hello”/>

<output message=”tns:helloResponse”/>

</operation>

</portType>

<binding name=”GreeterPortBinding” type=”tns:HelloBean”>

<soap:binding transport=”http://schemas.xmlsoap.org/soap/http”

style=”document”/>

<operation name=”hello”>

<soap:operation soapAction=””/>

<input>

<soap:body use=”literal”/>

</input>

<output>

<soap:body use=”literal”/>

</output>

</operation>

</binding>

<service name=”Greeter”>

<port name=”GreeterPort” binding=”tns:GreeterPortBinding”>

<soap:address location=”http://gorilla:80/Greeter”/>

</port>

</service>

</definitions>

Some good news first before we look at the details: Relax. You don’t have to
write this XML document yourself. This interface description was automati-
cally generated from an EJB using a generator tool.

A number of things are worth noting about the WSDL:

■■ The number of language concepts used here is larger than in Java. We
have a service that provides one or more ports at an address. Ports repre-
sent the service interfaces and have bindings to protocols.

■■ The service description includes an endpoint address. The WSDL is
thus like a Java interface and an object reference joined together. In
other words, Web services do not have distinct identities. They are not
objects and must be viewed as modules. There is no client-visible state,
and you cannot compare two references for equality!

■■ Operations are specified in terms of input and output messages
rather than parameters and return values. These have to be repre-
sented as elements (“parts”) of input and output messages.

■■ The binding for the service is a SOAP binding. There can be other bind-
ings in theory, but in practice SOAP is the only available option today. Also
note that the soap:binding has an attribute style=”document”,
so there must be other possible styles. Currently, the only other style for
exchanging SOAP messages is rpc-style, which simply represents the
called operation slightly different in the SOAP message’s body.

Writing Session Bean Web Services 119

10_785415 ch05.qxp 6/5/06 6:59 PM Page 119

SOAP

The SOAP protocol defines an XML message format for Web services and their
clients. Until version 1.1, SOAP was an acronym for Simple Object Access Proto-
col, but it was turned into a proper name for version 1.2 of the standard. That
SOAP starts with the three letters SOA is sheer coincidence. As we just men-
tioned, the targets of SOAP messages (both services and clients) are not objects
in the object-oriented sense, so the acronym was a misnomer anyway.

The SOAP message format is very simple. In a message exchange between a
client and the Greeter service, the request message would look like this:

POST /Greeter HTTP/1.1

Content-Type: text/xml; charset=”utf-8”

Content-Length: 398

SOAPAction: “”

Host: gorilla:8080

<?xml version=”1.0” ?>

<soapenv:Envelope

xmlns:soapenv=”http://schemas.xmlsoap.org/soap/envelope/”

xmlns:ns1=”http://ws.session.examples/”>

<soapenv:Body>

<ns1:hello>

</ns1:hello>

</soapenv:Body>

</soapenv:Envelope>

This is an actual message as sent over the wire. As you can see, the message
has two parts, an HTTP POST request header, and an XML document in the
HTTP payload. This XML document is a SOAP envelope, which represents a
request. The envelope contains a body element, which in turn contains the
hello element that represents the operation call.

The reply message is just as simple:

HTTP/1.1 200 OK

SOAPAction: “”

Content-Type: text/xml;charset=utf-8

Transfer-Encoding: chunked

<?xml version=”1.0” ?>

<soapenv:Envelope

xmlns:soapenv=”http://schemas.xmlsoap.org/soap/envelope/”

xmlns:ns1=”http://ws.session.examples/”>

<soapenv:Body>

<ns1:helloResponse>

<return>Hello,World!</return>

</ns1:helloResponse>

120 Chapter 5

10_785415 ch05.qxp 6/5/06 6:59 PM Page 120

</soapenv:Body>

</soapenv:Envelope>

Again, there is the HTTP header and an XML document that contains a SOAP
envelope. This time, the SOAP body represents the result of the operation call.

The two messages reproduced here serve to illustrate another key term that
is often used in the context of Web services. The SOAP protocol is extremely
lightweight in the sense that it is very simple to use and does not make many
assumptions about the behavior of clients and services. The SOAP protocol is
not lightweight in terms of compactness and high performance. If uncom-
pressed, there is a large transmission overhead when compared to binary rep-
resentations, for example in CORBA’s IIOP protocol. The XML parsing
required to marshal and unmarshal messages can also become CPU-intensive
for larger messages. But this is beside the point: Web services are not designed
to deliver hitherto unknown performance but to enable integration where
high-performance middleware is much less useful than lightweight protocols
that can be implemented easily by simple scripts. (For an interesting discus-
sion of scripting languages as middleware, refer to Steve Vinoski’s article on
Middleware Dark Matter available at www.iona.com/hyplan/vinoski.)

XML Artifacts and Platform Independence
Web services help with the integration of heterogeneous, distributed systems
by using standardized XML documents for many different aspects of service
design, deployment, lookup, and usage that leverages a broad array of open
standards and sophisticated tools that are widely available. Many of the tools,
like Apache Axis SOAP, IBM WSDL4J toolkit, and JBoss Application Server,
are also in the open source arena.

In a sense, the XML usage that we just looked at is perhaps the biggest tech-
nological advantage here because many of the practical virtues, like loose cou-
pling and platform independence, follow from XML itself and the way the
different XML technologies are combined. XML documents are also self-
describing in that they contain a description of their structure in their markup
tags. This does not mean that you will be able to understand arbitrary docu-
ments without any prior knowledge. What it does mean is that you can easily
skip parts of a message that you are not concerned with and don’t understand,
and just deal with those parts that do concern you. This may sound trivial at
first, but it has important consequences in that this enables the decoupling of
applications and middleware.

To understand this point, recall that clients of your beans have to use a fixed
component interface. If that interface changes because a parameter is added to
a method signature, you will not only have to rebuild, reassemble, and rede-
ploy your beans, but your clients will also have to be recompiled. This is not

Writing Session Bean Web Services 121

10_785415 ch05.qxp 6/5/06 6:59 PM Page 121

loose coupling because you cannot develop the different components of your
application individually. If one piece changes, the others have to change, too.
Applications are not as flexibly extensible as we would like. With IIOP-based
request messages, all parties must have complete type information because
they are not able to demarshal messages otherwise. There is no skipping of
unknown parts of a message in IIOP. These restrictions do not exist with inter-
faces written in XML and with XML messages.

XML also enables you to write extensible specifications (after all, that’s the X
in XML): Data types in interface definitions can contain extensibility points
from the outset. These extensibility points make use of a wildcard any type
and, optional elements in sequences, and so on. Future versions of a service,
while still servicing the clients written to the original interface, may fill in com-
plex data records in these places for the benefit of more current client applica-
tions. If your end of the application does not rely on it, you don’t need to care.

To summarize this approach more generally, you could say that Web ser-
vices leave many details open for mutual agreement between the parties that
will be actually involved, whereas other middleware systems, such as
CORBA, have sought to define stricter, inherent semantics as part of their
models. This means that to use Web services successfully in practice, you have
to fill in these details. It also means that there is more room for refinement and
thus wider applicability.

Implementing a Web Service

The Java EE model for Web services provides a seamless Java perspective on
Web services, both for the service implementations and its clients. The model
is relatively simple to use and allows you to deal with SOAP in the same way
you deal with RMI or RMI/IIOP, which is to entrust all the details to the lower
transport layers and happily ignore them for your business logic. The first
thing to note is that your Web services, like your beans, are managed for you
completely by the container.

The JSR 921 specification Web Services for Java EE defines the programming
model for Web services. This specification uses the term port component for the
server-side view of a Web service. A port component is a portable Java imple-
mentation of a service endpoint interface (a port) and comprises a Java map-
ping of the service interface and an implementation bean.

Port components are deployed into and live in containers. Writing a Web
service using EJB requires creating one or more port components as stateless
session beans. A big advantage of the way the Web services programming
model is defined is that you can easily expose existing session beans as Web
services. This is what we will do in the remainder of this chapter.

The concrete client and server APIs and the mapping between Java
and WSDL are defined in JSR 224, Java API for XML Web Services (JAX-WS).

122 Chapter 5

10_785415 ch05.qxp 6/5/06 6:59 PM Page 122

JAX-WS supercedes the earlier JAX-RPC standards and is not specific to Web
services with EJBs, so you can implement Web services even without EJB by
relying on the server-side APIs of JAX-WS.

There are basically two ways to implement a Web service:

■■ Start with a Java class and let the container generate the WSDL and any
other required mapped XML artifacts.

■■ Start with a (new or preexisting) WSDL file and let development tools
generate the required Java classes.

To leverage the large investments that we made in Chapter 3 and to demon-
strate the simplest possible approach, we will take our HelloWorld session bean
and make it available as a Web service using the “start from Java” approach.

The great news is that no additional coding is required. The only thing that
our session bean is missing is a declaration as a Web service. Here’s the
HelloBean, adorned with a metadata annotation that turns it into a Web service
implementation.

package examples.session.ws;

import javax.ejb.Stateless;

import javax.jws.WebMethod;

import javax.jws.WebService;

@Stateless

@WebService(serviceName=”Greeter”, portName=”GreeterPort”)

public class HelloBean {

@WebMethod

public String hello() {

System.out.println(“hello()”);

return “Hello, World!”;

}

}

As you can see, the implementation has not changed. The only important
changes are the @WebService annotation on the class and the @WebMethod
annotation on the hello() method. In the example, the @WebService anno-
tation has two members. The serviceName and portName members tell the
container the name of the Web service and the name of the port. These names
reappear in the generated WSDL file. In fact, you have already seen them in the
WSDL file presented earlier in this chapter. Here is the relevant snippet again:

<service name=”Greeter”>

<port name=”GreeterPort” binding=”tns:GreeterPortBinding”>

<soap:address location=”http://gorilla:80/Greeter”/>

Writing Session Bean Web Services 123

10_785415 ch05.qxp 6/5/06 6:59 PM Page 123

</port>

</service>

Note two things about this example. First, the HelloBean (also called ser-
vice implementation bean) does not need to implement any specific interfaces
to function as a Web service implementation. You can implement a service end-
point interface if you like and denote it using the endpointInterface mem-
ber of the @WebService annotation, but this is not required. The client
contract is defined in terms of the WSDL description that is generated from
these annotations, so a separate Java interface is not necessary. If one is used,
the JAX-WS specification states the following rules:

■■ The service endpoint interface must be a public, outer Java interface
that includes a @WebService annotation.

■■ The interface may extend java.rmi.Remote either directly or indi-
rectly, but need not.

■■ All methods are mapped to WSDL operations and may throw
java.rmi.RemoteException but are not required to.

■■ The method parameters and return types must be the Java types sup-
ported by the JAX-RPC mapping.

Second, the @WebMethod annotation is also optional. If no such annotation
is present, all methods of the service implementation bean (or the service end-
point interface, if any) will be exposed in the WSDL. If a @WebMethod annota-
tion is used, then only those methods that are marked with it are exposed. The
annotation types that can be used for Web services are defined in a separate
specification document: JSR 181, Web Services Metadata. For further details on
these annotations please turn to Appendix B.

After applying these annotation to declare the bean as a Web service we only
need to redeploy the application, which now contains a port component. The
EJB container will know how to dispatch incoming SOAP messages to the bean
implementation and also how to map incoming XML data to Java. The same will
happen on the way back: The container just knows how to map the Java return
values back into XML, how to build a SOAP response message, and where to
send it. The actual mapping rules (“binding”) between XML data and Java are
defined in yet another JSR, the Java Architecture for XML Binding (JAXB), which is
available as JSR 222.

The JAXB specification defines a mapping between a set of supported Java
types and XML schema types. The Java types directly supported by JAXB are the
primitive types boolean, byte, double, float, int, long, short, and their wrapper classes.
In addition, the following nonprimitive types are directly supported by JAXB:

java.lang.String

java.math.BigDecimal

124 Chapter 5

10_785415 ch05.qxp 6/5/06 6:59 PM Page 124

java.math.BigInteger

java.net.URI

java.util.Calendar

java.util.Date

javax.xml.namespace.QName

java.net.URI

javax.xml.datatype.XMLGregorianCalendar

javax.xml.datatype.Duration

java.lang.Object

java.awt.Image

javax.activation.DataHandler

javax.xml.transform.Source

java.util.UUID

WSDL and the XML/Java Mapping
You have seen the WSDL description of the HelloWorld Web service already. If
you are building new Web services, you can start with a WSDL description of
your service and write WSDL directly and then use a WSDL compiler to gen-
erate the service endpoint interface in Java. Alternatively, all Java Web services
platforms and SOAP toolkits provide tools to derive WSDL descriptions auto-
matically from Java endpoint interfaces or service implementation beans.

Packaging and Deploying a Web Service Session Bean
The packaging of a Web service implementation as a stateless session bean is
an extension of the packaging for regular stateless session beans, that is, an
Ejb-jar archive. This file contains the usual set of Java classes, plus the service
endpoint interface class.

The EJB server requires extra information to be able to dispatch incoming
SOAP messages to your bean. First, it needs to know the Java class that will
handle these calls. As you saw, this information can be expressed using anno-
tations. Optionally, you can provide a WSDL file. If present, the WSDL file is
provided in the META-INF directory of the Ejb-jar archive.

As an alternative to using annotations, the information can be provided
in an additional descriptor file, the webservices.xml file, which is also
added to the Ejb-jar archive’s META-INF directory. Your specific Java EE prod-
uct may provide vendor-specific deployment tools to generate this file. The
webservices.xml file for the HelloWorld service is reproduced here:

Writing Session Bean Web Services 125

10_785415 ch05.qxp 6/5/06 6:59 PM Page 125

<?xml version=”1.0” encoding=”UTF-8”?>

<webservices xmlns=”http://java.sun.com/xml/ns/javaee”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance” version=”1.2”

xsi:schemaLocation=”http://java.sun.com/xml/ns/javaee

http://www.ibm.com/webservices/xsd/javaee_web_services_1_2.xsd”>

<webservice-description>

<display-name>Greeter</display-name>

<webservice-description-name>Greeter

</webservice-description-name>

<wsdl-file>META-INF/wsdl/Greeter.wsdl</wsdl-file>

<port-component>

<port-component-name>HelloBean</port-component-name>

<wsdl-port xmlns:ns1=”http://ws.session.examples/”>

ns1:GreeterPort

</wsdl-port>

<service-endpoint-interface>

examples.session.ws.HelloBean

</service-endpoint-interface>

<wsdl-service xmlns=”http://ws.session.examples/”>

GreeterPort

</wsdl-service>

<service-impl-bean>

<ejb-link>HelloBean</ejb-link>

</service-impl-bean>

</port-component>

</webservice-description>

</webservices>

The webservices.xml file tells the container where to look for the WSDL
file in the package in the <wsdl-file> element and defines the Web service
interface and implementation package, the port component. The <port-
component> definition lists the fully qualified Java class name of the service
endpoint interface and the name of the implementation bean. The simple
name is sufficient here as the container already knows the bean details from
the ejb-jar.xml file. The port component is linked to the Web service’s port
using the <wsdl-port> element, which gives the name of the port that this
port component implements.

With this, we’re actually done! The container has all the information that it
needs to link the abstract concept of a Web service as defined in WSDL to the
port component that we have just defined by adding a service endpoint inter-
face to the existing HelloBean.

Implementing a Web Service Client

Web services clients in Java EE are very similar to regular bean clients. They
come in two flavors:

126 Chapter 5

10_785415 ch05.qxp 6/5/06 6:59 PM Page 126

■■ Standalone JAX-WS clients without JNDI access for service lookup

■■ Java EE clients (both Web clients and standalone) that can access
client-side JNDI contexts

Standalone clients without JNDI access, such as remote Java clients not run-
ning inside an application server, can be coded using one of two approaches.
The first approach is called proxy and retrieves a WSDL description at runtime
to generate the dynamic proxy from it. This approach relies on the client’s
knowledge of the service endpoint address URL and not just a symbolic
lookup name as with JNDI.

The second option relies on Dispatch objects and is basically a dynamic invo-
cation interface (DII) to create call objects at runtime, which allows you to
build dynamic bridges and to live without any prior knowledge of a service’s
WSDL. We do not cover this style of programming here as it is low level and
cumbersome to use, and beneficial only in limited cases. With the Dispatch
approach, your client code has to create SOAP call objects (dispatch objects)
and explicitly embed parameters before sending them.

The following example shows the code for a standalone, remote client to our
simple HelloWorld Web service:

package examples.session.ws;

import java.net.URL;

import javax.xml.namespace.QName;

import javax.xml.ws.Service;

/**

* This is an example of a standalone JAX-WS client. To compile,

* it requires some XML artifacts to be generated from the service’s

* WSDL. This is done in the build file.

*

* The mapped XML classes used here are

* 1. the HelloBean port type class (this is NOT the bean impl. class!)

* 2. the Greeter service class

*/

public class JAXWSClient {

static String host = “localhost”;

static String portType = “HelloBean”;

static String serviceName = “Greeter”;

static String serviceEndpointAddress =

“http://” + host + “:8080/” + serviceName;

static String nameSpace = “http://ws.session.examples”;

public static void main(String[] args) throws Exception {

URL wsdlLocation =

Writing Session Bean Web Services 127

10_785415 ch05.qxp 6/5/06 6:59 PM Page 127

new URL(serviceEndpointAddress + “/” + portType + “?WSDL”);

QName serviceNameQ = new QName(nameSpace, serviceName);

// dynamic service usage

Service service = Service.create(wsdlLocation, serviceNameQ);

HelloBean firstGreeterPort = service.getPort(HelloBean.class);

System.out.println(“1: “ + firstGreeterPort.hello());

// static service usage

Greeter greeter = new Greeter();

HelloBean secondGreeterPort = greeter.getGreeterPort();

System.out.println(“2: “ +secondGreeterPort.hello());

}

}

The example shows two slightly different ways of using service proxies,
where the first uses generic methods in the Service class to obtain a port object
while the second uses a generated service proxy class Greeter with a type-
specific getGreeterPort() method. The Greeter class is generated
from the WSDL file using vendor-specific tools.

Java EE client code that is running in a client container, for example a
servlet, can be shielded from the actual service endpoint address by using
JNDI lookups instead. The client container’s local JNDI context provides the
binding from the service endpoint address to a service name according to the
client’s deployment descriptor. The exact configuration of the client container
is vendor-specific.

This concludes our simple programming example for Web services in EJB.
While the example itself is far from realistic or even prototypical for a Web ser-
vice, it is useful to show how you can turn something into a Web service after
it has been coded, and how EJB supports generating the necessary XML scaf-
folding without your having to worry about it. You will see another example
of a Web service in action in Chapter 18.

Summary

In this chapter, we provided a basic overview of the concepts and technologies
required to use and build Web services with EJB. This completes our introduction
to session beans. We have covered a lot of ground, going from stateless to stateful
session beans and back again to stateless beans that implement Web services.

In the next chapters, you’ll learn about the more complex (and also quite
interesting) entities. Turn the page and read on!

128 Chapter 5

10_785415 ch05.qxp 6/5/06 6:59 PM Page 128

129

Any nontrivial enterprise application needs to handle persistent data of one
kind or another. EJB has long had a component model for persistent objects, but
over the years it has become apparent that these components—entity beans—
have many practical disadvantages. With version 3.0 of the EJB specification, a
completely new persistence technology can now be used. This new persistence
layer has been long awaited in the industry and is called Java Persistence.

Java Persistence is a separate specification document of more than 220 pages
and has been separated from the core EJB specification, even though it was
prepared by the same expert group. It is one of the most important innovations
available for EJB 3.0 and it provides a POJO programming model for persistent
objects that is based on entities.

Entities are not an enhancement of the entity beans known from previous
versions of EJB but rather a completely new programming concept. The new
Java Persistence specification:

■■ Provides a standard object-relational (OR) mapping which integrates
many of the concepts that were found in popular persistence frame-
works such as Hibernate and JDO

■■ Is not tied to the Java EE container and can be tested and used in J2SE
environments

■■ Defines a service provider interface so that different persistence
providers can be used without affecting the entity code

Java Persistence:
Programming with Entities

C H A P T E R

6

11_785415 ch06.qxp 6/5/06 6:59 PM Page 129

While the older entity beans are still required to be supported by a 3.0-com-
pliant EJB container, the new Java Persistence API is concerned only with enti-
ties. We concentrate on entities exclusively in this book. We recommend that
you do the same and write any new code to this API. If you need to maintain
legacy beans and hence need information on pre-3.0 entity beans, please refer
to the third edition of this book, Mastering Enterprise JavaBeans, Third Edition
(ISBN 0-7645-7682-8), which is freely accessible online.

In this chapter, we’ll provide an overview of the most important concepts in
Java Persistence. We first cover the concept of OR mapping to give you a solid
foundation before we embark on the programming concepts found in Java
Persistence, and on their integration in EJB 3.0. Some more advanced concepts,
such as relationships and support for inheritance and polymorphism, will be
covered in Chapter 9.

Object-Relational Mapping

The simplest way to persist objects in Java is to use Java’s native serialization
API that lets you write objects to files. For enterprise data, this is usually insuf-
ficient as data persisted in this way is not efficiently searchable, nor is concur-
rent access protected by transactions.

Another popular way to store Java objects is to use a traditional relational
database management system (RDBMS) such as Oracle, Microsoft SQL Server,
DB2, or open source alternatives such as MySQL, PostgreSQL, or Derby. Rather
than serialize an object as a complete bit blob, we would decompose each object
into its constituent parts and store each part separately. For example, for a bank
account object, the bank account number could be stored in one relational data-
base field and the bank account balance in another field. When you save your
Java objects, you would use JDBC to map the object data into a relational data-
base. When you want to load your objects from the database, you would
instantiate an object from that class, read the data in from the database, and
then populate that object instance’s fields with the relational data read in. This
is shown in Figure 6.1.

This mapping of objects to relational databases is a technology called object-
relational mapping. It is the act of converting and unconverting in-memory
objects to relational data. An object-relational (OR) mapper may map your
objects to any kind of relational database schema. For example, a simple
object-relational mapping engine might map a Java class to a SQL table defin-
ition. An instance of that class would map to a row in that table, while fields in
that instance would map to individual cells in that row. This is shown in Fig-
ure 6.2. You’ll see more advanced cases of mapping data with relationships to
other data in Chapter 9.

130 Chapter 6

11_785415 ch06.qxp 6/5/06 6:59 PM Page 130

Figure 6.1 Object-relational mapping.

Object-relational mapping is a much more sophisticated mechanism of per-
sisting objects than the simple object serialization offered by the Java language.
By decomposing your Java objects as relational data, you can issue arbitrary
queries for information. For example, you can search through all the database
records that have an account balance entry greater than $1,000 and load only
the objects that fulfill this query. More advanced queries are also possible. You
can also visually inspect the database data because it is not stored as bit-blobs,
which is great for debugging or auditing.

Relational Database

Bank Account
Table

String accountID
String ownerName
double balance

Bank Account

Database API
Such as JDBC or

SQLJ

Java Persistence: Programming with Entities 131

11_785415 ch06.qxp 6/5/06 6:59 PM Page 131

Figure 6.2 An example of object-relational mapping.

Mapping objects to relational data can be done in two ways. You can either
handcraft this mapping in your code or use an object-relational mapping prod-
uct, such as Oracle TopLink, or open source tools, such as Hibernate, to auto-
mate or facilitate this mapping. These tools have become increasingly popular.
An automated mapper would create data definitions in the DDL (data defini-
tion language) of the target platform from either Java classes or from separate
mapping description. Handcrafted mappings using a database access API
such as JDBC are becoming less frequently used because the cost of develop-
ing and maintaining an object-relational mapping layer is significant.

The Sun Java Data Objects (JDO) specification, available as JSR 12 from the
Java Community Process (JCP) web site at www.jcp.org, defines portable APIs
to a persistence layer that is conceptually neutral to the database technology
used to support it. It can thus be implemented by vendors of relational and
object-oriented databases.

The new Java Persistence specification finally defines a standardized object-
relational mapping and requires compliant products to implement it. Because
it incorporates many proven concepts, there is now a broad industry consen-
sus on a portable programming model for persistent Java objects. We will
explore this standardized mapping in some detail in this chapter. The great

String accountID
String ownerName
double balance

Account Class

Relational Database

Ray Combs

accountID ownerName balance

1 1000

Bob Barker2 1500

Monty Haul3 2750

Account Table

accountID = 1
ownerName = Ray Combs
balance = 1000

Account Instance

132 Chapter 6

11_785415 ch06.qxp 6/5/06 6:59 PM Page 132

news is that this model, by combining the best features of its predecessor prod-
ucts and making use of Java metadata annotations, is both flexible, powerful,
and comparatively easy to use.

Now that we’ve set the scene for persistence mechanisms, let’s take a look at
how the new entity concept is used in EJB.

What Is an Entity?

In multi-tier enterprise applications you will typically find two different kinds
of objects:

■■ Application logic components. These components provide methods
that perform common tasks. Their tasks might include the following:

■■ Computing the price of an order

■■ Billing a customer’s credit card

■■ Computing the inverse of a matrix

Note that these components represent actions (they’re verbs). They are
well suited to handling business processes.

Session beans model these application logic components very well.
They often contain interesting algorithms and logic to perform applica-
tion tasks. Session beans represent work being performed for a user as a
session, which includes any workflow logic.

■■ Persistent data objects. These are objects that can be rendered into per-
sistent storage by a persistence mechanism. These kinds of objects rep-
resent data—simple or complex information that you’d like saved.
Examples here include:

■■ Bank account information, such as account number and balance

■■ Human resources data, such as names, departments, and salaries of
employees

■■ Lead-tracking information, such as names, addresses, and phone
numbers of prospective customers that you want to keep track of
over time

Note that these objects represent people, places, and things (they’re
nouns). They are well suited to handling long-lived business data.

Persistent objects are called entities in the new Java Persistence specification.
Entities are plain old Java objects (POJOs) that are persisted to durable storage,
such as a database or legacy system. Entities store data as fields, such as bank
account numbers and bank account balances. They also have methods associ-
ated with them, such as getAccountNumber() and getBalance(). For a
full discussion of when to (and when not to) use entities, see Chapter 13.

Java Persistence: Programming with Entities 133

11_785415 ch06.qxp 6/5/06 6:59 PM Page 133

You might question the need for such persistent data components. Why
should we deal with our business data as objects, rather than deal with raw
database data, such as relational rows? The answer is simple: It is handy to
treat data as objects because they can be easily handled and managed and
because they are represented in a compact manner. We can group related data
in a unified object and factor out common attributes in an inheritance hierar-
chy. We associate some simple methods with that data, such as compression or
other data-related activities.

Entities versus Session Beans
As already pointed out, entities are not EJBs and can be used even in J2SE envi-
ronments. It is still useful to draw a quick comparison between entities and
session beans to highlight some specifics. The big differences between session
beans and entities are that:

■■ Entities have a client-visible, persistent identity (the primary key) that is
distinct from their object reference.

■■ Entities have persistent, client-visible state.

■■ Entities are not remotely accessible.

■■ An entity’s lifetime may be completely independent of an application’s
lifetime.

Different entities can be distinguished by comparing their identities. Clients
can refer to individual entities by using that identity, pass it as a handle to
other applications, and thus share common entities with other clients. All this
is not possible with session beans.

On the other hand, session beans permit both local and remote clients, with
the container handling remote accesses. Entities are purely local objects and
cannot be directly accessed remotely.

Lifetime is another huge difference between session beans and entities. Enti-
ties can have a much longer life cycle than a client’s session, perhaps years
long, depending on how long the data sits in the database. In fact, the database
records representing an object could have existed before its owner even

134 Chapter 6

FOR THE RECORD: ENTITIES

When we talk about entities as a new concept in the rest of this chapter, we
always mean new as a programming concept for persistent objects. As a term
for modeling persistent data, “entity” has been used at least since 1976 when
Peter Chen proposed the classic Entity-Relationship Model (ERM) in one of the
most influential papers in computer science (Peter Chen, “The Entity-
Relationship Model – Toward a Unified View of Data,” ACM Transactions on
Database Systems, Vol. 1, No. 1, March 1976).

11_785415 ch06.qxp 6/5/06 6:59 PM Page 134

decided to go with a Java-based solution, because a database structure can be
language-independent. Likewise, that data may still be used when the owner
of the data has long moved away from Java to what may the hottest technol-
ogy in one or two decades from now. This makes sense—you definitely would
want your bank account to last for a few years, regardless of technology
changes at your bank.

Entities are not only longlasting; they survive critical failures, such as appli-
cation servers crashing, or even databases crashing. This is because entities are
just representations of data in a permanent, fault-tolerant, underlying storage.
If a machine crashes, the entity can be reconstructed in memory. All we need to
do is look it up again, which transparently instantiates an entity instance with
fields that contain the data read in from the database.

In summary, you should think of an entity as an in-memory Java represen-
tation of persistent data that:

■■ Is loaded from storage and has its field populated with the stored data

■■ Can be modified in-memory to change the values of data

■■ Can be saved back, thus updating the database data

Persistence Provider
In some ways, entities are analogous to serializable Java objects. Serializable
objects can be rendered into a bit-blob by the serialization mechanism and then
saved in a persistent store. The mechanism to transfer entity information back
and forth between the Java object and the database is implemented within
your persistence provider. The persistence provider is typically tailored to a rela-
tional database but could also use an object database. Which particular imple-
mentation is used is transparent to the entity. In fact, the Java Persistence
specification defines a Persistence Provider SPI to allow any conformant
provider implementation to be plugged into the application runtime. In a Java
EE environment, that is your container.

The persistence provider implementation worries about the proper time to
load and store your data. It also automatically figures out when each of your
instances needs to be refreshed, depending on the current transactional state
(see Chapter 10). You don’t have to worry about synchronizing your objects
with the underlying database: The persistence provider black box handles it
for you.

Entity Classes
Entities are similar to other EJB components in that they are implemented in a
plain Java class and can have metadata annotations or an XML deployment
descriptor. However, entities are not specific to EJB or even Java EE—the Java

Java Persistence: Programming with Entities 135

11_785415 ch06.qxp 6/5/06 6:59 PM Page 135

Persistence specification defined entities specifically so that they can be used
in both Java EE and J2SE environments.

It is about time we actually get to see an entity class. Source 6.1 shows a sim-
ple example.

package examples.entity.intro;

import java.io.Serializable;

import javax.persistence.Entity;

import javax.persistence.Id;

/**

* This demo entity represents a Bank Account.

* <p>

* The entity is not a remote object and can only be accessed locally by

* clients. However, it is made serializable so that instances can be

* passed by value to remote clients for local inspection.

* <p>

* Access to persistent state is by direct field access.

*/

@Entity

public class Account implements Serializable {

// The account number is the primary key

@Id

public int accountNumber;

public String ownerName;

public int balance;

/**

* Entities must have a public no-arg constructor

*/

public Account() {

// our own simple primary key generation

accountNumber = (int) System.nanoTime();

}

/**

* Deposit a given amount

* @param amount

*/

public void deposit(int amount) {

balance += amount;

}

/**

* Withdraw a given amount, or 0 if it is larger than the balance

Source 6.1 Account.java. (continued)

136 Chapter 6

11_785415 ch06.qxp 6/5/06 6:59 PM Page 136

* @param amount

* @return The amount that was withdrawn

*/

public int withdraw(int amount) {

if (amount > balance) {

return 0;

} else {

balance -= amount;

return amount;

}

}

}

Source 6.1 (continued)

A few things are worth pointing out here:

■■ The entity class is a plain Java class that does not extend any frame-
work classes or interfaces. It does not even have to implement
java.io.Serializable. In the example, the class implements
Serializable so that an entity instance can also be used as a simple
data record and transferred as an argument in remote invocations.
Remember that the entity itself does not provide a remote interface.

■■ The entity class maps to a data definition in a relational database
schema, that is, a relational table definition. At runtime, an entity
instance of that class will map to a row in that table. The Java Persis-
tence API defines a standardized mapping from entity classes to rela-
tional database tables and allows you to control this mapping through
annotations or XML descriptors.

In the example, the standard mapper would create a table ACCOUNT
with columns for all fields of the entity class.

■■ An entity must declare a primary key. We do this by marking the
accountNumber field with the @Id annotation. As a consequence, the
OR-mapper would define a primary key constraint for the mapped
ACCOUNTNUMBER column.

The primary key makes every entity different. In the example, if you
have one million bank account entity instances, each bank account
needs to have a unique ID (such as a bank account integer number) that
can never be repeated in any other bank account.

In some advanced cases, when the entity represents a complex relation-
ship, the primary key might be an entire object. The Java Persistence
API gives you the flexibility to define what your unique identifier is by

Java Persistence: Programming with Entities 137

11_785415 ch06.qxp 6/5/06 6:59 PM Page 137

including a primary key class with your entity. The rule is that your
primary key class must be public, have a public constructor, and be
serializable.

■■ Access to the entity’s persistent state is by direct field access. An entity’s
state can also be accessed using JavaBean-style set and get methods.
The persistence provider can determine which access style is used by
looking at how annotations are applied. In Source 6.1, the @Id annota-
tion is applied to a field, so we have field access.

■■ The entity can expose business methods, such as a method to decrease a
bank account balance, to manipulate or access that data. Like a session
bean class, an entity class can also declare some standard callback meth-
ods or a callback listener class. The persistence provider will call these
methods appropriately to manage the entity. We will see examples later.

Accessing Entities in the Persistence Context
Now that we have the Java code for an entity class, how do we actually use it
in an EJB environment? Since an entity cannot be accessed remotely, the only
option that we have is to deploy it locally and use it from either J2SE code out-
side a container, or from session or message-driven beans living in an EJB
container.

Either way, client code must first retrieve a particular entity instance from the
persistence context or create one and add it to the persistence context. The per-
sistence context is the connection between your in-memory instances and the
database. It is manipulated through a new API, the EntityManager interface.
Let’s look at an example (please note that we have omitted the bean’s Bank
interface for brevity here as it does not convey any additional information):

package examples.entity.intro;

import java.util.List;

import javax.ejb.Stateless;

import javax.ejb.Remote;

import javax.persistence.PersistenceContext;

import javax.persistence.EntityManager;

import javax.persistence.Query;

/**

* Stateless session bean facade for account entities,

* remotely accessible

*/

@Stateless

Source 6.2 BankBean.java. (continued)

138 Chapter 6

11_785415 ch06.qxp 6/5/06 6:59 PM Page 138

@Remote(Bank.class)

public class BankBean implements Bank {

/** the entity manager object, injected by the container */

@PersistenceContext

private EntityManager manager;

public List<Account> listAccounts() {

Query query = manager.createQuery(“SELECT a FROM Account a”);

return query.getResultList();

}

public Account openAccount(String ownerName) {

Account account = new Account();

account.ownerName = ownerName;

manager.persist(account);

return account;

}

public int getBalance(int accountNumber) {

Account account = manager.find(Account.class, accountNumber);

return account.balance;

}

public void deposit(int accountNumber, int amount) {

Account account = manager.find(Account.class, accountNumber);

account.deposit(amount);

}

public int withdraw(int accountNumber, int amount) {

Account account = manager.find(Account.class, accountNumber);

return account.withdraw(amount);

}

public void close(int accountNumber) {

Account account = manager.find(Account.class, accountNumber);

manager.remove(account);

}

}

Source 6.2 (continued)

Let’s first examine the openAccount() method: When a new account is
needed, we simply create a new instance. The new entity instance does not ini-
tially have a persistent identity and is not associated with the persistence con-
text. At this stage, the database knows nothing about the entity, and if we quit
the application at this stage, nothing will be written to the persistent storage.

Java Persistence: Programming with Entities 139

11_785415 ch06.qxp 6/5/06 6:59 PM Page 139

To add the new entity to the persistence context we need to call the Entity-
Manager’s persist() method. The entity is now scheduled for synchroniza-
tion with the database and will get written to disk when the transaction
commits. This state in the entity’s life cycle is called the managed state. The
entity will remain in the managed state until either the persistence context
ends or it is explicitly removed from that context.

In the example, we are using a stateless session bean without any additional
annotations for transaction management or persistence context lifetime, so the
following defaults apply:

■■ The persistence context lifetime has transaction scope, so the persistence
context ends when the transaction is committed or rolls back.

■■ Transaction management uses container-managed transactions with the
required transaction attribute (see Chapter 10 for details). This means
that any business method will get invoked by the container in the con-
text of a transaction (either an existing or a new one).

These two bullets imply that our persistence context ends when the method
returns because that is when the transaction ends. At this stage, the connection
between all managed entities and the entity manager is removed and the enti-
ties change to the detached state.

In the detached state, entity state is not synchronized with the database. So,
how do we change the account so that the database is actually updated? We
need to do two things: get a new persistence context, and transfer the entity to
the managed state again.

140 Chapter 6

PERSISTENCE CONTEXT TYPE

The persistence context that is associated with an entity manager can be one of
two types, which determines the lifetime of the context. These types are
transaction-scoped or extended. Within a Java EE container, the typical use for
transaction-scoped persistence contexts is with stateless session beans, and
extended persistence contexts are used from stateful session beans.

A transaction-scoped persistence context ends when the enclosing
transaction ends. At this point, all entities in the persistence context become
detached.

An extended persistence context ends when the enclosing stateful session
bean is removed by the container. The entities remain managed across several
invocations of the bean’s business methods and can be modified even outside
of transactions.

11_785415 ch06.qxp 6/5/06 6:59 PM Page 140

With the transaction-scoped persistence context lifetime in the example, a
new persistence context is set up in the entity manager every time an entity
manager operation is invoked and no persistence context exists. Our
BankBean looks up an account entity instance each time getBalance(),
deposit(), or withdraw() is called. This entity lookup is performed by
calling the find() method of the EntityManager instance, using the entity
class and the account number as arguments. Implicitly, the entity manager is
associated with a new persistence context each time.

Because we do not store a reference to an entity instance anywhere but look
them up each time, the entity that is found through the EntityManager is
already in the managed state. Any changes to the internal state of the entity are
synchronized with the database when the transaction is committed.

Extended Persistence Context

We will explain the entity life cycle in a little more detail in a minute, but let’s
first look at another example of accessing entities. In this example, we’ll use a
stateful session bean as a façade for the entity. This bean can keep the retrieved
account entity around in its internal session state and thus avoid the lookup
overhead on each access. Here is the example code, again omitting the bean’s
separate interface for brevity:

package examples.entity.intro;

import javax.ejb.Remote;

import javax.ejb.Stateful;

import javax.persistence.EntityManager;

import javax.persistence.PersistenceContext;

import javax.persistence.PersistenceContextType;

/**

* Stateful session bean facade for account entities, remotely

* accessible

*/

@Stateful

@Remote(AccountInterface.class)

public class AccountBean implements AccountInterface {

/** The entity manager, injected by the container */

@PersistenceContext(type=PersistenceContextType.EXTENDED,

unitName=”intro”)

private EntityManager manager;

private Account account = null;

public void open(int accountNumber) {

Java Persistence: Programming with Entities 141

11_785415 ch06.qxp 6/5/06 6:59 PM Page 141

account = manager.find(Account.class, accountNumber);

if (account == null) {

account = new Account();

account.ownerName = “anonymous”;

account.accountNumber = accountNumber;

manager.persist(account);

}

}

public int getBalance() {

if(account==null)

throw new IllegalStateException();

return account.balance;

}

public void deposit(int amount) {

if(account==null)

throw new IllegalStateException();

account.deposit(amount);

}

public int withdraw(int amount) {

if(account==null)

throw new IllegalStateException();

return account.withdraw(amount);

}

}

Note the use of the EXTENDED persistence context type that we declared on
the entity manager. Without this annotation, keeping the account entity
instance around in the session state would be pointless: the entity would be
detached every time the persistence context ends and need to be reattached (or
merged) into a new persistence context for each new access.

With the extended persistence context type, the entity stays managed
because the persistence context spans multiple transactions and ends only
when the bean is removed. Hence, the individual methods in the example do
not need to retrieve the account entity each time using the EntityMan-
ager.find() method but simply check that the account has been obtained at
all in the session. If not, an IllegalStateException is raised.

Which kind of session bean and persistence context is more suitable depends
on the expected usage of the entity data: If clients retrieve multiple entities and
then interact with that same set of entities through a number of invocations, it
may be better to hold onto these instances in a stateful session bean. If a single
client always only accesses an entity once, then there is no need to build up
client state, and a stateless session bean would be more suitable.

142 Chapter 6

11_785415 ch06.qxp 6/5/06 6:59 PM Page 142

Packaging and Deploying Entity Classes
Entity classes are packaged and deployed in persistence units. A persistence
unit is a logical grouping of entity classes, mapping metadata, and database-
related configuration data.

A persistence unit is defined in a special descriptor file, the persis-
tence.xml file, which is simply added to the META-INF directory of an arbi-
trary archive, such as an Ejb-jar, .ear, or .war file, or in a plain .jar file.
Without a persistence.xml file somewhere in an application, there will be
no persistence units, and without at least one persistence unit no entity man-
ager can be obtained and used.

Here’s the simplest possible example of a persistence.xml file:

<?xml version=”1.0” encoding=”UTF-8”?>

<persistence xmlns=”http://java.sun.com/xml/ns/persistence”>

<persistence-unit name=”intro”/>

</persistence>

At a minimum, we must provide one persistence-unit element
together with a name attribute as a child of the persistence element. The
persistence.xml file may contain more than one persistence unit defini-
tion, but if there is only one visible in the application, it need not be referenced
explicitly in the unitName field of the @PersistenceContext annotation.
If the persistence.xml file does not list any entity classes explicitly, all
entity classes contained in the same archive as the persistence.xml file
will be considered members of the persistence unit.

The persistence-unit element has a few other possible attributes and
child elements. These are all optional, however, if the defaults are okay. These are:

<description> An optional text.

<provider> Fully qualified class name of the persistence provider’s
implementation of the SPI class javax.persistence. spi.Persis-
tenceProvider. The <provider> element must be present in a J2SE
environment, or when provider-specific behavior is required by the
application.

<transaction-type> An attribute of the <persistence-unit> ele-
ment. The value of this element is either JTA or RESOURCE_LOCAL.
JTA is the default.

<jta-data-source>, <non-jta-data-source> Specifies the JNDI
name of the data source that is to be used by the persistence provider. If
undefined, it must be defined by the deployer, or the contained must
provide a default.

Java Persistence: Programming with Entities 143

11_785415 ch06.qxp 6/5/06 6:59 PM Page 143

<mapping-file> OR-mapping information for the entity classes in the
persistence unit can be taken from class annotations, but it may also be
specified in an XML mapping file called orm.xml in the same META-
INF directory where the persistence.xml file is located. The <map-
ping-file> element can list one or more alternative or additional XML
mapping files to be used for OR mapping.

The mapping files explicitly list entity classes. These will be available in
the persistence unit.

<jar-file>, <class> These elements list the archives to search for
entity classes (or the entity classes themselves) that are available in the
persistence unit.

<exclude-unlisted-classes> If this element is present, only the
entity classes or archives that are explicitly listed using the <mapping-
file>, <jar-file>, or <class> elements will be available in the
persistence unit.

<properties> Vendor-specific configuration properties for the persis-
tence unit. If there are properties that are not recognized by the persis-
tence provider, they must be ignored.

The EntityManager API

As we showed earlier in this chapter, the EntityManager is the interface that
lets you access the entities in your application’s persistence context. Within a
persistence context, all entity identities are unique and map to a single entity
instance. This section will provide more details on the EntityManager API, the
entity life cycle, and query facilities.

There are two options for client code that needs to use an EntityManager:

■■ With a container-managed EntityManager, the container runtime is
responsible for determining and providing the EntityManager for an
application. The container injects the EntityManager, as shown in our
simple example when we used the @PersistenceContext annota-
tion on the manager field. Alternatively, an EntityManager can also be
obtained from the SessionContext using its lookup() method.

■■ With an application-managed EntityManager, the application is responsi-
ble for creating an EntityManager instance itself. This is done using an
EntityManagerFactory interface.

The complete EntityManager API provides methods for three different
kinds of operations:

144 Chapter 6

11_785415 ch06.qxp 6/5/06 6:59 PM Page 144

■■ Entity life-cycle management

■■ Database synchronization operations

■■ Entity lookup and queries

Let’s look at each of these in turn.

Entity Life Cycle
The life of an entity instance has two main aspects: its relationship to a specific
persistence context, and the synchronization of its state with the database. The
EntityManager distinguishes between four states in the life cycle of an entity:

■■ new. The entity instance was created in memory, but is not yet associ-
ated with either a persistent identity in the database or a persistence
context. This is the state that our Account entity was in right after cre-
ation. Changes in the entity state are not synchronized with the data-
base at this stage.

■■ managed. The entity has a persistent identity in the database and is cur-
rently associated with a persistence context. Our Account entity was in
the managed state after the persist() method was called. Changes to
the entity will be synchronized with the database when transactions are
committed or when synchronization is explicitly triggered using the
flush() operation.

■■ detached. The entity does have a persistent identity but is not or is no
longer associated with the persistence context.

■■ removed. The entity is currently associated with a persistence context
but has been scheduled for removal from the database.

Figure 6.3 shows these four states and the transitions between them as
EntityManager operations are called.

Figure 6.3 Entity life cycle.

detached

new

removedmanaged

refresh()

remove()

persist()

remove()

merge()

Persistence
context

ends

persist()

new()

Java Persistence: Programming with Entities 145

11_785415 ch06.qxp 6/5/06 6:59 PM Page 145

Here’s the relevant part of the EntityManager API:

package javax.persistence;

public interface EntityManager {

/** Make a new instance managed and persistent. */

public void persist(Object entity);

/** Merge the state of the given entity into the current

persistence context. */

public <T> T merge(T entity);

/** Remove the instance from the database. */

public void remove(Object entity);

/** Check if the instance is managed in the current persistence

context. */

public boolean contains(Object entity);

// cont’d...

}

To destroy an entity’s data in the database, the client must call remove().
Note that remove() does not mean the in-memory entity instance is actually
going to be destroyed; remove() schedules only database data for removal.
The remove() operation ignores entities that are new or already removed,
and only works on managed entities. Calling remove() on a detached entity
will raise an IllegalArgumentException. The actual deletion from the
database happens when the transaction is committed, or when flush() is
called. Database synchronization is explained in more detail below.

The merge() operation allows you to bring detached entities back to the
persistence context. Remember that entities are detached when the persistence
context ends. In the stateless session bean example, this happens whenever a
business method returns. Entities also get detached when they are delivered to
clients as serializable objects.

Let’s quickly reexamine the first example’s openAccount() method:

public Account openAccount(String ownerName) {

Account account = new Account();

account.ownerName = ownerName;

manager.persist(account);

return account;

}

The entity that is returned from the method is detached from the persistence
context. A client of our BankBean could now locally change that Account
entity, but that would not result in any database updates. To persist those
changes, we would need to merge the entity back and make it managed again.

146 Chapter 6

11_785415 ch06.qxp 6/5/06 6:59 PM Page 146

This can be done simply by allowing the client to pass that entity back, and by
calling merge() on our entity manager.

Here’s an additional business method for our BankBean that does just that:

public void update(Account detachedAccount) {

Account managedAccount = manager.merge(detachedAccount);

}

Note that the merge() operation returns a managed entity. The entity man-
agedAccount is a different entity instance than the argument detached
Account in all cases where detachedAccount is not already a managed entity.

Life-Cycle Callbacks

Just as with EJBs, we can define life-cycle callbacks for entities that get invoked
when the entity makes a transition to another life-cycle stage. Bear in mind,
however, that this does not mean that entities are EJBs: These callbacks are not
invoked by the EJB container but rather by the persistence provider.

The Java Persistence API specification defines the following life-cycle events
for entities:

■■ PrePersist

■■ PostPersist

■■ PreRemove

■■ PostRemove

■■ PreUpdate

■■ PostUpdate

■■ PostLoad

To designate a callback method for any of the events, we simply apply the
appropriate annotation to a method. For example, to react when an entity is
persisted, we could use the @PrePersist annotation on a new method in the
entity class Account:

@PrePersist

void prePersist() {

System.out.println(“prePersist called!”);

}

Rather than annotating the entity methods with these life-cycle annotations,
we can define a separate listener class for life-cycle events on Account
entities. To declare that separate class as the entity class’s listener, the follow-
ing annotation would be used on the Account class:

Java Persistence: Programming with Entities 147

11_785415 ch06.qxp 6/5/06 6:59 PM Page 147

@Entity

@EntityListeners(AccountListener.class)

public class Account ...

Finally, here’s the prePersist() callback method in the AccountLis-
tener class:

@PrePersist

void prePersist(Account a) {

System.out.println(“pre persist “ + a);

}

Note the difference in the method signature: Unlike the callback method in
the entity class, the callback method in the listener class takes an entity argu-
ment. When invoked, this argument will be set to the entity that triggered the
life-cycle event.

Database Synchronization
Updates to local entities are generally synchronized with the underlying data-
base at transaction commit time. However, it is sometimes important to syn-
chronize even before the transaction is committed. For example, when entity
state changes have been made, these might influence the result of a query in
the same transaction. In this case, it may be necessary to enforce synchroniza-
tion before the query is executed.

This is controlled by setting the flush mode. The flush mode can be set on spe-
cific methods or fields using metadata annotations, or globally on the persis-
tence context using the setFlushMode() operation. The available options
are COMMIT for synchronization at commit time only, or AUTO for synchro-
nization of state at both commit time and before query execution.

The flush() operation enforces synchronization of the state of all entities
in the persistence context but does not involve a refresh of state from the data-
base. To refresh, the refresh() operation must be invoked explicitly.

Here are the relevant operations in the EntityManager’s interface:

public interface EntityManager {

/** Synchronize the persistence context to the underlying

database. */

public void flush();

/** Set the flush mode that applies to all objects contained

in the persistence context. */

public void setFlushMode(FlushModeType flushMode);

/** Get the flush mode that applies to all objects contained

148 Chapter 6

11_785415 ch06.qxp 6/5/06 6:59 PM Page 148

in the persistence context. */

public FlushModeType getFlushMode();

/** Refresh the state of the instance from the database,

overwriting changes made to the entity, if any. */

public void refresh(Object entity);

// to be cont’d...

}

Direct Entity Data Manipulation

Usually you will create, destroy, and find entity data by using the entity man-
ager. But you can interact with entities another way, too: by directly modifying
the underlying database where the data is stored. For example, if your entity
instances are being mapped to a relational database, you can simply delete the
rows of the database corresponding to an entity instance (see Figure 6.4). You
can also create new entity data and modify existing data by directly touching
the database. A situation like this might arise if you have to share the data with
an existing system that touches a database directly.

This raises another important question: What happens if two applications
concurrently access the same entity data?

Figure 6.4 Modifying an entity’s database representation directly.

Exisiting App

Entity Date

Relational Database

Direct Database ModificationsDirect Database Modifications

Entity

Persistence Provider

O/R MappingO/R Mapping

Java Persistence: Programming with Entities 149

11_785415 ch06.qxp 6/5/06 6:59 PM Page 149

Concurrent Access and Locking

Concurrent access to data in the database is always protected by transaction iso-
lation, so you need not design additional concurrency controls to protect your
data in your applications if transactions are used appropriately. Unless you
make specific provisions, your entities will be protected by container-managed
transactions using the isolation levels that are configured for your persistence
provider and/or EJB container’s transaction service.

However, it is important to understand the concurrency control require-
ments and semantics of your applications. We discuss transactions and their
different isolation levels in detail in Chapter 10 and strongly recommend that
you make yourself familiar with this subject if there is the slightest chance that
your entity data may be accessed from concurrently executing transactions.

Making the right decisions and assumptions has bearings on the overall per-
formance of your application: setting the maximum transaction isolation level
(SERIALIZABLE) may degrade performance and even lead to deadlock situa-
tions, whereas insufficient isolation (e.g., READ UNCOMMITTED isolation) may
lead to inconsistent data and incorrect application behavior.

The Java Persistence specification defines two important features that can be
tuned for entities that are accessed concurrently:

■■ Optimistic locking using a version attribute

■■ Explicit read and write locks

Optimistic locking is actually a misnomer as it means that data is not locked
for concurrency control at all. Rather, applications are free to access and
update data any time. Potential write conflicts that are due to concurrent mod-
ifications of the same data are not detected until transaction commit time. At
this stage, the first transaction is allowed to commit, and subsequent transac-
tions that are in conflict with the first one are simply rolled back.

This behavior is appropriate if conflicts are rare because it imposes minimal
overhead on those accesses that don’t conflict, and it allows for a high degree
of concurrency that will be required for scalable applications. On the down-
side, applications need to handle those cases where conflicts do occur. Note
that optimistic locking does not rule out nonrepeatable reads. Only updates
that are based on state obtained from a nonrepeatable read would be detected.

NOTE This behavior may sound familiar to you if you are using a source code
version control systems like CVS or Subversion, which are based on the same
principle: Let users work on their own copy of the data and write to the
repository whenever they want. Conflicts are not excluded a priori by locking
source files but detected later. If there are conflicts, let users deal with them,
that is, manually merge conflicting regions of source code. The larger the code
base and the size of your team, the more likely you are using this strategy.

150 Chapter 6

11_785415 ch06.qxp 6/5/06 6:59 PM Page 150

The Java Persistence specification assumes that the transaction isolation
level is configured no higher than READ COMMITTED by default, and that write
operations to the database may be deferred until transaction commit time. In
such a setting, read data is not guaranteed nor required to be consistent. (In a
minute we’ll discuss how you can get these consistency guarantees if you need
them.) But how do you detect when a conflicting write operation is being com-
mitted, or if a detached entity is being merged back in whose persistent state
was updated in the meantime? If optimistic locking is to be offered in a portable
way, there must be a mechanism for conflict detection that is vendor-neutral.

The solution is a version attribute for those entities that want to use opti-
mistic locking. This attribute is not added automatically by the persistence
provider to your entity tables because you may either not care for this service,
or you may prefer to obtain it in a vendor-specific way from your persistence
provider. In a portable application, however, you must mark an attribute using
the @Version annotation in each entity class that you wish to enable for opti-
mistic locking control.

In the Account example, we could add the following line of code:

@Entity

public class Account implements Serializable {

@Version

public int version;

// ...

The persistence provider will then check the @Version attribute to detect
concurrent modifications and increment it each time an update occurs. This
way, it can detect that an update is based on stale data. The type of the @Ver-
sion attribute must be one of int, java.lang.Integer, short,
java.lang.Short, long, java.lang.Long, java.sql.Timestamp.
Note that you should never explicitly modify this attribute yourself because
that might lead to undefined behavior.

As we said earlier, optimistic locking actually does not lock any data at all
and only detects conflicts when data is eventually written to the database. It
does not prevent nonrepeatable or phantom reads. If this is not sufficient for
your application, you have two options:

■■ You can globally set a stricter transaction isolation level that provides
stronger consistency guarantees than optimistic locking. This, however,
reduces concurrency and increases the concurrency control overhead
incurred by database operations

■■ You may use application-level locks in those places where stricter con-
sistency is required. This option is harder to get right, but it preserves
the performance and scalability advantages of optimistic locking.

Java Persistence: Programming with Entities 151

11_785415 ch06.qxp 6/5/06 6:59 PM Page 151

The locks supported by the EntityManager API have two modes: READ and
WRITE. They can be set on individual, versioned entities using the EntityMan-
ager’s lock() method like this:

manager.lock(account, LockMode.WRITE);

Both kinds of locks, when set on an entity, prevent dirty and nonrepeatable
reads of that entity’s data. Figure 6.5 shows a dirty read problem:

In Figure 6.5, T2 will see an uncommitted, dirty read if the transaction isola-
tion is READ UNCOMMITTED and no locks are set. T2 sees the account.bal-
ance value after T1 has withdrawn the amount, but before the transaction is
caused to roll back by the exception, so the account balance that is printed out
is $100,000 lower than its actual value. This situation would have been
avoided if the account entity had first been locked by T2.

Figure 6.6 shows an unrepeatable read, again in T2.
In Figure 6.6, the number of results that the query produces in T2 is different

each time. This is due to the concurrent modification in T1, which reduces the
number of accounts that meet the search criterion. T2 sees these changes even
if the isolation level is READ COMMITTED because T1 does in fact commit its
changes. The only way that this problem can be prevented is if T1 first acquires
a write lock on the entity.

The difference between read and write lock semantics is that calling the
EntityManager.lock(account, LockMode.WRITE) forces an update of
the version attribute for the account entity.

Figure 6.5 Dirty read in transaction T2.

T1 T2

account=
 manager.find(Account.class, 1234);

//update
account.withdraw(100,000);
manager.flush()

// find and read data
account =
 manager.find(Account.class, 1234);

System.out.printIn(account.balance);

// trigger rollback
throw new RuntimeException();

152 Chapter 6

11_785415 ch06.qxp 6/5/06 6:59 PM Page 152

Figure 6.6 Unrepeatable Read in T2.

Entity Lookup and Query API

You’ll rarely start your applications by creating completely new entities from
scratch and feeding these into a database. In most cases, there will be preexist-
ing data that you want to access in entities. To identify that data before we can
reference it as entity instances, we need to either directly address individual
data items using a primary key, or execute a query that returns a set of data
based on the query conditions that we provide.

The EntityManager provides the find() operation to address data using
primary keys. It will return a managed entity of the correct entity class when it
can determine that the provided primary key belongs to that entity calls and
points to a data item of that class in the database. Otherwise, it will return null.

Here’s the signature of the find() operation. You already saw it in action
in our stateless session bean example above.

/** Find by primary key. */

public <T> T find(Class<T> entityClass, Object primaryKey);

Finding a single entity by its primary key is straightforward, but in many
situations we either don’t know the primary key, or we need more than one
result, or need to specify one or more search conditions. In all these cases, we
would want to formulate a query. There are a number of options that we have
for creating queries using the EntityManager API, but the general steps are
always the same:

■■ Obtain an instance of javax.persistence.Query from the
EntityManager

■■ Customize the query object, if necessary, by setting query parameters or
an upper limit for the result set size

■■ Execute the query

T1 T2

account=
 manager.find(Account.class, 1234);

account.withdraw(100,000);

Query query = manager.createQuery(
 “SELECT a FROM Account a
 WHERE a.balance > 1000”);

System.out.printIn(”Got” +
 query.getResultList().size() + “
 records.”);

// ...

System.out.printIn(”Got” +
 query.getResultList().size() + “
 records.”);

Java Persistence: Programming with Entities 153

11_785415 ch06.qxp 6/5/06 6:59 PM Page 153

The first step is done using the EntityManager, while the last two steps use
the Query interface.

The EntityManager lets us choose between queries written in EJB-QL or
native SQL. EJB-QL is an object query language that is syntactically very simi-
lar to SQL. It is explained in more detail in Chapter 9 and in Appendix D. For
the moment, the most important difference between EJB-QL and SQL is that
EJB-QL uses entities for its data model and is guaranteed to be completely
portable across databases. Although an ISO standard, SQL is often not
portable in practice because of the various vendor-specific extras and different
SQL dialects that exist.

The two EntityManager operations for creating queries in EJB-QL or SQL
are the following:

/** Create a Query for executing an EJB QL statement. */

public Query createQuery(String ejbqlString);

/** Create a Query for executing a native SQL statement. */

public Query createNativeQuery(String sqlString);

Here is an example of a simple EJB-QL query that returns all Account enti-
ties in the database:

public List<Account> listAccounts() {

Query query = manager.createQuery(“SELECT a FROM Account a”);

return query.getResultList();

}

Because native queries may return data other than entities, there are a num-
ber of overloaded variants of createNativeQuery() that can be used to
map SQL result data to entities:

public Query createNativeQuery(String sqlString, Class resultClass);

public Query createNativeQuery(String sqlString,

String resultSetMapping);

Named Queries

The queries that we get with these operations are called dynamic queries
because their construction happens at runtime when the calling code is actu-
ally executed. These queries are defined by the entity provider and only used
by that code. In cases where a single query is used throughout the whole per-
sistence unit or where it must be possible for the deployer or administrator to
change the query, we need to use static or named queries.

154 Chapter 6

11_785415 ch06.qxp 6/5/06 6:59 PM Page 154

The EntityManager operation to create a query object from an external,
named query string is the following:

/** Create a named query (in EJB QL or native SQL) */

public Query createNamedQuery(String name);

This operation requires that a named query already be defined, and it could
be used in our listAccounts() method like this:

public List<Account> listAccounts() {

Query query = manager.createNamedQuery(“findThem”);

return query.getResultList();

}

In this example, the EntityManager will simply look up the definition of the
query that was defined under the given name “findThem” and return it as a
new Query object.

Finally, here’s an example definition for the “findThem” query that was
defined using the @NamedQuery annotation on the entity class:

@Entity

@NamedQuery(name=”findThem”, queryString=”SELECT a FROM Account a”)

public class Account implements Serializable {...}

Summary

In this chapter, we’ve taken the first steps toward developing with the new
Java Persistence API. We started by discussing persistence mechanisms and
object/relational mapping. We then looked at what an entity is (and what it is
not), and explained entity classes, their annotations, persistence contexts, and
deployment. We also covered entity life cycles, the EntityManager API, con-
currency issues, and queries.

But there is more to come on entities. In Chapter 9, you’ll learn more about
advanced OR mapping, relationships, and inheritance. Chapter 10 provides
more background on transactions. By the time you’re through, you’ll be armed
to create your own entities in enterprise deployments.

Java Persistence: Programming with Entities 155

11_785415 ch06.qxp 6/5/06 6:59 PM Page 155

11_785415 ch06.qxp 6/5/06 6:59 PM Page 156

157

In this chapter you will learn how EJB supports messaging, which is a light-
weight vehicle for communications. Messaging is more appropriate than syn-
chronous invocations in certain scenarios. You’ll look at message-driven beans,
special beans that can be accessed via messaging.

Specifically, you’ll learn:

■■ How to implement messaging, including an overview of asynchronous
behavior and message-oriented middleware (MOM)

■■ How to use the Java Message Service (JMS), the underlying MOM
framework for JMS-based message-driven beans

■■ What the features of message-driven beans are and how message-
driven beans compare with entity and session beans

■■ How to develop message-driven beans, including advanced topics such
as gotchas and possible solutions

Motivations for Messaging

In previous chapters, you learned how to code session and entity beans—dis-
tributed components that are accessed using RMI-IIOP. RMI-IIOP is a tradi-
tional, heavyweight way to call components, and it is appropriate in most

Introduction to
Message-Driven Beans

C H A P T E R

7

12_785415 ch07.qxp 6/5/06 7:00 PM Page 157

settings. However, several areas are challenging for RMI-IIOP. Here are just
four examples:

Asynchrony. A typical RMI-IIOP client must wait (or block) while the
server performs its processing. Only when the server completes its work
does the client receive a return result, which enables it to continue pro-
cessing.

Decoupling. An RMI-IIOP client has to know the individual servers it
wants to use. The client directly addresses them in its communications
using object references. The client and servers are closely coupled—you
cannot simply remove a server from the system without directly impact-
ing the clients.

Reliability. When an RMI-IIOP client calls the server, the latter has to be
running. If the server crashes or the network crashes, data may be lost
and the client cannot perform its intended operation.

Support for multiple senders and receivers. RMI-IIOP limits you to a sin-
gle client talking to a single server at any given time. There is no built-in
functionality for multiple clients to broadcast events to multiple servers.

Messaging is an alternative to remote method invocations (see Figure 7.1).
The idea behind messaging is that a middleman sits between the client and the
server. (As you know, a layer of indirection solves every problem in computer
science.) This middleman receives messages from one or more message produc-
ers and broadcasts those messages to one or more message consumers. Because
of this middleman, the producer can send a message and then continue pro-
cessing. He can optionally be notified of the response later when the consumer
finishes. This is called asynchronous programming

Figure 7.1 Remote method invocations versus messaging.

Application

Message
Middleware

Application Application

Application

Remote Method Invocations:

Messaging:

158 Chapter 7

12_785415 ch07.qxp 6/5/06 7:00 PM Page 158

Messaging addresses the four previous concerns with RMI-IIOP as follows:

Nonblocking request processing. A messaging client does not need to
block when executing a request. As an example, when you purchase a
book using the Amazon.com’s one-click order functionality, you can con-
tinue browsing the site without waiting to see if your credit card is
authorized. Unless something goes wrong, Amazon.com sends you a
confirmation e-mail afterward. This type of fire-and-forget system can
be coded using messaging. When the user clicks to buy the book, a mes-
sage is sent that results in credit card processing later. The user can con-
tinue to browse.

Decoupling. In a message-oriented middleware system, the message
sender does not need to know the message receivers; it only addresses
the messaging system when sending messages. Message senders are
thus decoupled from consumers and continue to work regardless of
changes to consumers.

Reliability. If your message-oriented middleware supports guaranteed
delivery, you can send a message and know for sure that it will reach its
destination, even if the consumer is temporarily not available. You send
the message to the MOM middleman, which routes the message to the
consumer when he comes back alive. With RMI-IIOP, this is not possible
because there is no middleman. If the server is down, an exception is
thrown.

Support for multiple senders and receivers. Most message-oriented mid-
dleware products can accept messages from many senders and broad-
cast them to many receivers. This enables you to have multinary
communications.

Note that messaging also has many disadvantages. Performance, for one,
can be slower in many circumstances due to the overhead of having the mes-
saging middleman. For a complete comparison of when to (and when not to)
use messaging, see Chapter 13.

Message-oriented middleware (MOM) is a term used to refer to any infrastruc-
ture that supports messaging. A variety of products are considered to have a
MOM-based architecture. Examples include Tibco Rendezvous, IBM Web-
Sphere MQ, BEA Tuxedo/Q, Sun Java System Messaging Server, Microsoft
MSMQ, Sonic Software SonicMQ, and FioranoMQ. These products can give
you a whole host of value-added services, such as guaranteed message deliv-
ery, fault tolerance, load balancing of destinations, subscriber throttling of
message consumption, inactive subscribers, support for SOAP over JMS, and
much, much more. By allowing the MOM server to address these infrastruc-
ture issues, you can focus on the business task at hand.

Introduction to Message-Driven Beans 159

12_785415 ch07.qxp 6/5/06 7:00 PM Page 159

The Java Message Service (JMS)

Over the years, MOM systems have evolved in a proprietary way. Each prod-
uct has its own API, which creates vendor lock-in because code is not portable
to other messaging systems. It also hurts developers, because they need to
relearn each messaging product’s proprietary API.

The Java Message Service (JMS) is a messaging standard, designed to elimi-
nate many of the disadvantages that MOM-based products faced over past
years. JMS has two parts: an API, for which you write code to send and receive
messages, and a Service Provider Interface (SPI) where you plug in JMS
providers. A JMS provider knows how to talk to a specific MOM implementa-
tion. The JMS promise is that you can learn the JMS API once and reuse your
messaging code with different plug-and-play MOM implementations (an idea
similar to the other J2EE APIs, such as JNDI or JDBC).

Let’s explore the JMS API and see how to write a simple JMS program that
publishes messages.

160 Chapter 7

HOW DOES GUARANTEED MESSAGE DELIVERY WORK?

With guaranteed message delivery, the MOM system persists your messages to
a file, database, or other store. Your message resides in the persistent store
until it’s sent to a message consumer, and the message consumer
acknowledges the consumption of the message. If the acknowledgment of a
message is not received in a reasonable amount of time, the message remains
on the persistent store and is redelivered.

This feature is beneficial when the message consumer is brought down on a
regular basis for maintenance, and lost messages are unacceptable. This is
especially true in industries such as financial services, where messages
represent securities changing hands.

A variation on the guaranteed message delivery theme is certified message
delivery. Certified message delivery not only ensures the delivery of a message
from a producer to a consumer but also generates a consumption receipt that
is delivered to the message originator, indicating a successful consumption of
the message. Certified message delivery is used by producers to better manage
communication with consumers.

Another variation of guaranteed message delivery is called store and forward.
Store and forward enables a message producer to successfully send a message
to an inactive MOM system. The producer transparently spools the message to a
local store until the MOM system is reactivated, at which point the message is
delivered to the MOM system and forwarded to any available consumers.
Guaranteed message delivery without the store-and-forward option requires
producers to send messages to active MOM systems, but consumers do not have
to be active. Store and forward with guaranteed message delivery allows
messages to be sent whether MOM systems or consumers are active or inactive.

12_785415 ch07.qxp 6/5/06 7:00 PM Page 160

Messaging Domains
When you perform messaging, you first need to decide on a messaging style
or domain. The types of domains are:

Publish/subscribe (pub/sub). Publish/subscribe messaging is analogous
to watching television: Many TV stations broadcast their signals, and
many people listen to those broadcasts. Thus, with publish/subscribe,
you can have many message producers talking to many message con-
sumers. In this sense, the pub/sub domain is an implementation of a
distributed event-driven processing model. Subscribers (listeners) regis-
ter their interest in a particular event topic. Publishers (event sources)
create messages (events) that are distributed to all of the subscribers (lis-
teners). Producers aren’t hard-coded to know the specific consumers
interested in receiving its messages; rather, the MOM system maintains
the subscriber list.

Point-to-point (PTP). Point-to-point messaging is analogous to placing an
order in an online store: Some person will pick up your order, carry it
out, and then delete it. Thus, with point-to-point, you can have only a
single consumer for each message. Multiple consumers can grab mes-
sages off the queue, but any given message is consumed exactly once. In
this sense, point-to-point is a special case of publish/subscribe. Multiple
producers can send messages to the queue, but each message is deliv-
ered only to a single consumer. The way this works is that publishers
send messages directly to the consumer or to a centralized queue. Mes-
sages are typically distributed off the queue in a first in, first out (FIFO)
order, but this isn’t ensured.

Figure 7.2 shows the difference between publish/subscribe and point-to-
point.

NOTE Another domain called request/reply is less broadly used than the
others. The request/reply domain is analogous to RMI-IIOP. It requires any
producer that generates a message to receive a reply message from the
consumer at some later point in time. Typically, most MOM architectures
implement a request/reply paradigm asynchronously using the technologies
supplied in the point-to-point and publish/subscribe domains.

Introduction to Message-Driven Beans 161

12_785415 ch07.qxp 6/5/06 7:00 PM Page 161

Figure 7.2 Publish/subscribe versus point-to-point.

The JMS API
Using the JMS API is more involved than RMI-IIOP: You need to become
familiar with a few different interfaces to get going. Low-level topology issues,
such as networking protocol, message format and structure, and server loca-
tion, are mostly abstracted from the developer.

The JMS programming model is shown in Figure 7.3. It is explained in the
list that follows:

Publish/Subscribe:

Topic

Producer 1 Consumer 1

Producer 2 Consumer 2

Point-to-Point:

Queue

Producer 1

Consumer 1

Producer 2

162 Chapter 7

12_785415 ch07.qxp 6/5/06 7:00 PM Page 162

Figure 7.3 Client view of a JMS system.

1. Locate the JMS Provider’s ConnectionFactory instance. You first
need to get access to the JMS provider of the particular MOM product
you’re using. For this, you need to establish a connection using a
ConnectionFactory instance. You can get hold of Connection
Factory by looking it up in JNDI. An administrator will typically create
and configure the ConnectionFactory for the JMS client’s use.

2. Create a JMS connection. A JMS Connection is an active connection
to the JMS provider, managing the low-level network communications
(similar to a JDBC connection). You use the ConnectionFactory to
get a Connection. If you’re in a large deployment, this connection
might be load balanced across a group of machines.

JMS Server

Queue1

Queue2

Topic1

Serialized
Message

Communication

Naming Service
Such as LDAP

1: Retrieve
JMS Driver
(Connection
Factory)

Client

JMS Connection
Factory

JMS Connection

3: Create
Session

4: Lookup
JMS Destination

JNDI

5: Create
Producer
or Consumer

JMS Producer
or

JMS Consumer

6: Send or
Receive
Message

JMS Session

2: Create
Connection

JMS Driver Client Runtime

Introduction to Message-Driven Beans 163

12_785415 ch07.qxp 6/5/06 7:00 PM Page 163

3. Create a JMS session. A JMS Session is a helper object that you use
when sending and receiving messages. It serves as a factory for mes-
sage consumers and producers, and also enables you to encapsulate
your messages in transactions. You use the Connection to get a
Session.

4. Locate the JMS destination. A JMS Destination is the channel to
which you’re sending or from which you’re receiving messages. Locat-
ing the right destination is analogous to tuning into the right channel
when watching television or answering the correct phone, so that you
get the messages you desire. Your deployer typically sets up the desti-
nation in advance by using your JMS provider’s tools, so that the desti-
nation is permanently set up. Your code looks up that destination using
JNDI. This enables your programs to use the destination over and over
again at runtime.

5. Create a JMS producer or a JMS consumer. If you want to send mes-
sages, you need to call a JMS object to pass it your messages. This object
is called producer. To receive messages, you call a JMS object and ask it
for a message. This object is called the Consumer object. You use the
Session and Destination to get ahold of a producer or a consumer
object.

6. Send or receive your message. If you’re producing, you first need to
put your message together. There are many different types of messages,
such as text, bytes, streams, objects, and maps. After you instantiate
your message, you send it using the Producer object. If, on the other
hand, you’re receiving messages, you first receive a message using the
Consumer object, and then crack it open (depending on the message
type) and see what is in it.

Everything we just learned applies to both publish/subscribe and point-to-
point messaging. The words in monofont in the preceding process represent
actual JMS interface names. There are two different flavors of those interfaces,
and the flavor you use depends on if you’re using publish/subscribe or point-
to-point. See Table 7.1 for a list.

NOTE As you can see from Table 7.1, point-to-point has two types of message
consumers: a receiver and a browser. What do you think these are for? And why
does publish/subscribe have only one type of consumer?

164 Chapter 7

12_785415 ch07.qxp 6/5/06 7:00 PM Page 164

Table 7.1 The Two Flavors of JMS Interfaces

PARENT INTERFACE POINT-TO-POINT PUB/SUB

ConnectionFactory QueueConnection TopicConnection
Factory Factory

Connection QueueConnection TopicConnection

Destination Queue Topic

Session QueueSession TopicSession

MessageProducer QueueSender TopicPublisher

MessageConsumer QueueReceiver, TopicSubscriber
QueueBrowser

As an example, the code for a client application that publishes a Text
Message to a topic using publish/subscribe is provided in Source 7.1.

package examples.messaging;

import javax.jms.*;

import javax.naming.InitialContext;

public class LogClient {

public static void main(String[] args) throws Exception {

// Initialize JNDI

InitialContext ctx = new InitialContext(System.getProperties());

// 1: Lookup connection factory

TopicConnectionFactory factory =

(TopicConnectionFactory) ctx.lookup

(“jms/TopicConnectionFactory”);

// 2: Use connection factory to create JMS connection

TopicConnection connection = factory.createTopicConnection();

// 3: Use connection to create a session

TopicSession session =

connection.createTopicSession

(false,Session.AUTO_ACKNOWLEDGE);

// 4: Lookup destination

Topic topic = (Topic)ctx.lookup(“jms/Topic”);

// 5: Create a message publisher

Source 7.1 TopicClient.java. (continued)

Introduction to Message-Driven Beans 165

12_785415 ch07.qxp 6/5/06 7:00 PM Page 165

166 Chapter 7

TopicPublisher publisher = session.createPublisher(topic);

// 6: Create and publish a message

TextMessage msg = session.createTextMessage();

msg.setText(“This is a test message.”);

publisher.send(msg);

// finish

publisher.close();

System.out.println(“Message published. Please check application

server’s console to see the response from MDB.”);

}

}

Source 7.1 (continued)

Most of Source 7.1 is self-explanatory. Here are the answers to a few ques-
tions you might have:

■■ The parameters to InitialContext should be your JNDI provider
information. If your JMS provider is integrated into your EJB server, the
JNDI parameters should be the same as those you use when you look
up an EJB. You specify this via the command line using the -D switch to
the java runtime, or in a jndi.properties file. See the book’s
accompanying source code for example scripts.

■■ Our JNDI name for the TopicConnectionFactory is jms/Topic
ConnectionFactory, but it could be anything—it depends on your
container’s policy and also where you choose to place it using your
container’s tools.

■■ When we create a Session, we pass two parameters: false, which
indicates that we don’t want to use transactions (see Chapter 10 for
more on transactions), and Session.AUTO_ACKNOWLEDGE, which
indicates how we should acknowledge messages that we receive. Since
our code is sending (not receiving) messages, this parameter doesn’t
matter. If you’re curious about how message acknowledgment works,
see Table 7.2 later in this chapter.

Note that this example does not illustrate point-to-point. The point-to-point
code is basically the same, except we use the point-to-point interfaces listed in
Table 7.1. We’ll leave the point-to-point example as an exercise for you.

Note, too, that this example does not demonstrate any consumption logic.
Although message consumption is an important concept, it’s not relevant to
our discussion, because message-driven beans effectively act as our message
consumers.

12_785415 ch07.qxp 6/5/06 7:00 PM Page 166

You should now know enough about JMS to be productive with message-
driven beans. If you want to learn more about JMS, a free JMS tutorial is
included in the Java EE tutorial available at http://java.sun.com/
j2ee/1.4/docs/tutorial/doc. Rather than repeating this information,
let’s cover some more interesting topics—JMS-EJB integration, advanced
message-driven bean topics, and gotchas.

Integrating JMS with EJB

JMS-EJB integration is a compelling idea. It allows EJB components to benefit
from the value proposition of messaging, such as nonblocking clients and
multinary communications.

To understand the motivations behind introducing another type of bean to
consume messages in an EJB application, let us contemplate for a moment

Introduction to Message-Driven Beans 167

SINGLE-THREADED VERSUS MULTITHREADED BEANS

One great benefit of EJB is that you don’t need to write thread-safe code. You
design your enterprise beans as single-threaded components and never need to
worry about thread synchronization when concurrent clients access your
component. In order to service concurrent client requests, your EJB container
automatically instantiates multiple instances of your component.

The container’s thread services can be both a benefit and a restriction. The
benefit is that you don’t need to worry about race conditions or deadlock in
your application code. The restriction is that some problems lend themselves
well to multithreaded programming, and that class of problems cannot be
easily solved in an EJB environment.

So why doesn’t the EJB specification allow for multithreaded beans? EJB is
intended to relieve the component developers’ worry about threads or thread
synchronization. The EJB container handles those issues for you by load
balancing client requests to multiple instances of a single-threaded component.
An EJB server provides a highly scalable environment for single-threaded
components.

If the EJB specification allowed for beans to control threads, a Pandora’s box
of problems would result. For example, an EJB container would have a very
hard time controlling transactions if beans were randomly starting and
stopping threads, especially because transaction information is often
associated with a thread.

The bottom line is that EJB was not meant to be a Swiss army knife, solving
every problem in existence. It was designed to assist with server-side business
problems, which are largely single-threaded. For applications that absolutely
must be multithreaded, EJB may not be the correct choice of distributed object
architectures.

12_785415 ch07.qxp 6/5/06 7:00 PM Page 167

what other approaches we could have taken and whether they would have
worked:

Using a Java object that receives JMS messages to call EJB components.
Rather than coming up with a whole new type of bean, the Java commu-
nity could have promoted the idea of a Java object that can receive mes-
sages and in turn call the appropriate EJB components, such as session
beans and entity beans. The problems with this approach are:

■■ You’d need to write special code to register yourself as a listener for
JMS messages. This is a decent amount of code (as we demonstrated
previously).

■■ To increase the throughput of message consumption, you would
have to write the multithreading logic such that you can listen to the
messages in multiple threads. However, writing multithreaded
applications is not a trivial task for a business application developer.

■■ Your Java object would need some way of starting up, since it
wrapped your other EJB components. If the class ran within the con-
tainer, you would need to use an EJB server-specific startup class to
activate your Java object when the EJB server came up. This is not
portable because the EJB specification does not define a standard
way of activating a given logic.

■■ As a plain Java object, our JMS message listener wouldn’t receive
any services from an EJB container, such as automatic life-cycle man-
agement, clustering, pooling, and transactions. You would need to
hard-code this yourself, which is difficult and error-prone.

■■ You would need to hard-code the JMS destination name in your Java
object, which hurts reusability, or get the destination information
from disk (such as with property files), which requires extra effort.

Reuse an existing type of EJB component somehow to receive JMS mes-
sages. Another option could have been to shoehorn session beans or
entity beans into receiving JMS messages. Problems with this approach
include:

■■ Threading. If a message arrives for a bean while it’s processing
other requests, how can it take that message, given that EJB does not
allow components to be multithreaded?

■■ Life-cycle management. If a JMS message arrives and there are no
beans, how does the container know to create a bean?

168 Chapter 7

12_785415 ch07.qxp 6/5/06 7:00 PM Page 168

What Is a Message-Driven Bean?
A message-driven bean is a special EJB component that can receive JMS mes-
sages as well as other types of messages. See the sidebar “Pluggable Message
Providers” to find out more about how message-driven beans can be used to
consume messages other than JMS. A message-driven bean is invoked by the
container upon arrival of a message at the destination or endpoint that is ser-
viced by the message-driven bean.

Introduction to Message-Driven Beans 169

PLUGGABLE MESSAGE PROVIDERS

A message-driven bean can be defined to consume messages of a given
messaging type in accordance with the message listener interface it employs,
that is, JMS-based message-driven beans will implement the
javax.jms.MessageListener interface and so on. In EJB 2.0, message-driven
beans supported consumption of JMS messages only. You could not receive
non-JMS messages, such as asynchronous enterprise information
system–specific message. This has changed in the EJB 2.1 standard so that the
message-driven bean can employ different listener interfaces to consume
different message types in addition to JMS.

This is achieved with the help of Java EE Connector Architecture 1.5. The
connector architecture defines message inflow contracts to enable resource
adapters to asynchronously deliver messages to message endpoints residing in
the application server independent of the specific messaging type or messaging
semantics. So in practice, we can write resource adapters that act as message
providers. Resource adapters are standard Java EE components and hence, can
be plugged into any Java EE–compliant application server. As a result, resource
adapters capable of delivering messages to message endpoints, such as
message-driven beans, can be plugged into any Java EE–compliant application
server as well. This is widely known as message provider pluggability.

For example, imagine a scenario where you want your EJB application to
receive EbXML messages. Using JAX-RPC is not a choice here since it supports
only SOAP 1.1 messages. Besides, JAX-RPC does not support asynchronous
messaging. In this case, connector architecture–based message
providers/resource adapters can be extremely handy. We can write an EbXML
message provider using the connector architecture such that it provides a
specific messaging listener interface, say, com.xyz.messaging.EbXML
MessageListener, which can be implemented by message-driven beans so as
to enable their receiving EbXML messages.

This is a powerful concept—any enterprise information system can effectively
send any type of messages to a message-driven bean endpoint via Java EE
connector architecture-based resource adapters. All message providers from
EJB 2.1 onwards, regardless of whether they consume JMS messages or not, are
resource adapters based on Java EE Connector Architecture 1.5. In Chapter 15
we discuss Java EE connector architecture and provide guidance toward
developing resource adapters that consume messages.

12_785415 ch07.qxp 6/5/06 7:00 PM Page 169

A message-driven bean is decoupled from any clients that send messages to
it. A client cannot access a message-driven bean through a business interface. In fact, a
client cannot identify a message-driven bean and directly interact with it at all!
The only way that clients can interact with message-driven beans is through the
messaging system. You will have to use message provider–specific API, such as
JMS, to send messages from clients, which in turn would be received by the
message-driven beans (see Figure 7.4).

The following are some major characteristics of message-driven beans.

■■ A message-driven bean does not have a remote or local business
interface. You do not call message-driven beans using an object-oriented
remote method invocation interface. In fact, you don’t call them at all—
the container does. Message-driven beans process messages that can
come from any messaging client, such as an MQSeries client, an MSMQ
client, a message provider/resource adapter, or a Java EE client using the
JMS API. Message-driven beans, along with appropriate message
providers, can thus consume any valid message.

Figure 7.4 A client sending messages to JMS message-driven beans.

EJB Server

Message-Driven
Bean Pool

The EJB container is a
consumer of messages
from JMS Destination as
specified by the deployer
in the deployment
descriptor.

Message-Driven
Bean Instances

JMS DestinationClient

Sends /
Publishes

170 Chapter 7

12_785415 ch07.qxp 6/5/06 7:00 PM Page 170

■■ Message-driven beans support generic listener methods for message
delivery. Message-driven beans are merely receiving messages from a
destination or a resource adapter and do not know anything about
what’s inside the messages. The listener interface implemented by mes-
sage-driven beans typically has a method (or methods) called by an EJB
container upon arrival of a message, or by the resource adapter (via
application server). The JMS message listener interface, javax.jms
.MessageListener has only one method, called onMessage(). This
method accepts a JMS Message, which could represent anything—a
BytesMessage, ObjectMessage, TextMessage, StreamMessage,
or MapMessage. In a typical implementation of onMessage(), the
message is cracked open at runtime and its contents are examined,
perhaps with the help of a bunch of if statements. In formal terms, you
don’t get compile-time type-checking of messages that are consumed;
rather, you need to use the instanceof operator to determine the
exact type of a consumed message at runtime. This also means that
you need to be careful to make sure that the message you receive is
intended for you. In comparison, session or entity beans can support
strongly typed business methods. Type checking can be performed at
compile time to ensure that clients are properly using a given interface.

■■ Message-driven bean listener method(s) generally do not have return
values. Although the EJB specification does not restrict a message-
driven bean listener method from returning a value to the client, certain
messaging types might not be suitable for this. For example, consider
the listener interface of a messaging type that supports asynchronous
messaging, such as JMS. In this case, due to the asynchronous interac-
tion between message producers and consumers, the message produc-
ers don’t wait for your message-driven bean to respond. As a result, it
doesn’t make sense for the onMessage() listener method on the
javax.jms.MessageListener interface to return a value. The good
news is that using several design patterns, it is possible to send a
response to an asynchronous message producer. We discuss this later in
this chapter.

■■ Message-driven beans might not send exceptions back to clients.
Although EJB does not restrict message-driven bean listener interface
methods from throwing application exceptions, certain messaging
types might not be able to throw these exceptions to the clients. Again
consider the example of a listener interface of a messaging type that
supports asynchronous messaging, such as JMS. In this case, message
producers won’t wait for your message-driven bean to send a response
because the interaction is asynchronous. Therefore clients can’t receive
any exceptions. All message listener interfaces, however, can generate

Introduction to Message-Driven Beans 171

12_785415 ch07.qxp 6/5/06 7:00 PM Page 171

system exceptions regardless of the messaging semantics (synchronous
versus asynchronous) because the container (rather than the client) han-
dles system exceptions. The only exception to this rule is the
java.rmi.RemoteException, which message-driven beans are
explicitly forbidden to throw.

■■ Message-driven beans are stateless. Message-driven beans hold no
conversational state and have no client-visible identity. In this sense,
they are similar to stateless session beans because the container can
similarly treat each message-driven bean instance as equivalent to all
other instances. Thus, multiple instances of the bean can process multi-
ple messages from a JMS destination or a resource adapter concurrently.

■■ Message-driven beans are single-threaded. A single message-driven
bean can process only one message at a time. The container is responsi-
ble for serializing messages to a single message-driven bean, so there is
no need for synchronization code in the bean class. It is the container’s
responsibility to provide concurrent message consumption by pooling
multiple message-driven bean instances, but the container is not
required to deliver messages to multiple concurrent beans in any spe-
cific order. Hence, applications should not rely on message order.

172 Chapter 7

JMS MESSAGE-DRIVEN BEANS AND DURABLE-NONDURABLE
SUBSCRIBERS

A durable subscription to a topic means that a JMS subscriber receives all
messages, even if the subscriber is inactive. If a message is sent to a topic that
has an inactive durable subscriber, the message is persisted and delivered
when the durable subscriber is once again active. A nondurable subscription to
a topic means the subscriber receives only messages that are published while
the subscriber is active. Any messages delivered while the subscriber is inactive
are lost. Since a JMS message-driven bean is essentially a consumer, it can
register itself as a durable or nondurable subscriber to messages published to a
topic. Durability allows persistent messages to be sent to a topic even though
the application server hosting the JMS message-driven bean consumer has
crashed. The messages will persist until the crashed application server restarts
and the durable subscriber message-driven bean container positively
acknowledges consumption of all of the stored messages.

12_785415 ch07.qxp 6/5/06 7:00 PM Page 172

Developing Message-Driven Beans

Let’s now take a look at what’s involved in developing message-driven beans.
The subsequent sections focus on JMS message-driven beans. To a great extent,
the programming model for developing other types of message-driven beans
will be quite similar to that for JMS message-driven beans.

The Semantics
JMS message-driven beans are classes that implement two interfaces: javax
.jms.MessageListener and, optionally, javax.ejb.MessageDriven
Bean. In previous versions of the EJB spec, implementing the Message
DrivenBean interface was mandatory, but this requirement was relaxed in
EJB 3.0. Additionally, every JMS message-driven bean implementation class
must provide a no-arg constructor. Here is what the javax.jms
.MessageListener interface looks like:

public interface javax.jms.MessageListener {

public void onMessage(Message message);

}

And this is what the javax.ejb.MessageDrivenBean interface looks
like:

public interface javax.ejb.MessageDrivenBean

extends javax.ejb.EnterpriseBean {

public void ejbRemove()

throws EJBException;

public void setMessageDrivenContext(MessageDrivenContext ctx)

throws EJBException;

}

The two methods in this interface have the following semantics:

■■ setMessageDrivenContext(). The container will call this method
after creating the bean instance and pass a reference to a Message
DrivenContext object to the bean. This interface, in turn, provides
methods that allow the bean to control transactional behavior and to
access the Timer Service, which we explain in Chapter 12. A message-
driven bean can also acquire a reference to the MessageDrivenContext
using dependency injection. The bean would only need to declare a
dependency on the MessageDrivenContext by using the @Resource
annotation.

Introduction to Message-Driven Beans 173

12_785415 ch07.qxp 6/5/06 7:00 PM Page 173

■■ ejbRemove(). In EJB 2.1, this was a mandatory life-cycle callback
method that all message-driven beans had to implement. In EJB 3.0, life-
cycle callbacks are optional and can be declared using the @PostCon-
struct and @PreDestroy annotations. If the ejbRemove() method is
present in a message-driven bean class, it is treated as the @PreDestroy
callback, and no other method may be annotated with this annotation.

Given this simple description, you can see that developing JMS message-
driven beans is significantly less complicated than developing session or
entity beans. The number of methods that have to be implemented is less than
with session or entity beans.

The life cycle of a message-driven bean is also very straightforward. Figure
7.5 illustrates the life cycle of a message-driven bean.

A message-driven bean is either in the does not exist state or in the pooled state.
When a container decides to add another instance to its pool, it creates a new
instance and performs any required dependency injection, such as passing its
MessageDrivenContext object. If any @PostConstruct life-cycle call-
backs are declared, these will then be called. Depending on its configuration
parameters, the application server will likely create an initial pool of beans at
startup time and then increase the size of the pool as the quantity of messages
increases. A container will remove an instance from the pool and destroy it at
system shutdown or when the container decides it needs to decrease the size of
the pool to conserve memory. If the container decides to take an instance out of
the bean pool, it calls the bean’s @PreDestroy() method.

Figure 7.5 Life cycle of a message-driven bean.

does not exist

Method-ready
pool

1. new instance()
2. dependency injection, if any
3. PostConstruct callback, if any

1. new instance()
2. dependency injection, if any
3. PostConstruct callback, if any

PreDestroy callback, if anyPreDestroy callback, if any

The life cycle of a
message-driven bean.
All calls shown are
from the container to
the bean instance. onMessage()onMessage()

174 Chapter 7

12_785415 ch07.qxp 6/5/06 7:00 PM Page 174

A Simple Example
Let’s apply our knowledge and construct a simple bean that logs text messages
to the screen. In the future, you could generalize this bean and make it into a
generic logging facility, where you have different log levels, depending on the
urgency of the log.

This is a trivial example and not demonstrative of real-world systems. It is,
however, a good template to use when writing your own beans. If you want to
see a real-world message-driven bean in action that uses other EJB compo-
nents, see the application example in Chapter 18, along with the book’s accom-
panying source code. As we will see when writing this bean, the rules for
writing JMS message-driven beans are simple.

The Bean Implementation Class

Since message-driven beans do not have business interfaces associated with
them, we can completely skip designing a public interface to our bean. We can
get right to the heart of development of this bean and write the implementa-
tion class. The code for the implementation class is shown in Source 7.2.

package examples.messaging;

import javax.jms.*;

import javax.ejb.*;

import javax.annotation.*;

@MessageDriven(activationConfig = {

@ActivationConfigProperty(propertyName = “destinationType”,

propertyValue = “javax.jms.Topic”)

})

public class LogBean implements MessageListener {

public LogBean() {

System.out.println(“LogBean created”);

}

public void onMessage(Message msg) {

if (msg instanceof TextMessage) {

TextMessage tm = (TextMessage) msg;

try {

String text = tm.getText();

System.out.println(“Received new message : “ + text);

} catch (JMSException e) {

e.printStackTrace();

}

}

Source 7.2 LogBean.java. (continued)

Introduction to Message-Driven Beans 175

12_785415 ch07.qxp 6/5/06 7:00 PM Page 175

}

@PreDestroy

public void remove() {

System.out.println(“LogBean destroyed.”);

}

}

Source 7.2 (continued)

This is the most basic message-driven bean. Notice the following:

■■ Our bean is declared as a message-driven bean with the @Message
Driven annotation.

■■ The bean is not coded for a specific queue or topic. Rather, it is associ-
ated with a specific destination at deployment time. The activation
config property “destinationType” of the @MessageDriven
annotation (or alternatively, the deployment descriptor) can be used
to determine whether a topic or a queue is consumed. This is specified
by setting the property value to either “javax.jms.Queue” or
“javax.jms.Topic”.

■■ Our bean implements the javax.jms.MessageListener interface
that provides the methods necessary for JMS message consumption.

■■ The bean is stateless and does not contain any client-specific state that
spans messages. Therefore each bean is identical and has an identical
initialization method—a simple constructor that takes no arguments.

■■ The onMessage() method receives a message and casts it to type
TextMessage. TextMessage is a particular type of JMS message that
has methods for getting and setting the text as the body of the message.
After down-casting the input parameter, the method prints out the con-
tent of the message, if any exists.

■■ When this bean is being destroyed, there is nothing to clean up so we
have a very simple @PreDestroy method.

NOTE A message-driven bean can register itself with the EJB Timer Service for
time-based notifications by implementing the javax.ejb.TimedObject
interface apart from the message listener interface, or by declaring a timeout
callback method with the @Timeout annotation. The container will invoke the
bean instance’s ejbTimeout() method or the timeout callback upon timer
expiration.

176 Chapter 7

12_785415 ch07.qxp 6/5/06 7:00 PM Page 176

The Deployment Descriptor

As an alternative to annotating your message-driven bean, a deployment
descriptor file can be packaged along with the bean class. Message-driven
beans have only a couple of deployment descriptor tags applicable to them.
The portion of the deployment descriptor relevant to our simple JMS message-
driven bean is shown in Source 7.3.

<?xml version=”1.0” encoding=”UTF-8” ?>

<ejb-jar xmlns=”http://java.sun.com/xml/ns/javaee”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance” version=”3.0”

xsi:schemaLocation=”http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd”>

<enterprise-beans>

<!--

For each message-driven bean that is located in an

ejb-jar file, you have to define a <message-driven> entry

in the deployment descriptor.

-->

<message-driven>

<!-- The nickname for the bean could be used later in DD -->

<ejb-name>LogBeanDD</ejb-name>

<!-- The fully qualified package name of the bean class -->

<ejb-class>examples.messaging.dd.LogBean</ejb-class>

<messaging-type>javax.jms.MessageListener</messaging-type>

<!-- The type of transaction supported (see Chapter 10) -->

<transaction-type>Bean</transaction-type>

<!-- Whether I’m listening to a topic or a queue -->

<message-destination-type>javax.jms.Topic

</message-destination-type>

<!-- further details -->

<activation-config>

<activation-config-property>

<activation-config-property-name>

destinationType

</activation-config-property-name>

<activation-config-property-value>

javax.jms.Topic

</activation-config-property-value>

</activation-config-property>

</activation-config>

</message-driven>

</enterprise-beans>

</ejb-jar>

Source 7.3 ejb-jar.xml for the simple bean.

Introduction to Message-Driven Beans 177

12_785415 ch07.qxp 6/5/06 7:00 PM Page 177

More Metadata: Activation Configuration Properties

Table 7.2 contains definitions for additional metadata unique to JMS message-
driven beans. These properties can be provided either in the deployment
descriptor or in the activationConfig part of the @MessageDriven annotation.
Just glance over it now—it’s not important to fully understand them if you’re
just starting to learn message-driven beans. See Appendix C for a complete
deployment descriptor reference.

NOTE EJB 2.1 introduced new <activation-config-property> elements in the
deployment descriptors, specifically to configure message-driven beans. These
elements are meant to represent operational information pertaining to
message-driven beans, JMS or others, in the deployment descriptors. In the
case of JMS message-driven beans, these elements are used to specify their
specific operational requirements, such as type of subscription to topics, type
of destination, and so on.

As you can see, you can either use annotations or develop the correspond-
ing deployment descriptor for JMS message-driven beans. In addition to the
characteristics that are definable for all message-driven beans, application
server vendors can provide value-added extensions in an application
server–specific deployment descriptor. For example, an application server
vendor may provide a deployment descriptor parameter that defines the max-
imum size of the message-driven bean pool or another parameter that defines
its initial size.

A question that you may be asking now is, “Exactly how does the applica-
tion server bind a JMS message-driven bean container to a specific topic or
queue?” If you look closely at the deployment descriptor provided in Source
7.3, the <message-destination-type> tag specifies whether the bean
should consume queue or topic messages; however, it never indicates which
topic or queue the JMS message-driven bean container should bind to. This is
done purposely to make JMS message-driven beans portable across applica-
tion servers. Since the names of actual topics and queues deployed into a JMS
server are application server–specific, the mapping of a bean’s container to a
specific JMS server destination has to be done in an application server–specific
deployment descriptor. Most EJB vendors are expected to have a custom
deployment descriptor that binds the bean to a specific destination.

178 Chapter 7

12_785415 ch07.qxp 6/5/06 7:00 PM Page 178

Ta
b

le
 7

.2
O

pt
io

na
l S

ub
el

em
en

ts
 fo

r
th

e
<

m
es

sa
ge

-d
riv

en
>

 T
ag

 o
r

th
e

@
M

es
sa

ge
D

riv
en

An
no

ta
tio

n

FU
N

C
TI

O
N

A
LI

TY
D

ES
C

R
IP

TI
O

N
EX

A
M

P
LE

D
es

tin
at

io
n

ty
pe

Th
e

de
st

in
at

io
n

ty
pe

 s
et

tin
g

ad
vi

se
s

th
e

@
A
c
t
i
v
a
t
i
o
n
C
o
n
f
i
g
P
r
o
p
e
r
t
y
(

de
pl

oy
er

 a
s

to
 w

he
th

er
 a

 J
M

S
p
r
o
p
e
r
t
y
N
a
m
e
=
“
d
e
s
t
i
n
a
t
i
o
n
T
y
p
e
”
,

m
es

sa
ge

-d
riv

en
 b

ea
n

w
ill

 c
on

su
m

e
p
r
o
p
e
r
t
y
V
a
l
u
e
=
“
j
a
v
a
x
.
j
m
s
.
T
o
p
i
c
”
)

m
es

sa
ge

s
fr

om
 a

 q
ue

ue
 o

r
a

to
pi

c.

Th
e

be
an

 d
ev

el
op

er
 s

ho
ul

d
pr

ov
id

e
th

is

<
a
c
t
i
v
a
t
i
o
n
-
c
o
n
f
i
g
-
p
r
o
p
e
r
t
y
>

se
tt

in
g

in
 th

e
de

pl
oy

m
en

t d
es

cr
ip

to
r

ev
en

 th
ou

gh
 d

ep
lo

ye
r

ca
n

ov
er

rid
e

it.
<
a
c
t
i
v
a
t
i
o
n
-
c
o
n
f
i
g
-
p
r
o
p
e
r
t
y
-
n
a
m
e
>

d
e
s
t
i
n
a
t
i
o
n
T
y
p
e

<
/
a
c
t
i
v
a
t
i
o
n
-
c
o
n
f
i
g
-
p
r
o
p
e
r
t
y
-
n
a
m
e
>

<
a
c
t
i
v
a
t
i
o
n
-
c
o
n
f
i
g
-
p
r
o
p
e
r
t
y
-
v
a
l
u
e
>

j
a
v
a
x
.
j
m
s
.
T
o
p
i
c

<
/
a
c
t
i
v
a
t
i
o
n
-
c
o
n
f
i
g
-
p
r
o
p
e
r
t
y
-
v
a
l
u
e
>

<
/
a
c
t
i
v
a
t
i
o
n
-
c
o
n
f
i
g
-
p
r
o
p
e
r
t
y
>

(c
on

tin
ue

d)

12_785415 ch07.qxp 6/5/06 7:00 PM Page 179

Ta
b

le
 7

.2
(c

on
tin

ue
d)

FU
N

C
TI

O
N

A
LI

TY
D

ES
C

R
IP

TI
O

N
EX

A
M

P
LE

M
es

sa
ge

 s
el

ec
to

r
A

m
es

sa
ge

 s
el

ec
to

r
fil

te
rs

, o
r

lim
its

, w
hi

ch

@
A
c
t
i
v
a
t
i
o
n
C
o
n
f
i
g
P
r
o
p
e
r
t
y
(

m
es

sa
ge

s
ar

e
se

nt
 to

 y
ou

r
be

an
. M

es
sa

ge

p
r
o
p
e
r
t
y
N
a
m
e
=
”
m
e
s
s
a
g
e
S
e
l
e
c
t
o
r
”
,

se
le

ct
or

s
ar

e
ve

ry
 p

ow
er

fu
l;

th
ey

 in
cr

ea
se

p
r
o
p
e
r
t
y
V
a
l
u
e
=
”
J
M
S
T
y
p
e
=
‘
l
o
g
’
A
N
D

ov
er

al
l p

er
fo

rm
an

ce
 b

y
re

du
ci

ng
 th

e
l
o
g
L
e
v
e
l
=
’
s
e
v
e
r
e
’
“
)

nu
m

be
r

of
 m

es
sa

ge
s

de
liv

er
ed

 to
 c

lie
nt

s
th

at
 h

av
e

no
 in

te
re

st
 in

 th
e

m
es

sa
ge

. T
o

<
a
c
t
i
v
a
t
i
o
n
-
c
o
n
f
i
g
-
p
r
o
p
e
r
t
y
>

us
e

m
es

sa
ge

 s
el

ec
to

rs
, f

irs
t y

ou
r

JM
S

cl
ie

nt

<
a
c
t
i
v
a
t
i
o
n
-
c
o
n
f
i
g
-
p
r
o
p
e
r
t
y
-
n
a
m
e
>

se
ts

 u
p

he
ad

er
 fi

el
ds

 o
n

JM
S

m
es

sa
ge

s
m
e
s
s
a
g
e
S
e
l
e
c
t
o
r

us
in

g
th

e
JM

S
AP

I.
Fo

r
ex

am
pl

e,
 th

e
JM

S
<
/
a
c
t
i
v
a
t
i
o
n
-
c
o
n
f
i
g
-
p
r
o
p
e
r
t
y
-
n
a
m
e
>

cl
ie

nt
 m

ig
ht

 c
al

l m
e
s
s
a
g
e

<
a
c
t
i
v
a
t
i
o
n
-
c
o
n
f
i
g
-
p
r
o
p
e
r
t
y
-
v
a
l
u
e
>

.
s
e
t
S
t
r
i
n
g
P
r
o
p
e
r
t
y
(
“
l
o
g
L
e
v
e
l
”
,

J
M
S
T
y
p
e
=
’
l
o
g
’
A
N
D
l
o
g
L
e
v
e
l
=
’
s
e
v
e
r
e
’

“
s
e
v
e
r
e
”

)
be

fo
re

 s
en

di
ng

 th
e

m
es

sa
ge

.
<
/
a
c
t
i
v
a
t
i
o
n
-
c
o
n
f
i
g
-
p
r
o
p
e
r
t
y
-
v
a
l
u
e
>

W
he

n
th

e
JM

S
de

st
in

at
io

n
re

ce
iv

es
 th

e
m

es
sa

ge
, t

he
 c

on
ta

in
er

 a
pp

lie
s

th
e

m
es

sa
ge

<
/
a
c
t
i
v
a
t
i
o
n
-
c
o
n
f
i
g
-
p
r
o
p
e
r
t
y
>

se
le

ct
or

 c
rit

er
ia

 d
ef

in
ed

 in
 th

e
de

pl
oy

m
en

t
de

sc
rip

to
r.

O
nl

y
m

es
sa

ge
s

w
ith

 h
ea

de
rs

 th
at

N

ot
e:

 Y
ou

 c
an

 u
se

 th
e

m
or

e
co

m
pl

ic
at

ed
 S

Q
L-

lik
e

m
at

ch
 th

e
se

le
ct

or
 a

re
 d

el
iv

er
ed

.
fu

nc
tio

na
lit

y
he

re
 a

s
w

el
l,

su
ch

 a
s

ar
ith

m
et

ic
, l

og
ic

al
op

er
at

or
s

(A
N

D
/O

R/
N

O
T)

, a
nd

 m
or

e.
 If

 y
ou

 u
se

gr
ea

te
r

th
an

 (
>

)
or

 le
ss

 th
an

 (
<

)
si

gn
s

th
en

 y
ou

ne
ed

 to
 w

ra
p

th
is

 in
 a

 C
D

AT
A

se
ct

io
n,

 to
 a

vo
id

 X
M

L
pa

rs
in

g
co

nf
us

io
n.

 S
ee

 th
e

JM
S

sp
ec

ifi
ca

tio
n

at
ht

tp
:/

/j
av

a.
su

n.
co

m
/p

ro
du

ct
s/

jm
s/

do
cs

.h
tm

l f
or

co
m

pl
et

e
ru

le
s

fo
r

m
es

sa
ge

 s
el

ec
to

r
sy

nt
ax

, w
hi

ch
 is

a
su

bs
et

 o
f t

he
 S

Q
L

92
 s

ta
nd

ar
d.

12_785415 ch07.qxp 6/5/06 7:00 PM Page 180

Ta
b

le
 7

.2
(c

on
tin

ue
d)

FU
N

C
TI

O
N

A
LI

TY
D

ES
C

R
IP

TI
O

N
EX

A
M

P
LE

M
es

sa
ge

 a
ck

no
w

le
dg

m
en

t
If

yo
u

le
t t

he
 c

on
ta

in
er

 h
an

dl
e

tr
an

sa
ct

io
ns

@
A
c
t
i
v
a
t
i
o
n
C
o
n
f
i
g
P
r
o
p
e
r
t
y
(

(c
al

le
d

co
nt

ai
ne

r-
m

an
ag

ed
 tr

an
sa

ct
io

ns
p
r
o
p
e
r
t
y
N
a
m
e
=
”
a
c
k
n
o
w
l
e
d
g
e
M
o
d
e
”
,

de
sc

rib
ed

 in
 C

ha
pt

er
 1

0)
, t

he
n

th
e

p
r
o
p
e
r
t
y
V
a
l
u
e
=
”
A
u
t
o
-
a
c
k
n
o
w
l
e
d
g
e
”
)

co
nt

ai
ne

r
de

liv
er

s
th

e
m

es
sa

ge
 to

 y
ou

in

 a
 tr

an
sa

ct
io

n.
 T

he
re

 is
 n

o
ne

ed
 fo

r
<
a
c
t
i
v
a
t
i
o
n
-
c
o
n
f
i
g
-
p
r
o
p
e
r
t
y
>

m
es

sa
ge

 a
ck

no
w

le
dg

m
en

t t
he

n,
 b

ec
au

se

if
th

e
tr

an
sa

ct
io

n
ro

lls
 b

ac
k,

 th
e

m
es

sa
ge

<
a
c
t
i
v
a
t
i
o
n
-
c
o
n
f
i
g
-
p
r
o
p
e
r
t
y
-
n
a
m
e
>

is
 a

ut
om

at
ic

al
ly

 p
ut

 b
ac

k
on

 th
e

qu
eu

e.

a
c
k
n
o
w
l
e
d
g
e
M
o
d
e

If
yo

u
pr

og
ra

m
 y

ou
r

ow
n

tr
an

sa
ct

io
ns

<
/
a
c
t
i
v
a
t
i
o
n
-
c
o
n
f
i
g
-
p
r
o
p
e
r
t
y
-
n
a
m
e
>

(c
al

le
d

be
an

-m
an

ag
ed

 tr
an

sa
ct

io
ns

),
 th

e
tr

an
sa

ct
io

n
oc

cu
rs

 w
ith

in
 y

ou
r

be
an

, a
nd

<
a
c
t
i
v
a
t
i
o
n
-
c
o
n
f
i
g
-
p
r
o
p
e
r
t
y
-
v
a
l
u
e
>

be
gi

ns
 a

nd
 e

nd
s

af
te

r
th

e
m

es
sa

ge
 h

as

A
u
t
o
-
a
c
k
n
o
w
l
e
d
g
e

be
en

 d
el

iv
er

ed
 to

 y
ou

r
be

an
; t

hu
s,

 th
e

<
/
a
c
t
i
v
a
t
i
o
n
-
c
o
n
f
i
g
-
p
r
o
p
e
r
t
y
-
v
a
l
u
e
>

co
ns

um
pt

io
n

of
 th

e
m

es
sa

ge
 o

cc
ur

s
ou

ts
id

e
th

e
tr

an
sa

ct
io

n.
 T

he
re

fo
re

, i
f y

ou
 a

re
 u

si
ng

<
/
a
c
t
i
v
a
t
i
o
n
-
c
o
n
f
i
g
-
p
r
o
p
e
r
t
y
>

be
an

-m
an

ag
ed

 tr
an

sa
ct

io
ns

, y
ou

 n
ee

d
to

te

ll
th

e
co

nt
ai

ne
r

to
 a

ck
no

w
le

dg
e

m
es

sa
ge

s.

Th
e

A
ut

o-
ac

kn
ow

le
dg

e
se

tt
in

g
fo

rc
es

 th
e

co
nt

ai
ne

r
to

 a
ck

no
w

le
dg

e
a

m
es

sa
ge

w

he
n

th
e

JM
S

m
es

sa
ge

-d
riv

en
 b

ea
n’

s
o
n
M
e
s
s
a
g
e
(
)

m
et

ho
d

ha
s

su
cc

es
sf

ul
ly

re

tu
rn

ed
. T

he
 D
u
p
s
-
o
k
-
a
c
k
n
o
w
l
e
d
g
e

se
tt

in
g

al
lo

w
s

th
e

co
nt

ai
ne

r
to

 a
ck

no
w

le
dg

e
a

m
es

sa
ge

 w
he

n
it

fe
el

s
lik

e
do

in
g

so
 a

nd

w
he

n
it

fin
ds

 th
e

re
qu

ire
d

re
so

ur
ce

s
an

d
pr

oc
es

si
ng

 ti
m

e.
 S

in
ce

 it
 m

ay
 n

ot

ac
kn

ow
le

dg
e

th
e

m
es

sa
ge

s
fa

st
 e

no
ug

h,

yo
u

ru
n

th
e

ris
k

of
 th

e
JM

S
de

st
in

at
io

n
se

nd
in

g
yo

u
a

du
pl

ic
at

e
m

es
sa

ge
. Y

ou

sh
ou

ld
 u

se
 th

is
 o

nl
y

if
yo

u
ca

n
to

le
ra

te

du
pl

ic
at

e
m

es
sa

ge
s.

(c
on

tin
ue

d)

12_785415 ch07.qxp 6/5/06 7:00 PM Page 181

Ta
b

le
 7

.2
(c

on
tin

ue
d)

FU
N

C
TI

O
N

A
LI

TY
D

ES
C

R
IP

TI
O

N
EX

A
M

P
LE

Su
bs

cr
ip

tio
n

du
ra

bi
lit

y
JM

S
m

es
sa

ge
-d

riv
en

 b
ea

ns
 th

at
 c

on
su

m
e

@
A
c
t
i
v
a
t
i
o
n
C
o
n
f
i
g
P
r
o
p
e
r
t
y
(

m
es

sa
ge

s
fr

om
 to

pi
cs

 c
an

 b
e

ei
th

er
 o

f
p
r
o
p
e
r
t
y
N
a
m
e
=
”
s
u
b
s
c
r
i
p
t
i
o
n
D
u
r
a
b
i
l
i
t
y
“
,

du
ra

bl
e

ty
pe

 o
r

no
nd

ur
ab

le
 ty

pe
. W

e
p
r
o
p
e
r
t
y
V
a
l
u
e
=
”
N
o
n
D
u
r
a
b
l
e
”
)

di
sc

us
s

du
ra

bl
e

an
d

no
nd

ur
ab

le

<
a
c
t
i
v
a
t
i
o
n
-
c
o
n
f
i
g
-
p
r
o
p
e
r
t
y
>

su
bs

cr
ip

tio
ns

 in
 th

e
si

de
ba

r,
“J

M
S

<
a
c
t
i
v
a
t
i
o
n
-
c
o
n
f
i
g
-
p
r
o
p
e
r
t
y
-
n
a
m
e
>

M
es

sa
ge

-D
ri

ve
n

B
ea

ns
 a

nd

s
u
b
s
c
r
i
p
t
i
o
n
D
u
r
a
b
i
l
i
t
y

D
ur

ab
le

-N
on

du
ra

bl
e

Su
bs

cr
ip

tio
ns

.”
<
/
a
c
t
i
v
a
t
i
o
n
-
c
o
n
f
i
g
-
p
r
o
p
e
r
t
y
-
n
a
m
e
>

<
a
c
t
i
v
a
t
i
o
n
-
c
o
n
f
i
g
-
p
r
o
p
e
r
t
y
-
v
a
l
u
e
>

N
o
n
D
u
r
a
b
l
e

<
/
a
c
t
i
v
a
t
i
o
n
-
c
o
n
f
i
g
-
p
r
o
p
e
r
t
y
-
v
a
l
u
e
>

<
/
a
c
t
i
v
a
t
i
o
n
-
c
o
n
f
i
g
-
p
r
o
p
e
r
t
y
>

12_785415 ch07.qxp 6/5/06 7:00 PM Page 182

The Client Program

The client application for the simple JMS message-driven bean example is the
JMS client we developed earlier in this chapter in Source 7.1. This shows you
the power of message-driven beans—our client is solely a JMS client, and the
application is never the wiser that a JMS message-driven bean is consuming
the messages.

If you’d like to try this example yourself, see the book’s accompanying
source code for compilation and deployment scripts.

Advanced Concepts

So far, we have discussed the mechanics of developing JMS message-driven
beans. Now let’s take a closer look at the support that containers can give for
JMS message-driven beans. We’ll see how they might integrate with transac-
tions, provide advanced JMS features, and behave in a clustered environment.

Transactions

JMS message-driven beans do not run in the same transaction as the producer
who sends the message, because there are typically two transactions associ-
ated with every durable JMS message (one transaction for the producer to put
the message on the queue and another transaction for the JMS message-driven
bean to get the message off the queue). It is theoretically impossible for the JMS
message-driven bean to participate in the same transaction (and hence the
same unit of work) as the producer, because until the producer commits the
transaction, the message wouldn’t even appear on the queue!

For a complete discussion of transactions and how they apply to JMS message-
driven beans, see Chapter 10.

Security

JMS message-driven beans do not receive the security identity of the producer
who sends the message, because there is no standard way to stick security
information into a JMS message. Therefore you cannot perform EJB security
operations (described in Chapter 11) with JMS message-driven beans.

Load Balancing

Clustering message-driven beans is quite different than clustering session or
entity beans (see Chapter 16). With session and entity beans, your requests are
load balanced across a group of containers. The load-balancing algorithm
guesses which server is the least burdened server and pushes requests out to

Introduction to Message-Driven Beans 183

12_785415 ch07.qxp 6/5/06 7:00 PM Page 183

that server. It’s guessing because the client’s RMI-IIOP runtime can never
know for sure which server is the least burdened, because all load-balancing
algorithms are approximation algorithms based on imperfect historical data.
This is called a push model because we are pushing requests out to the server,
and the server has no say about which requests it receives.

With JMS message-driven beans, producers put messages onto a destina-
tion. The messages reside in the destination until a consumer takes the mes-
sages off of the destination, or (if the messages are nondurable) the server
hosting the destination crashes. This is a pull model, since the message resides
on the destination until a consumer asks for it. The containers contend (fight)
to get the next available message on the destination.

Thus, JMS message-driven beans feature an ideal load-balancing paradigm
and distribute the load more smoothly than session or entity beans do. The
server that is the least burdened and asks for a message gets the message. The
trade-off for this optimal load balancing is that messaging has extra overhead
because a destination “middleman” sits between the client and the server.

Duplicate Consumption in a Cluster

Since JMS topics use the publish/subscribe model, it’s possible that a message
sent to a JMS topic will be delivered to more than one consumer. Many con-
tainers will create a pool of many message-driven bean instances to process
multiple messages concurrently, so some concern can arise around message-
driven bean containers that subscribe to JMS topics.

In particular, if a JMS message-driven bean container has pooled five
instances of its message-driven bean type and is subscribed to the DogTopic,
how many consumers will consume a message sent to the DogTopic topic?
Will the message be consumed by each JMS message-driven bean instance in
the container or just once by a single JMS message-driven bean? The answer is
simple: A container that subscribes to a topic consumes any given message
only once. This means that for the five instances that the container created to
concurrently process messages, only one of the instances will receive any par-
ticular message, freeing up the other instances to process other messages that
have been sent to the DogTopic.

Be careful, though. Each container that binds to a particular topic will con-
sume a JMS message sent to that topic. The JMS subsystem will treat each JMS
message-driven bean container as a separate subscriber to the message. This
means that if the same JMS message-driven bean is deployed to many con-
tainers in a cluster, then each deployment of the JMS message-driven bean will
consume a message from the topic it subscribes to. If this is not the behavior
you want, and you need to consume messages exactly once, you should con-
sider deploying a queue instead of a topic.

For JMS message-driven beans that bind to a queue, the JMS server will
deliver any message on the queue to only one consumer. Each container

184 Chapter 7

12_785415 ch07.qxp 6/5/06 7:00 PM Page 184

registers as a consumer to the queue, and the JMS server load balances mes-
sages to consumers based on availability. JMS message-driven beans that bind
to queues that are deployed in a cluster are ideal for scalable processing of
messages. For example, if you have two servers in your cluster and 50 mes-
sages on a queue, each server will consume on average 25 messages—as
opposed to a single server responsible for consuming 50 messages.

JMS message-driven beans in a cluster are shown in Figure 7.6. Notice that
many JMS message-driven beans process the same JMS message from Topic
#1. Also notice that only a single bean processes any given message from
Queue #1.

Figure 7.6 JMS message-driven beans in a cluster.

JMS Server

Queue1

Queue1-M1

Server1

Message-Driven
Bean Pool

Message Driven
Bean Instances

Server2

Message-Driven
Bean Pool

Message Driven
Bean Instances

Server3

Message-Driven
Bean Pool

Message Driven
Bean Instances

Since messages from a queue
are delivered only to one
consumer, the queue can have
multiple messages processed
concurrently by different servers
in a cluster!

Topic1

Queue1-M2

Queue1-M3

Topic1-M1

Since messages from a topic can
be consumed by more than one
client, each message-driven bean
container that binds to a given
topic will receive each message.

Topic1-M1

Topic1-M1

Introduction to Message-Driven Beans 185

12_785415 ch07.qxp 6/5/06 7:00 PM Page 185

JMS Message-Driven Bean Gotchas

Although developing JMS message-driven beans is a straightforward process,
many dark corners and caveats can be encountered unknowingly. In this sec-
tion, we uncover some of these JMS message-driven demons and suggest solu-
tions to help speed you on your way to successful implementation.

Message Ordering
A JMS server does not guarantee delivery of messages to a pool of JMS message-
driven beans in any particular order. The container likely attempts to deliver
messages in an order that doesn’t impact the concurrency of message process-
ing, but there is no guarantee as to the order that the beans actually process the
message. Therefore JMS message-driven beans should be prepared to process
messages that are not in sequence. For example, a message adding a second
hamburger to a fast food order might be processed before the message indi-
cating that a new fast food order with a hamburger should be created. Bean
developers must take these scenarios into account and handle them appropri-
ately.

Missed @PreDestroy Calls
As with session and entity beans, you are not guaranteed that the container
will call your @PreDestroy life-cycle callback method when your bean is
destroyed. In particular, if there is a system crash or a crash from within the
EJB container, any active message-driven bean instances are destroyed with-
out going through the proper life-cycle shutdown. Additionally, for any
method that throws a system exception, such as EJBException, the callback
method is not invoked. Developers should be alert to this fact and perform any
relevant clean-up before throwing a system exception.

Developers should also be aware that the @PreDestroy life-cycle callback
is invoked by the container only when the container no longer needs that
instance. Many containers pool the necessary number of message-driven bean
instances needed to handle concurrently multiple messages. The limits on the
minimum and maximum size of the message-driven bean pool are typically
set in an application server–specific deployment descriptor. A container adds
and removes message-driven bean instances to and from the pool as appropri-
ate. However, since message-driven beans are extremely lightweight objects, a
container generally destroys a message-driven bean instance only when the
EJB itself is being undeployed (the whole EJB component is being unde-
ployed). For most systems, the only time container undeployment occurs is at
system shutdown or when an administrator decides to undeploy the compo-
nent. The important point here is that message-driven bean containers are

186 Chapter 7

12_785415 ch07.qxp 6/5/06 7:00 PM Page 186

rarely undeployed, and therefore message-driven instances are rarely
destroyed. As a general rule of thumb, the @PreDestroy method is rarely
invoked.

Poison Messages
When using container-managed transactions (see Chapter 10) with a JMS
message-driven bean, it is easy to code yourself into a situation that causes the
generation of poison messages. A poison message is a message that is continually
retransmitted by a JMS destination to the consumer because the consumer
continuously fails to acknowledge the consumption of the message. Any time
your JMS message-driven bean does not acknowledge messages to the JMS
destination, you have a situation with the potential to create poison messages.
The diagram in Figure 7.7 shows how poison messages can inadvertently be
generated.

Introduction to Message-Driven Beans 187

USING QUEUES TO PARTITION BUSINESS PROCESSING IN A CLUSTER

Suppose that you have two clusters of machines: One cluster is configured for a
development and test environment, and the other cluster is configured for a
production environment. You need to make sure that traffic coming from test
clients is sent to the development cluster, while traffic coming from real clients
is sent to the production cluster.

As one solution, you could set up your JMS server with two queues:
DevelopmentQueue and ProductionQueue. You could deploy a series of JSPs
or front-end stateless session beans that analyze each incoming request,
format it into a JMS message, and then place requests onto one of the queues.
Requests that come from an internal development machine could be placed
onto the DevelopmentQueue, and all other requests could be placed on the
ProductionQueue.

On the back end, you could configure two clusters: One cluster has JMS
message-driven beans bound to the DevelopmentQueue, and the other cluster
has JMS message-driven beans bound to the ProductionQueue. The logic for
each of these beans can vary based on the needs of the system. For example,
the behavior of the JMS message-driven beans bound to the
DevelopmentQueue can mimic those bound to the ProductionQueue but add
on debugging statements. You can also tune each cluster independently, based
on load to the system. Since the ProductionQueue will likely have more load
than the DevelopmentQueue, you could independently grow the size of the
cluster servicing the ProductionQueue without impacting the cluster servicing
the DevelopmentQueue.

This illustrates a general paradigm of using queues to partition business
logic processing. Rather than the servers pulling messages off a single queue,
you prechoose which machines get the messages by splitting the queue into
two queues. This is an artificial way to achieve controlled load balancing in a
JMS system.

12_785415 ch07.qxp 6/5/06 7:00 PM Page 187

Figure 7.7 How JMS message-driven beans can cause poison messages.

For example, suppose that you have a stock-quoting JMS message-driven
bean that accepts a text message, which represents the stock ticker symbol to
be quoted. Your bean cracks open that message. If the string contained within
the message matches a stock symbol, the bean retrieves the value of that sym-
bol and sends a response message. Otherwise, the bean throws a system excep-
tion or calls MessageDrivenContext.setRollbackOnly(). This causes
the transaction to be rolled back, which means the message acknowledgment
will never be sent to the JMS destination. The JMS destination eventually
resends the same message to the container, causing this same process to occur.

See Source 7.4 for an example of a JMS message-driven bean implementa-
tion class that will cause a poison message scenario. Note that our abuse of
threading is for illustrative purposes only!

package examples.messaging;

import javax.jms.*;

import javax.ejb.*;

import javax.annotation.*;

@MessageDriven(activationConfig = {

@ActivationConfigProperty(

propertyName = “destinationType”,

propertyValue = “javax.jms.Topic”) })

public class PoisonBean implements MessageListener {

@Resource

Source 7.4 PoisonBean.java.

1: Mesage Sent to Consumer
4: Message Resent to Consumer at a Later Point
...

JMS Server

Queue1

JMS Consumer

2: onMessage()
3: Transaction Rolls Back
5: onMessage()
6: Transaction Rolls Back
...

Message

188 Chapter 7

12_785415 ch07.qxp 6/5/06 7:00 PM Page 188

private MessageDrivenContext ctx;

public PoisonBean() {

System.out.println(“PoisonBean created”);

}

public void onMessage(Message msg) {

try {

System.out.println(“Received msg “ + msg.getJMSMessageID());

// Let’s sleep a little bit so that we don’t

// see rapid fire resends of the message.

Thread.sleep(3000);

// We could either throw a system exception here or

// manually force a rollback of the transaction.

ctx.setRollbackOnly();

} catch (Exception e) {

e.printStackTrace();

}

}

@PreDestroy

public void remove() {

System.out.println(“PoisonBean destroyed.”);

}

}

Source 7.4 (continued)

You can use any of the following strategies to resolve poison messages:

■■ Make sure to not throw any system exceptions for any business logic-
related error conditions. System exceptions like EJBException are
intended to indicate system or container failure. If this were a session or
entity bean, the ideal solution would be to generate an application
exception and throw it (especially since application exceptions do not
force transactions to be rolled back). However, the EJB specification
discourages application exceptions from being thrown from the on
Message() method of a JMS message-driven bean. The ideal solution
to this problem would likely involve logging the business error mes-
sage and then quietly returning.

■■ Consider using bean-managed transactions instead of container-managed
transactions. Message consumption and acknowledgment is not part of
the transaction if bean-managed transactions are used. A bean-managed
transaction can be rolled back and the message is acknowledged anyway.

Introduction to Message-Driven Beans 189

12_785415 ch07.qxp 6/5/06 7:00 PM Page 189

■■ Some application servers enable you to configure a poison message
queue. Messages that are redelivered a certain number of times are
flagged as poison messages, removed from their primary queue, and
placed into a poison message queue. Typically, any message that is
redelivered from three to five times can be considered a poison mes-
sage. You can then bind special consumers or JMS message-driven
beans to the poison message queue to handle any unexpected error
conditions.

■■ Some application servers place a retry count value as a property of any
redelivered messages. Each redelivery of a message incrementally
increases the retry count. Your JMS message-driven bean could check
the value of a retry count (if it exists) to see if it has repeatedly con-
sumed the same message.

■■ Some application server vendors provide a redelivery delay feature that
administrators can configure to determine how long the JMS destina-
tion delays the redelivery of a message after it receives a negative
acknowledgment. This way, your system doesn’t grind to a halt in case
of rapid-fire poison messages.

How to Return Results Back to Message Producers
The EJB specification does not outline any mechanism that allows a JMS
message-driven bean to propagate a response back to the client that originally
generated the message. So we need to build those facilities ourselves. Figure
7.8 shows how this could be accomplished.

Here is an explanation of Figure 7.8:

1. The client that generates a JMS message for consumption creates a tem-
porary destination associated with its Connection object. The JMS
server temporarily creates a Topic or Queue object, and that object
exists for the lifetime of the Connection object.

2. The request message that the client sends contains extra information, so
the receiving JMS message-driven bean knows how to reply correctly.
Specifically, the client sticks the name of the temporary queue in the
JMSReplyTo header field of the request message. The JMS message-
driven bean can harness this field to reply on the correct queue. The
client also has a unique identifier of the original message in the
JMSCorrelationID header field of the original message. When the
JMS message-driven bean replies, it embeds this original identifier, so
the client knows to which original message he’s receiving a reply.

190 Chapter 7

12_785415 ch07.qxp 6/5/06 7:00 PM Page 190

3. The client creates a new Session object and registers a Message
Listener object to consume messages sent to the temporary destination
that was just created.

4. The client sends the message.

5. After consuming the message, the JMS message-driven bean formats a
response and sends it using the JMSReplyTo and JMSCorrelationID
attribute of the received message.

6. The client’s MessageListener class asynchronously consumes the
message that is sent to the temporary destination, recognizes that it is a
response to the original message, and processes it.

Even though this scenario seems like a straightforward solution for
responding to clients from within a JMS message-driven bean, it could poten-
tially lead to some unexpected results. The problem arises if the client itself is
an EJB component, such as a stateful session bean. When your stateful session
bean creates the temporary destination, that temporary destination has a lifespan
equal to the lifespan of the JMS connection that your bean currently holds. If
your bean is passivated (meaning swapped out of memory), then you need to
release that connection. The temporary destination then goes away, and
you’ve lost all messages delivered to that temporary destination while you
were passivated, even if you recreate the destination after you are swapped
into memory again.

Figure 7.8 A simple JMS request/response paradigm solution.

JMS Server

Incoming Queue

JMS Client

Message-Driven
Bean Pool

Message-Driven
Bean Instances

Outgoing Temporary Queue

3. Client creates request message with
temporary queue as value of JMSReplyTo field.
4. Client sends request message.

1. Client creates temporary queue.
2. Client binds consumer to temporary queue.
8. Client receives response message.

5. MDB consumes
request message.

6. MDB creates response message.
7. MDB sends response message to
the destination specified in the
JMSReplyTo field of the request
 message.

In-Message

In-Message

Out-Message

Introduction to Message-Driven Beans 191

12_785415 ch07.qxp 6/5/06 7:00 PM Page 191

We propose two possible solutions to this problem:

■■ Don’t use a stateful session bean. Instead the end client, such as a
servlet, application, or JSP tag library (rather than the stateful session
bean), creates a temporary queue that all response messages are sent to.
The stateful session bean is therefore not holding onto a connection,
eliminating any danger of the destination going away because of passi-
vation. See the book’s accompanying source code for an implementa-
tion of this solution.

The advantages of using this architecture include:

■■ Ease of implementation. Creating temporary queues doesn’t
require any extra configuration from an administrator, whereas set-
ting up a dedicated response topic requires management on the part
of the administrator and your application.

■■ Security. Since temporary queues are bound to a particular connec-
tion, malicious clients cannot bind to a temporary queue and inter-
cept response messages.

■■ Immediate client notification. Since the remote client creates and
manages the receiving logic for the temporary queue, the client is
notified immediately when a response message is generated, rather
than having to wait for a middleman session bean to respond.

The disadvantages of this architecture include:

■■ No persistent messages. Temporary queues cannot have persistent
stores associated with them and therefore cannot support guaran-
teed message delivery. If the system fails while a response message
is located on the temporary queue, the message will be lost.

■■ Poor abstraction. Since temporary queues are associated with a
Connection object, a stateful session EJB cannot perform middle-
tier management of the request/response process. It might be more
natural to abstract away the JMS request/response logic from the
client.

■■ A permanent response topic is configured and deployed in the JMS server.
All response messages are delivered to the same response topic for all
clients. Clients filter out the messages that belong to them by registering
a message selector with the JMS server. Any request message that is sent
has a custom application property called ClientName=MyID where
MyID varies for each client. The JMS message-driven bean that con-
sumes the request message takes the application property from the
request message and inserts the same property in the response message.
All response messages are sent to the same response topic irrespective of
the client. Figure 7.9 illustrates this scenario, and the book’s accompany-
ing source code has its implementation.

192 Chapter 7

12_785415 ch07.qxp 6/5/06 7:00 PM Page 192

Figure 7.9 Another JMS request/response paradigm solution.

The advantages of using this architecture include:

■■ Better fault tolerance. Because this architecture proposes that a per-
manent topic be set up for all outgoing messages, the response topic
could be associated with a persistent store. All outgoing messages
could then be sent persistently with guaranteed message delivery.
Temporary topics and queues cannot have persistent messages
delivered to them. This could be ideal for a data retrieval system.
For example, suppose that you had a remote client that randomly
connected to the central server requesting a download of the latest
market data as it pertains to that client. The data could be anywhere
from 1K to 1MB. Let’s also suppose that for situations where a large
amount of data needs to be retrieved for the client, you want to
break up the data chunks into 100K messages. If the client needed to
retrieve 1MB of data, you would need to send 10 response messages.
All of the response messages could be sent with guaranteed message
delivery. If the remote client application were to fail during the
download process, it could easily resume from the last response
message that it received instead of having to restart the entire down-
load process.

■■ Better filtering. You can add additional filtering of response mes-
sages through the message selector that the client registers with the
JMS server. In the example provided with this book, the client
registers to receive messages that have an application property

JMS Server

Incoming Queue

JMS Client
Message-Driven
Bean Pool

Message-Driven
Bean Instances

OutgoingResponseTopic

2. Client creates request message with
application property:ClientName=MyID.
MyID changes for each client.
3. Client sends request message.

1. Client binds consumer to permanent
response topic. The registration on the
topic has a message selector that will
filter out only messages that have an
application property: ClientName=MyID.
MyID changes for each client.
7. Client receives response message.

4. MDB consumes
request message.

5. MDB creates response message. The MDB
sets the response message ClientName
property to be the value of the request message.
6. MDB sends response to response topic.

In-Message

In-Message

Out-Message

Introduction to Message-Driven Beans 193

12_785415 ch07.qxp 6/5/06 7:00 PM Page 193

ClientName=MyID. You could conceivably add application proper-
ties about the response message that the client filters on. These prop-
erties could be message size, message importance, and so on.

The disadvantages are as follows:

■■ Lack of security. The main disadvantage of this architecture is lack
of security. Since the JMS specification does not have any security
restrictions on which clients can bind which message selectors, any
client can register any message selector. This presents the opportu-
nity for a malicious client to register for consumption of response
messages that are destined for another client. This malicious behav-
ior is not possible with temporary destinations. Of course, if you’re
secured by a firewall, security probably isn’t an issue. Also, it would
take a pretty snazzy developer to actually figure out that you’re
sending messages and register a message listener.

■■ Intermediary EJB. This approach allows a session EJB to act as a
mediator between the client and the back-end system, as mentioned
in the actual description of the problem. By using an intermediary
session EJB, security can be improved, because the topic that
response messages are delivered to can be made available only inter-
nally by simply not exposing it to a client or blocking the message
server using a firewall or other security measure. The session EJB
can be coded to filter out messages based upon the logged-in user
name.

An Alternative Request/Response Paradigm

If you don’t feel like writing your own request/response code as we’ve just
described, you can tap into the JMS facilities to help you. JMS has two special
classes, javax.jms.QueueRequestor and javax.jms.TopicRequestor,
that implement a simple request/response paradigm. You call a method called
request() that takes as input the request message and returns the response
message. This is implemented in the book’s accompanying source code.

The downsides to this approach are:

■■ You need to block when waiting for a response. You can’t continue
processing and do other things, which is one of the major advantages of
messaging in the first place.

■■ You can’t use transactions. If you did, the outgoing message would be
buffered until the transaction committed. Since the QueueRequestor
class doesn’t commit right away, but instead blocks until it receives a
response message, it will block indefinitely. The outgoing request mes-
sage will wait forever to be flushed from the buffer. See Chapter 10 for
more on transactions.

194 Chapter 7

12_785415 ch07.qxp 6/5/06 7:00 PM Page 194

The Future: Asynchronous Method Invocations
One of the downsides to JMS message-driven beans is that you need to learn a
whole new API—JMS—to call them. This API is highly procedural in nature,
because you are not invoking lots of different business methods on your JMS
message-driven bean; rather, you are sending messages using the JMS API,
and the server has a single method to crack the message open and then call the
intended method using a giant if statement.

An asynchronous method invocation is a real method invocation executed in an
asynchronous fashion. You are actually calling business methods on the server,
such as logMessage() or quoteStock(). You can choose whether you
want to block and wait for an asynchronous response or to return immediately
and not wait for a response. Furthermore, the server can take on the context
information of the client.

Asynchronous RMI and Microsoft Queued Components are asynchronous
method invocation infrastructures. JAX-RPC supports one-way RPC over
SOAP. CORBA also has some support for this.

We hope a future EJB specification supports asynchronous method invoca-
tions. Until then, you’ll have to build such facilities on top of JMS yourself,
perhaps by writing a code generator.

Summary

In this chapter, we’ve learned about developing JMS message-driven beans
and the pitfalls associated with doing asynchronous development with EJBs.
We looked at the various benefits of developing asynchronous components
and how message-driven beans compare to their session and entity bean coun-
terparts. We showed how to build a JMS message-driven bean and deploy it.
Next we looked at how a JMS message-driven bean behaves in its environ-
ment, including how it interacts with transactions. Finally, we took a look at
the common pitfalls of using message-driven beans and proposed some solu-
tions.

This chapter concludes the introductory tour of the different EJB types.
Beginning the next section, Chapter 8 presents additional information that you
will need, such as interceptors and dependency injection.

Introduction to Message-Driven Beans 195

12_785415 ch07.qxp 6/5/06 7:00 PM Page 195

12_785415 ch07.qxp 6/5/06 7:00 PM Page 196

197

In previous chapters, you learned the fundamentals of EJB 3.0 programming.
In this chapter, we’ll build on that knowledge and cover a slew of essential top-
ics, including:

■■ How to call beans from other beans

■■ Annotations

■■ Dependency injection

■■ Interceptors

These topics cover some of the major changes in the 3.0 version of the EJB
specification and are constantly used across the different types of beans. Of
particular importance are the use of annotation and dependency injection.

Calling Beans from Other Beans

Any nontrivial EJB object model has beans calling other beans. For example, a
bank teller bean might call a bank account bean, or a customer bean might call
a credit card bean. In this chapter, we’ll use the following examples:

■■ A pricing bean that computes prices of products, using all sorts of inter-
esting rules, such as discounts, taxes, and shipping costs

Adding Functionality to
Your Beans

C H A P T E R

8

13_785415 ch08.qxp 6/5/06 7:00 PM Page 197

■■ A tax rate bean that returns a tax rate based on the state where the
transaction takes place

The pricing bean calls the tax rate bean. For simplicity, we’ll assume that
both of these beans are stateless session beans.

Default JNDI Lookups
For your bean to call another bean, you must go through the same process that
any other client would go through. Your bean would:

1. Look up the other bean’s interface (either local or remote) via JNDI

2. Call business methods on the EJB object via the interface

As we mentioned earlier, to look up an EJB interface using JNDI, you first
need to supply JNDI initialization parameters, such as the JNDI driver you’re
using, which differs from container to container. But if you’re writing a bean
that calls another bean, how do you know which JNDI service provider to use?
After all, your beans should be container-independent. Hard-coding that JNDI
information into your bean would destroy portability.

The good news is that if you’re looking up a bean from another bean, you
don’t need to supply any JNDI initialization parameters. You simply acquire a
default JNDI initial context. The container sets the default JNDI initial context
before your bean ever runs. For example, the following code snippet is taken
from a bean calling another bean:

// Obtain the DEFAULT JNDI initial context by calling the

// no-argument constructor

Context ctx = new InitialContext();

// Look up the business interface

Object result = ctx.lookup(TaxRate.class.getName());

// Convert the result to the proper type, RMI-IIOP style

TaxRate tr = (TaxRate)result;

The preceding code is portable because nobody ever needs to supply
container-specific JNDI initialization parameters.

Notice that we looked up a bean using the remote interface TaxRate. We
use session beans through an interface that exposes the business methods
implemented in the bean class. This interface is an ordinary Java interface and
as such has access to the static class field. Using the class field, we can call
the getName() method. This returns the fully qualified name of the interface.

The EJB 3.0 specification mandates that containers bind beans to the JNDI
tree by their fully qualified names at deployment time. This ensures that we
can look up the beans in this very simple way.

198 Chapter 8

13_785415 ch08.qxp 6/5/06 7:00 PM Page 198

This is vastly simplified from previous versions of the specification that
relied on the java:comp/env/ejb JNDI context along with EJB references to
look up other beans. EJB 3.0 still supports this type of reference for backward
compatibility. For more information on EJB references found in the deploy-
ment descriptor, see Appendix C, available from this book’s companion Web
site at Wiley.com.

Another way to get a reference to beans from within other beans is to use the
@EJB annotation. This is an even simpler approach than using a JNDI lookup.
Although this is an annotation, it is used to provide references to other beans’
business interfaces. Let’s take a look at its use in code:

@EJB TaxRate tr;

That’s it! Using the @EJB annotation, the container will provide a reference
to the TaxRate business interface for the TaxRateBean. It is usable in the
same way as in the JNDI lookup example. There are a number of elements to
the @EJB annotation that we will look at in the next section.

One of the major strengths of EJB 3.0 is its support of intuitive defaults. This
makes the job of the developer in most situations very simple and straightfor-
ward. There are times when you will need to override defaults and/or add
functionality to your beans. There are a number of metadata annotations to
support this, covered in the next section.

Annotations

This section looks at some key annotations that help in overriding defaults and
adding functionality to your beans. First, we will look at annotations that are
the same across the various types of beans. We will then discuss annotations
relevant to the business interface of a bean. Finally, we will examine additional
annotations for stateful session beans.

This section focuses on those annotations related to the EJB 3.0 specification.
There are other annotations used for backwards compatibility with earlier
releases of the specification. For a comprehensive reference, use the specifica-
tion found at: www.jcp.org/en/jsr/detail?id=220.

Some of the annotations in this section were introduced in other chapters,
but this section goes beyond the basic use of these annotations and looks at ele-
ments that can be used with the annotation to enhance or change its behavior.

Refer to Chapter 4 for an introduction to the annotations for session beans
and Chapter 7 for an introduction to the annotations for message-driven
beans.

Adding Functionality to Your Beans 199

13_785415 ch08.qxp 6/5/06 7:00 PM Page 199

Common Annotations
First, we’ll take a look at annotations that apply to session beans (both stateless
and stateful) and message-driven beans. The @Stateless, @Stateful, and
@MessageDriven annotations support a number of elements:

■■ name

■■ mappedName

■■ description

By default, the name element of the annotation defaults to the unqualified
name of the class. It can be overridden as:

@Stateless(name=”TR”)

public class TaxRateBean implements TaxRate {

...

}

The mappedName element is handled in a container specific manner. As the
EJB 3.0 specification warns: “Applications that use mappedNames may not be
portable.” Here is an example:

@Stateful(mappedName=”java:comp/env/ejb/CartBean”)

public class CartBean implements Cart{

...

}

Here is an example of the description element being set:

@MessageDriven(description=”Listens for purchase messages”)

public class PurchaseMDB implements MessageListener {

...

}

Business Interface Annotations
By now we’ve now seen a number of examples where the @Local or @Remote
annotation is used on an interface to indicate that it is the business interface for
a session bean.

No further annotation is required if the bean class implements the business
interface. The business interface does not even need to have a similar name to
the bean class.

200 Chapter 8

13_785415 ch08.qxp 6/5/06 7:00 PM Page 200

There may be other situations where the business interface name has no
relation to the bean class name or where you want to use a number of inter-
faces for the business interface on the bean class. In this case, you will need to
use elements of the @Remote or @Local annotation. Furthermore, in these
cases the @Remote or @Local annotation will be defined on the bean class
and not on the business interface. Let’s take the case where we have a number
of interfaces that we want to use to make up the business interface. Source 8.1
and 8.2 are the interface definitions. Source 8.3 is the bean class definition.

public interface PricerLookup {

public double getTaxLookup(double cost, String state);

}

Source 8.1 PricerLookup.java.

public interface PricerInjection {

Public double getTaxInjection(double cost, String state);

}

Source 8.2 PricerInjection.java.

@Stateless

@Remote({PricerLookup.class,PricerInjection.class})

public class PricerBean implements PricerLookup, PricerInjection {

public double getTaxLookup(double cost, String state) {

...

}

public double getTaxInjection(double cost, String state) {

...

}

}

Source 8.3 PricerBean.java.

Notice that the interfaces do not have the @Remote or @Local annotation.
The @Remote annotation is defined on the bean class. It also includes an ele-
ment that is an array of classes. The classes in this list are the interfaces that
make up the business interface for this bean. When specifying the business
interfaces in this way, it is not required that the bean class implement the inter-
faces. However, it is a good practice to explicitly implement the interfaces on

Adding Functionality to Your Beans 201

13_785415 ch08.qxp 6/5/06 7:00 PM Page 201

the bean class. This enforces type safety in that you must provide the methods
specified in the interfaces.

We will see a client example of interacting with the bean from Source 8.3 in
the “Dependency Injection” section later in this chapter.

Other Stateful Annotations
As discussed in Chapter 4, the @Remove annotation marks a method of a state-
ful session bean such that when it is called the bean will be removed from the
bean pool. The @PreDestroy life-cycle callback method (if any) will be called
before the specified remove method is executed. When the remove method
completes, the container will destroy the stateful session bean.

The retainIfException element indicates whether or not the stateful
session bean will remain active if an exception is thrown in the remove
method.

Let’s take a look at a simple example in Source 8.4.

package examples.stateful;

import javax.ejb.Remove;

import javax.ejb.Stateful;

import examples.interfaces.Cart;

@Stateful

public class CartBean implements Cart {

private int numItems;

public void addItem() {

numItems++;

}

public int getItems() {

return numItems;

}

@Remove(retainIfException=false)

public void remove1() throws Exception {

doRemove();

}

@Remove(retainIfException=true)

public void remove2() throws Exception {

doRemove();

}

private void doRemove() throws Exception {

Source 8.4 CartBean.java. (continued)

202 Chapter 8

13_785415 ch08.qxp 6/5/06 7:00 PM Page 202

if (numItems > 1 && numItems < 4) {

throw new Exception(“blah”);

}

System.out.println(“Removing cart with: “+

numItems+” items.”);

}

}

Source 8.4 (continued)

As you can see, a stateful session bean can have more than one remove
method. The remove1() method above has the retainIfException set to
false, while the remove2() method has the retainIfException set to
true. Both remove methods call the private doRemovemethod. If the number
of items in the “cart” is 2 or 3, an Exception will be thrown. This code serves
no useful business purpose except to demonstrate the effects of exceptions on
the removal of stateful session beans. What is the effect of this code? Let’s look
at some standalone client code in Source 8.5 to see what happens.

package examples.client;

import javax.ejb.EJBNoSuchObjectException;

import javax.naming.InitialContext;

import javax.naming.NameClassPair;

import javax.naming.NamingEnumeration;

import javax.naming.NamingException;

import examples.interfaces.Cart;

public class CartClient {

public static void main(String[] args) {

try {

InitialContext ic = new InitialContext();

for (int i=0;i<2;i++) {

Cart cart = (Cart)ic.lookup(Cart.class.getName());

cart.addItem();

cart.addItem();

System.out.println(“items in the cart: “+cart.getItems());

try {

try {

if (i==0) {

cart.remove1();

}

else {

cart.remove2();

}

Source 8.5 CartClient.java. (continued)

Adding Functionality to Your Beans 203

13_785415 ch08.qxp 6/5/06 7:00 PM Page 203

}

catch (Exception e) {

;

}

cart.addItem();

cart.addItem();

cart.addItem();

System.out.println(“items in the cart: “+cart.getItems());

}

catch (EJBNoSuchObjectException esoe) {

System.out.println(“Cart was already removed “+

“during iteration “+i);

}

}

}

catch (NamingException e) {

e.printStackTrace();

}

}

}

Source 8.5 (continued)

In both iterations of the loop, an exception will be thrown, since there are
only two items in the cart when the @Remove method is called. The following
lines from CartBean ensure this:

...

if (numItems > 1 && numItems < 4) {

throw new Exception(“blah”);

}

...

204 Chapter 8

THE USE OF THE BUSINESS INTERFACE

It is very important to understand the role of the business interface. This has
been explained in other chapters, but it is useful to review here. The bean class
implements the business interface. In object-oriented parlance, this is the “is a”
type of relationship. For instance, we can say that a CartBean “is a” Cart
because it implements the Cart interface. You will notice in the client code
below that all interaction with the bean is done via the business interface (Cart
in this case). This is how the client is kept thin—only the interface (a very small
bit of code) needs to be packaged with the client.

13_785415 ch08.qxp 6/5/06 7:00 PM Page 204

Since the remove1 method has the retainIfException element set to
false, the stateful session bean will be removed. The next call to
cart.addItem will throw the runtime NoSuchEJBException Exception
(which we catch in the sample code).

Since the remove2 method has the retainIfException element set to
true, the stateful session bean will not be removed, and thus the next call to
cart.addItem will work just fine.

The @Init annotation is used to indicate that a method corresponds to a
particular create method. This is used when adapting an EJB 2.x stateful ses-
sion bean for use in an EJB 3.0 container. The discussion of this annotation is
outside the scope of this section. Refer to the EJB 3.0 specification at http://
www.jcp.org/en/jsr/detail?id=220.

Dependency Injection
The EJB 3.0 specification introduces powerful mechanisms for obtaining refer-
ences to resources and for injecting references to EJB-related objects. More tech-
nically, everything we are talking about in this section relates to injection.
Injection is the technique of relying on the container (the Java EE application
server) to provide handles to objects it has access to. In previous versions of the
EJB specification, these resources had to be looked up using JNDI often requir-
ing abstracted resource references and complicated initialization properties.
Now, we can simply define a reference and use the objects. The container will
inject the reference before any of our method calls or other initialization occurs.

Even though both resource references and resource injection are used to
describe the process, both terms refer to general process of dependency injec-
tion. The major difference is that resource references use the @Resource anno-
tation to reference objects that the container has access to but are not
(necessarily) directly related to EJB. Dependency injection, on the other hand,
uses other annotations to inject references to objects directly associated with
EJB. Examples include @EJB and @PersistenceContext.

Resource References

The @Resource annotation is used to set up a reference to a resource in the
bean’s environment. For instance, the following code snippet sets up a refer-
ence to a stateful session bean’s SessionContext:

@Resource SessionContext context;

TaxRate tr = (TaxRate)context.lookup(TaxRate.class.getName());

Adding Functionality to Your Beans 205

13_785415 ch08.qxp 6/5/06 7:00 PM Page 205

The preceding example is a good use of a resource reference, since the
SessionContext object can do lookups in the same way that the
InitialContext can. Take a look at this code snippet:

InitialContext context = new InitialContext();

TaxRate tr = (TaxRate)context.lookup(TaxRate.class.getName());

This code has the same result as the first example. However, instantiating
the InitialContext object is a much more heavyweight operation than
using the SessionContext object through the resource reference. As we saw
before (and will discuss further in the injection section) an even simpler form
is available:

@EJB TaxRate tr;

At times, more information is needed to get the resource reference. This
information can be specified using elements of the @Resource annotation.
For instance, when referencing a DataSource resource, we need to use the
name and type elements:

@Resource(name=”jdbc/__default”,type=Datasource.class)

DataSource dataSource;

Just about any resource available to the Java EE application server is
available for reference using the @Resource annotation. Examples include
(but are not limited to): javax.sql.DataSource, javax.transaction
.UserTransaction, javax.jms.Queue, javax.ejb.SessionContext,
and org.omg.CORBA.ORB.

So far, we’ve looked at resource references at the field level. They can also be
used at the method level for setter-based injection. Let’s look at a code snippet
to understand this.

package com.temp;

public class MyClass {

...

@Resource

private void setMyDataSource(DataSource ds) {

myDataSource = ds;

}

private myDataSource;

...

}

206 Chapter 8

13_785415 ch08.qxp 6/5/06 7:00 PM Page 206

In the preceding example, the name of the resource is inferred based on the
name of the method. The name is inferred based on the reflective properties of
the JavaBeans specification in conjunction with the bean class name. So the
“set” is dropped and the first letter is made lowercase thus making the end of
the name myDataSource. By default, the full name would be java:comp/
env/com.temp.MyClass/myDataSource. The type is also inferred based
on the parameter being passed into the method. The name and type can explic-
itly be set using the name and type elements of the @Resource annotation.

Resource references can even be used for environmental entries set in the
deployment descriptor element: env-entry. For instance, if a long named
timeout was specified by a bean deployer, our code could use it as follows:

@Resource long timeout;

When using resource references you need to ask yourself, “Is the object that
I want to reference available to the application server?” If the answer is yes,
then you should be able to use the @Resource annotation to inject a reference
to it.

As a final note on resource references, we’ll discuss the @Resources anno-
tation. This annotation simply allows you to set up multiple resource refer-
ences at once at the class level. Here’s a sample:

@Resources({

@Resource(name=”datasource”,type=”javax.sql.DataSource.class),

@Resource(name=”queue”,type=”javax.jms.Queue”)

})

public class X {

...

}

When using the @Resources or @Resource annotations at the class level,
an entry in the bean’s environment is declared, but the resource is not injected
into a particular variable. It is expected that the resource would be looked up
using the standard JNDI mechanism within the class. Why would you want to
declare resources at the class level? Each resource may only be injected into a
single field or method for a particular bean. If you need to use a resource in
more than one spot in the bean class, you need to define that resource at the
class level and then look it up explicitly by name.

In the next section, we will look at resource injection. We could really refer
to it as other resource injection as the resource references we have discussed in
this section use injection as well.
As described earlier in this chapter, EJB 3.0 makes it very easy to refer to other
EJBs using the @EJB annotation. (The section “Default JNDI Lookups” pro-
vides a simple example of this annotation’s use.) Here, we will look at the

Adding Functionality to Your Beans 207

13_785415 ch08.qxp 6/5/06 7:00 PM Page 207

various elements of the @EJB annotation and its use when applied at the class
level.

The portable elements of the @EJB annotation are name, beanInterface,
beanName, and description. Let’s take a look at an example:

@EJB(

name=”ejb/pricer”,

beanInterface=Pricer.class,

beanName=”pricer”,

description=”This bean is used to calculate prices.”

)

private Pricer pricer;

In the preceding example, the bean has been explicitly deployed (most
likely via a deployment descriptor) using the name java:comp/env/ejb/
pricer.

When applied at the class level, the @EJB annotation has the effect of bind-
ing the name in the EJB environment. Here is a code snippet:

@EJB(name=”ejb/TaxRate”, beanInterface=TaxRate.class)

@Stateless

public class PricerBean implements Pricer {

...

public double getFinalPrice(double cost, String state) {

InitialContext context = new InitialContext();

TaxRate tr = (TaxRate)context.lookup(“java:comp/env/ejb/TaxRate”);

...

}

...

}

One of the most powerful annotations for dependency injection in EJB 3.0 is
@PersistenceContext. This is used to inject the EntityManager object,
which is used synchronize entities and the database backing them. Look at
Chapter 6 and Chapter 9 for more detailed information on the persis-
tence mechanism specified for EJB 3.0. In this section, we will look at how the
EntityManager is injected. Here is its simplest form:

@PersistenceContext EntityManager em;

Once injected, we can call methods on the em reference to perform persis-
tence operations. We can also specify the name binding by using the annota-
tion at the class level.

208 Chapter 8

13_785415 ch08.qxp 6/5/06 7:00 PM Page 208

@Stateless

@PersistenceContext(name=”HelloWorldEntity”)

public class HelloWorldBean implements HelloWorld {

@Resource SessionContext context;

public void hello() {

EntityManager em =

(EntityManager)context.lookup(“HelloWorldEntity”);

...

}

...

}

In this example, we are binding the name HelloWorldEntity in the
bean’s namespace. Further down, we are using that name to perform a lookup.

In the preceding examples, there was an assumption of a default persistence
unit. As described in Chapter 6, a persistence unit is a set of classes that are
mapped to a single database. Since an application server can support persis-
tence to any number of databases, we can use the optional unitName element
to identify the persistence unit to be used with the bean. If your application
server does not have a default or if there is more than one persistence unit
defined, you must supply this element. Here’s what it looks like:

@PersistenceContext(unitName=”pu1”) EntityManager em;

In this case, a persistence unit named pu1 was defined within the applica-
tion server. We are indicating that it is this persistence unit that will be used in
the bean.

Interceptors
Interceptors are methods that are invoked automatically when the business
methods of a bean are invoked. Using interceptors enables a clean distinction
between business logic code and meta or support code.

Interceptors can be used on session beans and message-driven beans. Inter-
ceptor methods can be defined within the bean class or in external classes. A
bean class can have any number of interceptors.

The @Interceptor or @Interceptors annotation is used to indicate
which external classes will be used as interceptors, while the @AroundInvoke
annotation is used to identify a method as an interceptor. The method can
either be in the bean class or in one of the named external classes.

Interceptor methods have access to information about the business method
that triggered it, including method names and parameters. The interceptor
method can also be used to halt processing of the business method. For

Adding Functionality to Your Beans 209

13_785415 ch08.qxp 6/5/06 7:00 PM Page 209

instance, an interceptor might check for certain security information and, if it
is not found, would halt the processing of the business method. If the inter-
ceptor does not allow the business method to proceed, all other interceptors as
well as the business method will not proceed.

Interceptors are processed in the order they are specified. Interceptors
defined in external classes will be executed before an interceptor defined
within a bean class.

Enough background! Let’s dive into some code. Sources 8.6 and 8.7 show
external classes with methods used as interceptors. Source 8.8 shows a session
bean that uses the external interceptors as well as an interceptor defined
within the bean.

package examples.interceptor;

import javax.ejb.AroundInvoke;

import javax.ejb.InvocationContext;

public class LoggerInterceptor {

@AroundInvoke

public Object logger(InvocationContext inv) throws Exception {

System.out.println(“Intercepted call via “+

“external class to: “+inv.getMethod().getName());

Object[] params = inv.getParameters();

for (int i=0;i<params.length;i++) {

System.out.println(“\tparam: “+params[i]);

}

return inv.proceed();

}

}

Source 8.6 LoggerInterceptor.java.

210 Chapter 8

AOP AND EJB

Almost everyone has heard the term AOP (Aspect Oriented Programming) by
this point. AOP generally is the technique of expressing cross-cutting concerns
(such as security) in a clear way so that the intent (business problem) of the
underlying code remains clear.

EJBs new interceptors gives us a rudimentary AOP system in that the
business code can be completely separated from the interceptor code. The
interceptor code could handle the cross-cutting concerns, such as checking
security. The interceptor code can influence whether or not the call to the
business method will be invoked.

Common uses for interceptors are logging, performing tangential auditing
functions, and security checking.

13_785415 ch08.qxp 6/5/06 7:00 PM Page 210

package examples.interceptor;

import javax.ejb.AroundInvoke;

import javax.ejb.InvocationContext;

public class AuditorInterceptor {

@AroundInvoke

public Object checkCost(InvocationContext inv) throws Exception {

if (inv.getMethod().getName().startsWith(“getTax”)) {

Object[] o = inv.getParameters();

double cost = ((Double)o[0]).doubleValue();

if (cost > 50) {

System.out.println(“Cost is > 50!”);

}

}

return inv.proceed();

}

}

Source 8.7 AuditorInterceptor.java.

package examples.stateless;

import javax.annotation.EJB;

import javax.ejb.AroundInvoke;

import javax.ejb.Interceptors;

import javax.ejb.InvocationContext;

import javax.ejb.PostConstruct;

import javax.ejb.PreDestroy;

import javax.ejb.Stateless;

import javax.naming.InitialContext;

import javax.naming.NamingException;

import examples.interfaces.Pricer;

import examples.interfaces.TaxRate;

import examples.interceptor.LoggerInterceptor;

import examples.interceptor.AuditorInterceptor;

@Stateless

@Interceptors({LoggerInterceptor.class,AuditorInterceptor.class})

public class PricerBean implements Pricer {

private TaxRate taxRate;

@EJB

Source 8.8 PricerBean.java. (continued)

Adding Functionality to Your Beans 211

13_785415 ch08.qxp 6/5/06 7:00 PM Page 211

private TaxRate taxRate2;

public double getTaxLookup(double cost, String state) {

double tax = -1;

tax = cost * taxRate.getTaxRate(state);

return tax;

}

public double getTaxInjection(double cost, String state) {

double tax = -1;

tax = cost * taxRate2.getTaxRate(state);

return tax;

}

@PostConstruct

public void postConstruct() {

try {

InitialContext ic = new InitialContext();

taxRate = (TaxRate)ic.lookup(TaxRate.class.getName());

}

catch (NamingException e) {

// some kind of appropriate handling here

}

}

@PreDestroy

public void preDestroy() {

taxRate = null;

}

@AroundInvoke

public Object logger(InvocationContext inv) throws Exception {

System.out.println(“Intercepted call via internal method to: “+

inv.getMethod().getName());

Object[] params = inv.getParameters();

for (int i=0;i<params.length;i++) {

System.out.println(“\tparam: “+params[i]);

}

return inv.proceed();

}

}

Source 8.8 (continued)

The PricerBean class incorporates a lot of the subjects that we have dis-
cussed in this chapter including beans calling other beans through injection
and JNDI lookups. For now, let’s focus on the interceptors.

212 Chapter 8

13_785415 ch08.qxp 6/5/06 7:00 PM Page 212

Notice that the interceptor methods have an InvocationContext object
passed into them. It is this object that gives us access to the method names and
parameter list that triggered the interceptor. This object also allows the busi-
ness method to proceed or stops it.

Notice also that the business method is solely concerned with the business
at side, while the interceptors perform their own work. This separation of con-
cerns makes the code very clear.

Finally, note that the PricerBean class uses the TaxRate interface to the
TaxRateBean. For the purposes of this discussion, it is not necessary to dis-
play the TaxRate code here. Please refer to this book’s Web site for all of the
code used in this chapter.

Let’s take a look at a client that uses the PricerBean and deconstruct the
output from the interceptors. Source 8.9 shows the client code.

package examples.client;

import javax.naming.InitialContext;

import javax.naming.NamingException;

import examples.interfaces.Pricer;

public class PricerClient {

public static void main(String[] args) {

try {

InitialContext ic = new InitialContext();

Pricer pricer = (Pricer)ic.lookup(Pricer.class.getName());

System.out.println(“Tax (using lookup) on: “+

args[0]+” for State: “+args[1]+

“ is: “+

pricer.getTaxLookup(Double.parseDouble(args[0]),args[1]));

System.out.println(“Tax (using injection) on: “+

args[0]+” for State: “+args[1]+

“ is: “+

pricer.getTaxInjection(Double.parseDouble(args[0]),args[1]));

}

catch (NamingException e) {

e.printStackTrace();

}

}

}

Source 8.9 PricerClient.java.

Output 8.1 shows a snippet of the log output produced by the application
server when the client defined in Source 8.9 is run. The command-line para-
meters 85 and ny were used for this example.

Adding Functionality to Your Beans 213

13_785415 ch08.qxp 6/5/06 7:00 PM Page 213

A Intercepted call via external class to: getTaxLookup

A param: 85.0

A param: ny

B Cost is > 50!

C Intercepted call via internal method to: getTaxLookup

C param: 85.0

C param: ny

A Intercepted call via external class to: getTaxInjection

A param: 85.0

A param: ny

B Cost is > 50!

C Intercepted call via internal method to: getTaxInjection

C param: 85.0

C param: ny

Output 8.1

For clarity, the output has been grouped by letter: A, B, and C. All of the A list-
ings are from the external interceptor: LoggerInterceptor defined in Source
8.6. The B listings are from the external interceptor: AuditorInterceptor
defined in Source 8.7. The C listings are from the internal interceptor defined in
the bean class: PricerBean defined in Source 8.8.

Notice from the client code in Source 8.9, business methods are only called
twice. It is important to remember that all defined interceptors will be fired
when a business method is called. Interceptors are fired in the order that they
are defined with class-level external interceptor definitions taking precedence
over internal interceptor definitions.

If an interceptor does not call the proceed method on the
InvocationContext object, no other interceptors nor the business method
itself will be executed. As such, we must take care to make the interceptor code
very clear. If there is some logic branch that we take that will not call the
proceed method, then we should give some sort of feedback, through logs or
error messages, that the business method was not executed.

Summary

In this chapter, we reviewed some of the fundamental aspects of the EJB 3.0
specification that make it so powerful and easy to use.

■■ Beans can easily call other beans by using simplified JNDI lookups or
dependency injection using the @EJB annotation.

■■ The annotations and their elements enable a very flexible and expres-
sive environment to work with EJBs in.

214 Chapter 8

13_785415 ch08.qxp 6/5/06 7:00 PM Page 214

■■ Resource and dependency injection allow us to gain access to practi-
cally any resource available to the Java EE application server.

■■ Interceptors enable us to execute code that is relevant but tangential in
nature to our business code. This separation of concerns makes for
cleaner, more understandable code. In addition, it is easy to alter the
business code or the interceptor code, since they are separate. Previ-
ously, the code we now find in interceptor code would have been pep-
pered throughout our business logic.

The common theme in all of the topics in this chapter is really leveraging the
application server to do the heavy lifting. It is the application server that per-
forms the actual injection on our behalf. The application server reads the anno-
tations and associated elements through Java reflection. Sometimes this is
done at deployment time, and sometimes it is done at runtime. We don’t have
to worry about it.

Through these mechanisms (and the others described throughout this book)
EJB finally achieves its original goal of allowing developers to focus on the
task at hand and to let the application server handle common tasks not directly
related to the business problem.

In the next chapter, we will examine the advanced concepts of the new per-
sistence layer. This is, perhaps, the most exciting aspect of EJB 3.0. The persis-
tence layer is now greatly simplified and is modeled on other lightweight
persistence layers, such as Hibernate.

Adding Functionality to Your Beans 215

13_785415 ch08.qxp 6/5/06 7:00 PM Page 215

13_785415 ch08.qxp 6/5/06 7:00 PM Page 216

PA R T

If you’ve read to this point, you should be quite familiar with the basics of
Enterprise JavaBeans development. In Part III, we raise the bar by moving
on to more cutting-edge concepts. These include the following:

■■ Advanced Persistence. Chapter 9 provides an in-depth discussion on
persistence topics such as inheritance, entity relationships, and EJB-QL
enhancements.

■■ Transactions. Chapter 10 shows you how to harness transactions to
make your EJB deployments reliable. We’ll discuss transactions at a
conceptual level and how to apply them to EJB. You’ll also learn
about the Java Transaction API (JTA).

■■ EJB Security. Chapter 11 provides an in-depth coverage of techniques
and best practices surrounding EJB application security. It covers
how to enable authentication and authorization declaratively and
programmatically in EJB applications. Also the chapter showcases
enabling JAAS-based authentication for EJB applications. In addition
to these, it talks about Web services security concepts.

■■ EJB Timers. Chapter 12 focuses on building EJB applications that use
the container-provided EJB Timer Service.

Advanced Enterprise
JavaBeans Concepts

III

14_785415 pt03.qxp 6/5/06 7:01 PM Page 217

Click here to purchase this book.

http://www.amazon.com/gp/product/0471785415/ref=sr_11_1/103-1174895-6545420?%5Fencoding=UTF8
jpiscitelli
cover

■■ EJB Best Practices. Chapter 13 covers a lot of best practices pertinent
to EJB, such as when to use EJB, how to choose the right Web applica-
tion framework when working with EJB applications that have Web
clients, how to apply model-driven development or aspect-oriented
programming concepts to EJB applications, and many other such
guidelines.

■■ EJB Performance Optimizations. Chapter 14 covers tips and tech-
niques for boosting EJB performance. You’ll learn about best practices
for boosting performance of stateless session beans, stateful session
beans, and message-driven beans, as well as entities. Also, a lot of
other miscellaneous design and development tips are presented in
this chapter to improve the performance of your EJB applications.

■■ EJB-based integration. Chapter 15 covers various approaches to inte-
grate disparate applications with EJB applications. Here, you will
primarily learn how to use the Java EE Connector Architecture to
build adapters to integrate EJB applications with the outside world.

■■ Clustering. Chapter 16 shows you how EJBs are clustered in large-
scale systems. You’ll learn how clustering works behind the scenes
and a few strategies for how containers might achieve clustering.
This is a critical topic for anyone building a system that involves
several machines working together.

■■ EJB-Java EE integration: Building a complete application. Chapter 17
shows how EJB components can work together with other parts of
Java EE technology stack to solve a business problem.

These are extremely interesting middleware topics; indeed, many books
could be written on each subject alone. To understand these concepts, we
highly recommend that you read Part I and Part II first. However, if you’re
already well versed in EJB, please join us to explore these advanced issues.

218 Part III

14_785415 pt03.qxp 6/5/06 7:01 PM Page 218

219

The new Java Persistence specification adds a dimension to the EJB specifica-
tion that has heretofore been missing. Namely, the ability to take full advan-
tage of object orientation while having elements of the object map persisted to
the database behind the scenes.

In previous versions of EJB, in order to take advantage of container-
managed persistence for entity beans, the Java code had to be written in strict
conformance to the rules of the specification. These rules restricted the java
code from taking advantage of the most basic features of object orientation,
including inheritance and polymorphism. This barrier has been shattered by
Java Persistence and entities.

Another advancement with Java Persistence is the update of the EJB Query
Language (EJB-QL). This is a platform-independent query language that sup-
ports all of the modern querying capabilities, including grouping, joins, sub-
queries, and dynamic queries (among others). The benefit of EJB-QL, as
compared to the Structured Query Language (SQL) “standard” is that it is
truly platform-independent and is object-aware. This means that you refer-
ence an entity and its fields by name, rather than having to know the details of
table and column names in the underlying RDBMS.

In this chapter, we will look at these advanced features of Java Persistence.
We will cover inheritance, polymorphism, modeling relationships with
objects, and EJB-QL enhancements.

Advanced Persistence Concepts

C H A P T E R

9

15_785415 ch09.qxp 6/5/06 7:01 PM Page 219

Inheritance

Before we can jump into code, we need to talk about mapping strategies to
support inheritance. As discussed in Chapter 6, we need object-relational map-
ping (ORM) in order to bridge the gap between inherently object-oriented
technology (Java) and inherently relational technology (RDBMSs). There are a
number of mapping strategies for supporting the object-oriented concept of
inheritance in relational databases. These are:

■■ Single table per class hierarchy

■■ Separate table per subclass

■■ Single table per concrete entity class

Figure 9.1 shows a simple object model that we will use to show each of the
strategies.

In this model, our root class is RoadVehicle. Motorcycle and Car inherit
from RoadVehicle. Coupe and Roadster inherit from Car.

Sources 9.1 through 9.5 show the object model in Java. This is a straightfor-
ward inheritance chain that uses the extends Java keyword. We will add
annotations to these classes to make them into entities and to implement each
of the strategies shown above (standard setters and getters are omitted for
brevity).

220 Chapter 9

ENTITIES VERSUS ENTITY BEANS

The EJB 3.0 specification requires that EJB container implementers still support
EJB 2.1. This includes support for the previous persistence model. “entity
beans” refer to objects used for persistence in previous versions of the
specification. They must live inside the container. “Entities” refer to objects
used with the new Java Persistence specification. These entities are not
required to be bound to the container. Out of container and standalone
EntityManagers make it possible to work with persistence in a strictly Java
Standard Edition (JSE) environment.

15_785415 ch09.qxp 6/5/06 7:01 PM Page 220

Figure 9.1 UML object model.

package examples.entity.single_table;

public class RoadVehicle {

public enum AcceleratorType {PEDAL,THROTTLE};

protected int numPassengers;

protected int numWheels;

protected String make;

protected String model;

// setters and getters go here

...

public String toString() {

return “Make: “+make+

“, Model: “+model+

“, Number of passengers: “+numPassengers;

}

}

Source 9.1 RoadVehicle.java root class.

acceleratorType: AcceleratorType

Motorcycle

acceleratorType: AcceleratorType

Car

numPassengers : int
numWheels : int
make : string
model : string

RoadVehicle

coolFactor: CoolFactor

Roadster

boringFactor: BoringFactor

Coupe

Advanced Persistence Concepts 221

15_785415 ch09.qxp 6/5/06 7:01 PM Page 221

package examples.entity.single_table;

public class Motorcycle extends RoadVehicle {

public final AcceleratorType acceleratorType =

AcceleratorType.THROTTLE;

public Motorcycle() {

numWheels = 2;

numPassengers = 2;

}

public String toString() {

return “Motorcycle: “+super.toString();

}

}

Source 9.2 Motorcycle.java.

package examples.entity.single_table;

public class Car extends RoadVehicle {

public final AcceleratorType acceleratorType =

AcceleratorType.PEDAL;

public Car() {

numWheels = 4;

}

public String toString() {

return “Car: “+super.toString();

}

}

Source 9.3 Car.java.

package examples.entity.single_table;

public class Roadster extends Car {

public enum CoolFactor {COOL,COOLER,COOLEST};

private CoolFactor coolFactor;

public Roadster() {

numPassengers = 2;

Source 9.4 Roadster.java. (continued)

222 Chapter 9

15_785415 ch09.qxp 6/5/06 7:01 PM Page 222

}

// setters and getters go here

...

public String toString() {

return “Roadster: “+super.toString();

}

}

Source 9.4 (continued)

package examples.entity.single_table;

public class Coupe extends Car {

public enum BoringFactor {BORING,BORINGER,BORINGEST};

private BoringFactor boringFactor;

public Coupe() {

numPassengers = 5;

}

// setters and getters go here

...

public String toString() {

return “Coupe: “+super.toString();

}

}

Source 9.5 Coupe.java.

Single Table per Class Hierarchy
In this strategy, a single table is used to represent the entire class hierarchy. A
discriminator column is used to distinguish between subclasses. The discrimi-
nator column in the database will have different values based on the Java type
it is representing.

The advantage of this strategy is that it is very efficient and supports poly-
morphism (as you will see in the next section). The disadvantage is that the table
must have a column representing every field of every class in the hierarchy. Not
only can this produce an extremely wide table if you have a deep inheritance
hierarchy, but more importantly, every field that maps to a property of a subclass

Advanced Persistence Concepts 223

15_785415 ch09.qxp 6/5/06 7:01 PM Page 223

must be nullable. This makes sense since a row in the table can represent many
different types, it would not be possible to define all the columns as NOT NULL.

Let’s see how our five listings change in order to be entities and to use the
single table per class hierarchy mapping strategy. Sources 9.6 through 9.10
show this (standard setters and getters as well as imports are omitted for
brevity). Significant code additions are bolded. We will discuss the code below.

package examples.entity.single_table;

// imports go here

@Entity(name=”RoadVehicleSingle”)

@Inheritance(strategy=InheritanceType.SINGLE_TABLE)

@DiscriminatorColumn(name=”DISC”,

discriminatorType=DiscriminatorType.STRING)

@DiscriminatorValue(“ROADVEHICLE”)

public class RoadVehicle implements Serializable {

public enum AcceleratorType {PEDAL,THROTTLE};

@Id

protected int id;

protected int numPassengers;

protected int numWheels;

protected String make;

protected String model;

public RoadVehicle() {

id = (int) System.nanoTime();

}

// setters and getters go here

...

}

Source 9.6 RoadVehicle with entity annotations.

package examples.entity.single_table;

// imports go here

@Entity

@DiscriminatorValue(“MOTORCYCLE”)

public class Motorcycle extends RoadVehicle implements Serializable {

public final AcceleratorType acceleratorType =

Source 9.7 Motorcycle.java with entity annotations. (continued)

224 Chapter 9

15_785415 ch09.qxp 6/5/06 7:01 PM Page 224

AcceleratorType.THROTTLE;

public Motorcycle() {

super();

numWheels = 2;

numPassengers = 2;

}

}

Source 9.7 (continued)

package examples.entity.single_table;

// imports go here

@Entity

@DiscriminatorValue(“CAR”)

public class Car extends RoadVehicle implements Serializable {

public final AcceleratorType acceleratorType =

AcceleratorType.PEDAL;

public Car() {

super();

numWheels = 4;

}

}

Source 9.8 Car.java with entity annotations.

package examples.entity.single_table;

// imports go here

@Entity

@DiscriminatorValue(“ROADSTER”)

public class Roadster extends Car implements Serializable {

public enum CoolFactor {COOL,COOLER,COOLEST};

private CoolFactor coolFactor;

public Roadster() {

super();

numPassengers = 2;

Source 9.9 Roadster with entity annotations. (continued)

Advanced Persistence Concepts 225

15_785415 ch09.qxp 6/5/06 7:01 PM Page 225

}

// setters and getters go here

...

}

Source 9.9 (continued)

package examples.entity.single_table;

// imports go here

@Entity

@DiscriminatorValue(“COUPE”)

public class Coupe extends Car implements Serializable {

public enum BoringFactor {BORING,BORINGER,BORINGEST};

private BoringFactor boringFactor;

public Coupe() {

super();

numPassengers = 5;

}

// setters and getters go here

...

}

Source 9.10 Coupe with entity annotations.

Let’s start our analysis of this code with Source 9.6. Our first annotation is
the @Entity annotation. This marks this Plain Old Java Object (POJO—see
the sidebar “What’s in a POJO?” for more information) as an entity for the
application server.

At deployment time, the annotations are inspected and appropriate
action is taken. It is the @Inheritance, @DiscriminatorColumn, and
@DiscrimintaorValue annotations that give the hints to the application
server that we are setting up a hierarchy using the single-table approach. The
strategy element of the @Inheritance annotation explicitly indicates which
strategy we want to use: InheritanceType.SINGLE_TABLE, in this case. The
@DiscriminatorColumn annotation indicates a column name and type that
will be used to discriminate between types. If this is not completely clear yet,
don’t worry! When you see the table definition that is automatically generated
for this code, it will become clearer. Our discriminator column will be named

226 Chapter 9

15_785415 ch09.qxp 6/5/06 7:01 PM Page 226

DISC and will contain values of type String (indicated by DiscriminatorType
.STRING). Finally, we indicate that for objects of type RoadVehicle that are
persisted, the value put in the discriminator column should be ROADVEHICLE.
This is indicated using the @DiscriminatorValue annotation.

We also added the @Id annotation, which is required for entities. We are
using a simple primary key (an int in this case). The key is generated in the
constructor of RoadVehicle. The implication of this is that we are going to
want each of our subclasses to call super() in their constructors so that the
value of id will be properly set. The bottom line is that before you persist the
entity, it must have a unique ID.

Notice that for each of the other source listings (9.7–9.10) the only
annotation that we added aside from the @Entity annotation, is the
@DiscriminatorValue annotation. It is the discriminator value that will
distinguish between types in the single table. As described previously, each
subclass calls super() in its constructer to guarantee that a unique ID is cre-
ated for it.

We have added implements Serializable to each of the entity classes.
This is simply so that (detached) objects can be passed back from methods to a
standalone client.

You should take note of the fact that we explicitly gave the entity a name using
the name element of the @Entity annotation. As you will see farther down, we
create another version of these classes that use the multiple table strategy. In
order to distinguish between these the two entity classes named RoadVehicle,
we name one RoadVehicleSingle and the other RoadVehicleJoined.

Advanced Persistence Concepts 227

WHAT’S IN A POJO?

POJO stands for plain old Java object. It has been a long sought after goal for
persistence frameworks to be able to work with plain Java objects. This goal
has now finally been achieved with the EJB 3.0 persistence layer.

There have been a number of articles and comments in forums questioning
whether or not entities, as described in the EJB 3.0 persistence specification,
really are POJOs. After all, the entity classes need to be annotated in order to
be properly identified as entities. The container picks up on these annotations
in order to properly deploy the entity and to inject resources, such as the
EntityManager.

EJB 3.0 entities are, in fact, POJOs. This is so because annotations, in general,
are now a part of the Java language. There is nothing that would prevent a
standalone program, for instance, from instantiating and using an entity object
completely outside any container or managed environment.

Much has been made of the fact that now that entities are POJOs, they can
be tested outside the container. While this is true and very important, it is not
the whole picture. If the code relies on injected resources, the testing
framework must also inject these resources, even if the injected objects are
simple mockup objects for the purposes of testing.

15_785415 ch09.qxp 6/5/06 7:01 PM Page 227

228 Chapter 9

When we package these entities into a persistence unit (as described in
Chapter 6) and deploy the code to the server, a table (if it doesn’t exist) is cre-
ated according to the rules specified via annotations in the code. To better
understand what’s going on behind the scenes, let’s take a look at the structure
of the table that is generated. Source 9.11 shows the Data Definition Language
(DDL) for the generated table.

CREATE TABLE ROADVEHICLE (

ID INTEGER NOT NULL,

DISC VARCHAR(31),

NUMWHEELS INTEGER,

MAKE VARCHAR(255),

NUMPASSENGERS INTEGER,

MODEL VARCHAR(255),

ACCELERATORTYPE INTEGER,

COOLFACTOR INTEGER,

BORINGFACTOR INTEGER

);

Source 9.11 DDL for table generated from entities.

Notice that all of the properties specified in the class hierarchy are repre-
sented in the table. We have ID, NUMWHEELS, NUMPASSENGERS, MAKE,
and MODEL from the parent class, RoadVehicle (which is also the default
name of the table). We have ACCELERATORTYPE defined in the Motorcycle
and Car classes. We have COOLFACTOR defined in the Roadster class and
BORINGFACTOR defined in the Coupe class. We have one extra column,
named DISC. This is the discriminator column we defined via annotation on
the RoadVehicle root class. This field in the database will contain different
values, depending on the type of object being persisted to the database. Notice
that it is only the ID field that is defined as NOT NULL. If one of the fields that
mapped back to a property were defined as NOT NULL, we would get into trou-
ble when persisting types that didn’t have that property. For instance, if the
BORINGFACTOR field was defined as NOT NULL and we were persisting a
Roadster object, we would get an error as Roadster has no BORINGFACTOR
field and thus would want to set the field to null.

Let’s take a look at a code snippet that creates some new entities and persists
those entities. We will then take a look at the database rows that result. Source
9.12 is a code snippet that we might find when creating some new entities:

15_785415 ch09.qxp 6/5/06 7:01 PM Page 228

...

@PersistenceContext

EntityManager em;

...

Coupe c = new Coupe();

c.setMake(“Bob”);

c.setModel(“E400”);

c.setBoringFactor(BoringFactor.BORING);

em.persist(c);

Roadster r = new Roadster();

r.setMake(“Mini”);

r.setModel(“Cooper S”);

r.setCoolFactor(CoolFactor.COOLEST);

em.persist(r);

Motorcycle m = new Motorcycle();

em.persist(m);

...

Source 9.12 Let’s persist some entities!

Notice that we create the various objects like any other Java object. When we
are ready to synchronize with the database, we use the persist method of
the EntityManager interface. A reference to the EntityManager is injected
at the start of the code snippet in Source 9.12. Table 9.1 shows the data inserted
into the database after this code executes (only columns relevant to the point
are shown).

See how the record representing our Coupe object has a NULL for the
CoolFactor property (since it does not have this property) and has a 0 for the
BoringFactor property (representing the value of BORING as per the code).
The record representing the Roadster object has a value of 2 (represent-
ing the value of COOLEST as per the code), while it has a value of NULL for
BoringFactor since Roadster does not have this property. The discrimina-
tor column has values as specified in the annotations for the code.

Advanced Persistence Concepts 229

Table 9.1 Persisted Data

ID DISC MAKE MODEL COOL BORINGFACTOR
FACTOR

1818876882 COUPE Bob E400 NULL 0

1673414469 MOTORCYCLE NULL NULL 2 NULL

1673657791 ROADSTER Mini Cooper S NULL NULL

15_785415 ch09.qxp 6/5/06 7:01 PM Page 229

When deciding to use this strategy, you want to make sure that your class
hierarchy does not contain too many properties (which would result in a very
wide table) and that it is acceptable that columns in the table (potentially many
of them) have NULL values.

Let’s now take a look at the second strategy, the separate table per subclass.

Separate Table per Subclass
This strategy has a separate table for each subclass in the hierarchy. The layout
of the table will be only those properties that are defined in the subclass sepa-
rate from parent classes in the hierarchy.

To code this strategy in Java, we simply take away the annotations on the
subclasses for discriminator (since we don’t need the discriminator) and
change the inheritance type in the root class. Source 9.13 shows this.

@Entity(name=”RoadVehicleJoined”)

@Table(name=”ROADVEHICLEJOINED”)

@Inheritance(strategy=InheritanceType.JOINED)

public class RoadVehicle {

...

}

Source 9.13 RoadVehicle with table per subclass strategy.

This time, we use the InheritanceType.JOINED to indicate the table per
subclass strategy. The reason that it is referred to as joined is that in this strategy,
in order to resolve all of the properties for a subclass, a join between tables must
be performed. The Id from the parent object is used as the foreign key to the
tables representing the subclasses. We also use the @Table annotation to spec-
ify a database table name explicitly different from the class name, in this case to
differentiate the table name from that in our previous examples. By default,
the container will generate the table name based on the class name. Since we
already had a RoadVehicle class example with a corresponding table named
ROADVEHICLE, we explicitly named the table ROADVEHICLEJOINED.

Using the exact same code from Source 9.12, let’s see the tables that are gener-
ated as a result. Tables 9.2 through 9.6 show the generated tables and (relevant)
values.

Each table has an ID column that is used for joining when resolving indi-
vidual entities. The table representing the root of the hierarchy also has a dis-
criminator column. By default, the column is named DTYPE and is of type
DiscriminatorType.STRING. This column and its value type can be explic-
itly specified the same way we did for the single-table approach.

230 Chapter 9

15_785415 ch09.qxp 6/5/06 7:01 PM Page 230

Let’s say that we now wanted to get at all the Roadster entities. Behind the
scenes, a query like the following might be executed:

SELECT

rvj.NumWheels, rvj.Make, rvj.Model,

c.AcceleratorType, r.CoolFactor

FROM

ROADVEHICLEJOINED rvj, CAR c, ROADSTER r

WHERE

rvj.Id = c.Id and c.Id = r.Id;

This highlights the only drawback with this strategy: Table joins must be
performed in order to get at all of the properties of subclasses. This strategy
does support polymorphism, and if your class hierarchy is not too deep, it is

Advanced Persistence Concepts 231

Table 9.2 ROADVEHICLEJOINED Table

ID DTYPE NUMWHEELS MAKE MODEL

1423656697 Coupe 4 Bob E400

1425368051 Motorcycle 2 NULL NULL

1424968207 Roadster 4 Mini Cooper S

Table 9.3 MOTORCYCLE Table

ID ACCELERATORTYPE

1425368051 1

Table 9.4 CAR Table

ID ACCELERATORTYPE

1423656697 0

1424968207 0

Table 9.5 COUPE Table

ID BORINGFACTOR

1423656697 0

Table 9.6 ROADSTER Table

ID COOLFACTOR

1423656697 2

15_785415 ch09.qxp 6/5/06 7:01 PM Page 231

an excellent approach. The deeper the class hierarchy (the more subclasses),
the more joins that will need to be performed. This could significantly affect
performance.

Single Table per Concrete Entity Class
In this strategy, each concrete subclass has its own table. Each table has all of
the properties found in the inheritance chain up to the parent class. Given the
original source code in listings 9.1–9.5, we might expect the following layout in
the generated tables, Tables 9.7–9.9.

In this strategy, each subclass has its own copy of all of the fields mapped in
parent classes. This strategy does not support polymorphism well (covered in
the next section).

Since the single table per concrete entity class strategy is not required to be
supported by the EJB 3.0 specification, we will not go into further detail on this
approach.

So far, we have been focusing on entity mapping strategies. In the next sec-
tion, we will look at the other ways that entities support inheritance.

Other Modes of Inheritance
In a nutshell, the following general rules apply to inheritance with entities:

■■ Entities can extend non-entity classes

■■ Non-entity classes can extend entity classes

■■ Abstract classes can be entities

■■ An entity class can inherit from another entity class (as we saw above)

In order for an entity to extend a non-entity class, the @MappedSuperclass
annotation is used. The superclass will not have any database tables directly
associated with it, regardless of the mapping strategy used. You would want to
use a mapped superclass in situations where a number of entities inherit from
it. Source 9.14 shows this in action.

...

@MappedSuperclass

public class RoadVehicle {

public enum AcceleratorType {PEDAL,THROTTLE};

@Id

protected int id;

protected int numPassengers;

protected int numWheels;

Source 9.14 Mapped superclass example. (continued)

232 Chapter 9

15_785415 ch09.qxp 6/5/06 7:01 PM Page 232

Ta
b

le
 9

.7
D

at
ab

as
e

Ta
bl

e
La

yo
ut

 M
ap

pe
d

fo
r

Ro
ad

st
er

.ja
va

ID
N

U
M

P
A

S
S

E
N

G
E

R
S

N
U

M
W

H
E

E
LS

M
A

K
E

M
O

D
E

L
A

C
C

E
LE

R
A

TO
R

TY
P

E
C

O
O

LF
A

C
TO

R

Ta
b

le
 9

.8
D

at
ab

as
e

Ta
bl

e
La

yo
ut

 M
ap

pe
d

fo
r

C
ou

pe
.ja

va

ID
N

U
M

P
A

S
S

E
N

G
E

R
S

N
U

M
W

H
E

E
LS

M
A

K
E

M
O

D
E

L
A

C
C

E
LE

R
A

TO
R

TY
P

E
B

O
R

IN
G

FA
C

TO
R

Ta
b

le
 9

.9
D

at
ab

as
e

Ta
bl

e
La

yo
ut

 M
ap

pe
d

fo
r

M
ot

or
cy

cl
e.

ja
va

ID
N

U
M

P
A

S
S

E
N

G
E

R
S

N
U

M
W

H
E

E
LS

M
A

K
E

M
O

D
E

L
A

C
C

E
LE

R
A

TO
R

TY
P

E

15_785415 ch09.qxp 6/5/06 7:01 PM Page 233

protected String make;

protected String model;

...

}

...

@Entity

public class Motorcycle extends RoadVehicle {

public final AcceleratorType ac = AcceleratorType.THROTTLE ;

...

}

...

@Entity

public class Car extends RoadVehicle {

public final AcceleratorType ac = AcceleratorType.PEDAL;

...

}

...

Source 9.14 (continued)

The preceding example is very similar to what we have seen before. The dif-
ference is that this time, while we have maintained the inheritance hierarchy in
Java, the table mappings will be different. Even if we use the JOINED strategy,
RoadVehicle will never have its own table. It is not an entity by itself.

There is no problem with an entity class inheriting from a non-entity class
that is not annotated as a mapped superclass. But none of the properties of the
superclass will be persisted to the database. You may want to do this in a situ-
ation where there are transient properties in the superclass that you explicitly
don’t want to be persisted to the database.

Abstract classes can be entities. The only difference between abstract entities
and concrete entities is that they cannot be instantiated. This, of course, is the
same rule that applies to Java in general. Abstract entities can be mapped to
the database and can be the target of queries.

In the next section, we will look at the polymorphic behavior of entities. The
lack of support for polymorphism in previous versions of EJB has been one of
the most bitter complaints of the specification. EJB 3.0’s support for polymor-
phism marks a big leap forward in its maturity.

Polymorphism

Polymorphism with EJB 3.0 functions in exactly the same way we are used to
with regular Java. Once a table mapping strategy has been selected, we can
employ polymorphic behavior over a collection of entities. This can be done

234 Chapter 9

15_785415 ch09.qxp 6/5/06 7:01 PM Page 234

through an EJB-QL query, for instance (a more detailed discussion of EJB-QL
queries follows later in this chapter, in the “EJB-QL Enhancements” section).
Source 9.15 shows a code snippet that performs the query. Source 9.16 shows a
client that interacts with the collection returned from the query.

...

@Stateless

public class RoadVehicleStatelessBean implements RoadVehicleStateless {

@PersistenceContext(unitName=”pu1”)

EntityManager em;

public void doSomeStuff() {

Coupe c = new Coupe();

c.setMake(“Bob”);

c.setModel(“E400”);

c.setBoringFactor(BoringFactor.BORING);

em.persist(c);

Roadster r = new Roadster();

r.setMake(“Mini”);

r.setModel(“Cooper S”);

r.setCoolFactor(CoolFactor.COOLEST);

em.persist(r);

Motorcycle m = new Motorcycle();

em.persist(m);

}

public List getAllRoadVehicles() {

Query q = em.createQuery(

“SELECT r FROM RoadVehicleSingle r”);

return q.getResultList();

}

...

}

...

Source 9.15 RoadVehicleStatelessBean.java.

...

public class RoadVehicleClient {

public static void main(String[] args) {

InitialContext ic;

try {

ic = new InitialContext();

String name =

Source 9.16 RoadVehicleClient.java. (continued)

Advanced Persistence Concepts 235

15_785415 ch09.qxp 6/5/06 7:01 PM Page 235

RoadVehicleStateless.class.getName();

RoadVehicleStateless rvs =

(RoadVehicleStateless)ic.lookup(name);

rvs.doSomeStuff();

for (Object o : rvs.getAllRoadVehicles()) {

System.out.println(“RoadVehicle: “+o);

}

}

catch (NamingException e) {

e.printStackTrace();

}

}

}

Source 9.16 (continued)

The query in Source 9.15 will return a List of all RoadVehicles. The persis-
tence layer will automatically handle searching the database for any data that
maps to objects in the RoadVehicle hierarchy. In the for loop highlighted in
Source 9.16, we iterate over this collection and pass the retrieved object in to the
System.out.println()method. This causes the toString()method to be
executed for each object in the list. If you reexamine the code in Sources 9.1 to
9.5, you will see that each class in the RoadVehicle hierarchy (including
RoadVehicle itself) has its own implementation of the toString() method.
We can see the polymorphic behavior in action in Output 9.1.

RoadVehicle: Coupe: Car:

Make: Bob, Model: E400, Number of passengers: 5

RoadVehicle: Motorcycle:

Make: null, Model: null, Number of passengers: 2

RoadVehicle: Roadster: Car:

Make: Mini, Model: Cooper S, Number of passengers: 2

Output 9.1 Polymorphic behavior with entities.

In this case, the list returned from the query had three RoadVehicle ele-
ments: a Coupe, a Motorcycle, and a Roadster. The query was not explicit.
Rather, it requested a list of all RoadVehicle entities. Since each of the sub-
classes is an entity, their data was added to the list. Calling o.toString() in
the for loop exercised the polymorphic behavior and the individual object’s
toString() method was executed.

236 Chapter 9

15_785415 ch09.qxp 6/5/06 7:01 PM Page 236

In the next section, we will look at the new annotations to support relation-
ships between entities. While previous versions of the specification supported
relationships between entities, the EJB 3.0 specification greatly simplifies
marking these classes as participating in a relationship through annotation.

Relationships

Support for relationships has been around since the EJB 2.x specifications. EJB
3.0 significantly simplifies working with related entities through the use of
annotation. First, let’s review the matrix of entity relationships.

Relationship Types
Coming from the relational database world, the following are the possible rela-
tionships with a brief description of how each works.

■■ One-to-one. There is exactly one record related to another record. An
example of this is the relationship between a Person and their home
Address.

■■ One-to-many. A particular record is related to many other records. An
example of this is the relationship between a Manager and his or her
Employees. We can say, “one Manager has many Employees.”

■■ Many-to-one. Many records are related to one particular record. An
example of this is the relationship between Bank Accounts and a Per-
son. There may be many Accounts belonging to one Person.

■■ Many-to-many. Many records are related to many other records. An
example of this is the relationship between a Subscriber and an E-mail
list. Each Subscriber can be subscribed to many E-mail lists. And, each
E-mail list can have many Subscribers.

Relationships are also said to have directionality. They can be unidirectional
or bidirectional. In a unidirectional relationship only the owning side of the
relationship is aware of it. In a bidirectional relationship, both sides of the rela-
tionship are aware of it. For instance, if a one-to-one relationship between a
Person and a Toothbrush is unidirectional, then given a Person we can get to
the related Toothbrush. But, given a Toothbrush we can not get to the related
Person. If the relationship were bidirectional, then given a Toothbrush, we
could also get to the related Person.

So, with four relationship types and two types of directionality, we have a
total of eight combinations, right? Wrong! There are actually only seven. This
is because a bidirectional one-to-many relationship is equivalent to a bidirec-
tional many-to-one relationship. Let’s examine this in more detail. Suppose

Advanced Persistence Concepts 237

15_785415 ch09.qxp 6/5/06 7:01 PM Page 237

that we have a bidirectional one-to-many relationship between a Customer
and some Orders. Given a particular Person, we can get to all of their Orders.
An Order is related to a particular Customer. In a collection of these Orders, all
of them relate back to the same person. Let’s use the same example with a
many-to-one bidirectional relationship. Given a collection of Orders, we can
relate them back to a Customer. And, given a Customer, we can get to all of his
or her Orders. It is the same relationship.

We will now look at code examples for each of the relationship types.

One-to-One
In a one-to-one relationship, each constituent can have at most one relation-
ship with the other constituent. Examples of one-to-one relationships include:

■■ Person:Address

■■ Car:Windshield

■■ Order:Shipment

One-to-one relationships are typically set up by a foreign key relationship in
the database. Figure 9.2 shows a possible database setup.

In Figure 9.2, the order has a relationship with a shipment. The order table
has a foreign key, which is the shipment table’s primary key. This foreign key
is the link between the two tables. Note that this isn’t the only way to set up a
one-to-one relationship. In this figure, the relationship is unidirectional. If we
wanted it to be bidirectional, the Shipment table would have a foreign key link
back to the Order table.

Figure 9.2 A possible one-to-one database schema.

1010112345 Software Order

78727Austin10101

OrderPK OrderName

ShipmentPK City ZipCode

Shipment
ForeignPK

238 Chapter 9

15_785415 ch09.qxp 6/5/06 7:01 PM Page 238

Advanced Persistence Concepts 239

Let’s take a look at some code implementing the relationship shown in Fig-
ure 9.2. Sources 9.17 and 9.18 show two entities: Order and Shipment.

...

@Entity(name=”OrderUni”)

public class Order implements Serializable {

private int id;

private String orderName;

private Shipment shipment;

public Order() {

id = (int)System.nanoTime();

}

@Id

public int getId() {

return id;

}

public void setId(int id) {

this.id = id;

}

...

// other setters and getters go here

...

@OneToOne(cascade={CascadeType.PERSIST})

public Shipment getShipment() {

return shipment;

}

public void setShipment(Shipment shipment) {

this.shipment = shipment;

}

}

Source 9.17 Order.java.

...

@Entity(name=”ShipmentUni”)

public class Shipment implements Serializable {

private int id;

private String city;

private String zipcode;

public Shipment() {

Source 9.18 Shipment.java. (continued)

15_785415 ch09.qxp 6/5/06 7:01 PM Page 239

240 Chapter 9

id = (int)System.nanoTime();

}

@Id

public int getId() {

return id;

}

public void setId(int id) {

this.id = id;

}

...

// other setters and getters go here

...

}

Source 9.18 (continued)

In both sources, the entities are explicitly named. This is because these
examples are repeated in a separate package to show bidirectional behavior
(we look at the bidirectional example below). We name the entities to avoid
naming conflicts. Each source also implements Serializable. This is so that
these objects can be returned to a standalone client.

The Order.java class is a simple POJO. It has a reference to a Shipment
object. In order to give the hint to the application server that we want to estab-
lish a one-to-one relationship between Order and Shipment, we use the
@OneToOne annotation on the getter for the Shipment property. That’s it (see
the sidebar “To Cascade or Not to Cascade” for an explanation of the cascade
element). The Shipment.java requires no other annotation as this is a unidi-
rectional relationship.

Source 9.19 shows a code snippet from a stateless session bean with a
method that persists an Order entity and a method that retrieves all of the
Order entities. Source 9.20 shows a code snippet from a client that outputs the
Order information as well as the related Shipment information.

...

@Stateless

public class OrderShipmentUniBean implements OrderShipment {

@PersistenceContext

EntityManager em;

public void doSomeStuff() {

Source 9.19 OrderShipmentUniBean.java snippet. (continued)

15_785415 ch09.qxp 6/5/06 7:01 PM Page 240

Shipment s = new Shipment();

s.setCity(“Austin”);

s.setZipcode(“78727”);

Order o = new Order();

o.setOrderName(“Software Order”);

o.setShipment(s);

em.persist(o);

}

public List getOrders() {

Query q = em.createQuery(“SELECT o FROM OrderUni o”);

return q.getResultList();

}

}

Source 9.19 (continued)

Advanced Persistence Concepts 241

TO CASCADE OR NOT TO CASCADE

In Source 9.17, you are introduced to the cascade element. This element is
available to all of the relationship annotations. In order to provide the proper
persistence behavior for related objects, we need to give hints to the
application server on how to handle them. The cascade element indicates what
types of persistence operations should be cascaded to the related entity or
entities.

The cascade element takes an array of values from the enumeration
CascadeType. Valid values are: PERSIST, MERGE, REMOVE, REFRESH, and ALL.
Specifying cascade={CascadeType.ALL} is equivalent to specifying
cascade={CascadeType.PERSIST, CascadeType.MERGE,

CascadeType.REMOVE, CascadeType.REFRESH}. By default, there is no
cascade. In the example in Source 9.17, we indicate that persist operations on
the Order entity should be cascaded to the related Shipment entity. If an
Order entity were removed from the database using the EntityManager’s
remove method, the operation would not cascade to the related Shipment
entity.

Generally speaking, we will want persistence operations to cascade to
related entities. However, this is not a universal rule. For instance, suppose that
you have an entity tracking transaction history. Just because you remove a
particular record, you don’t want a related transaction history record to
automatically be removed because of your cascade settings.

You will have to decide on an entity-by-entity basis what the most
appropriate cascade settings should be.

15_785415 ch09.qxp 6/5/06 7:01 PM Page 241

...

InitialContext ic = new InitialContext();

OrderShipment os =

(OrderShipment)ic.lookup(OrderShipment.class.getName());

os.doSomeStuff();

System.out.println(“Unidirectional One-To-One client\n”);

for (Object o : os.getOrders()) {

Order order = (Order)o;

System.out.println(“Order “+order.getId()+”: “+

order.getOrderName());

System.out.println(“\tShipment details: “+

order.getShipment().getCity()+” “+

order.getShipment().getZipcode());

}

...

Source 9.20 OrderShipmentClient.java snippet.

In Source 9.19, we create Shipment and Order objects. Notice how the
setShipment method on the Order object is called. The very next line per-
sists the Order to the database. Because of our cascade element settings in the
@OneToOne annotation on Order, the related Shipment object is also per-
sisted to the database. Tables 9.10 and 9.11 show the database table definitions
automatically generated for these entities.

The foreign key column SHIPMENT_ID is automatically generated by the
application server. There are rules for the naming of this column outlined in
the JSR 220: Java Persistence API part of the EJB 3.0 specification. In this case,
the name is formed from the relationship property found in Order.java
(namely shipment), followed by an underscore (_), followed by the name of
the primary key in the related entity.

To finish up this section, let’s take a look at a bidirectional version of this
same example. The Order.java code found in Source 9.17 stays the same
(with the exception that the entity name is changed to OrderBid in order to
avoid naming conflicts). Source 9.21 shows the Shipment.java code anno-
tated to support a bidirectional relationship.

242 Chapter 9

Table 9.10 Database Table Layout Mapped for Order.java

ID ORDERNAME SHIPMENT_ID

Table 9.11 Database Table Layout Mapped for Shipment.java.

ID CITY ZIPCODE

15_785415 ch09.qxp 6/5/06 7:01 PM Page 242

...

@Entity(name=”ShipmentBid”)

public class Shipment implements Serializable {

private int id;

private String city;

private String zipcode;

private Order order;

public Shipment() {

id = (int)System.nanoTime();

}

@Id

public int getId() {

return id;

}

public void setId(int id) {

this.id = id;

}

...

// other setters and getters go here

...

@OneToOne(mappedBy=”shipment”)

public Order getOrder() {

return order;

}

public void setOrder(Order order) {

this.order = order;

}

}

Source 9.21 Shipment.java (bidirectional version).

In this version of the code, we add an Order property along with the stan-
dard getter and setter code. We also add the @OneToOne annotation. We use
the mappedBy element of the @OneToOne annotation to indicate that the ship-
ment property from the Order entity is used in the database mapping. That is,
the target side of a one-to-one relationship needs to know the property from
the owner side of the relationship in order to make it bidirectional.

Source 9.22 shows code added to our stateless session bean from Source
9.19. Source 9.23 shows code added to our client from Source 9.20.

Advanced Persistence Concepts 243

15_785415 ch09.qxp 6/5/06 7:01 PM Page 243

244 Chapter 9

...

public List getShipments() {

Query q = em.createQuery(“SELECT s FROM ShipmentBid s”);

return q.getResultList();

}

...

Source 9.22 Snippet added to OrderShipmentBidBean.java.

...

for (Object o : os.getShipments()) {

Shipment shipment = (Shipment)o;

System.out.println(“Shipment: “+

shipment.getCity()+” “+

shipment.getZipcode());

System.out.println(“\tOrder details: “+

shipment.getOrder().getOrderName());

}

...

Source 9.23 Snippet added to OrderShipmentClient.java.

In Source 9.22, we can see that this time we are querying on the Shipment
side of the relationship. In Source 9.23, we get a hold of the order that is related
to the shipment through the bidirectional relationship.

Interestingly, the resultant table layout is exactly the same as in the unidirec-
tional example. This highlights the fact that the underlying database table layout
is not always an exact match to the properties in the class definitions. In this case,
it is not necessary to have a separate ORDER_ID column in the SHIPMENTBID
table because it is a one-to-one relationship. This means that there should only
be one ORDERBID record for a SHIPMENTBID record. A simple query will get
hold of the ORDERBID record that is related to a given SHIPMENTBID record.
It might look something like this:

SELECT

o.Id, o.OrderName

FROM

ORDERBID o, SHIPMENTBID s

WHERE

s.Id = 646590264 and s.Id = o.Shipment_Id;

15_785415 ch09.qxp 6/5/06 7:01 PM Page 244

Let’s now take a look at the next relationship type, one-to-many. Note that
in this section we will cover many-to-one relationships as well, since they are
functionally equivalent from a database perspective.

One-to-Many
A one-to-many relationship is one of the more common relationships you’ll
see in your object model. This is because one-to-one relationships are often
combined into a single data object, instead of having a relationship between
two separate data objects. Examples of one-to-many relationships include:

■■ Order:LineItems

■■ Customer:Orders

■■ Company:Employees

One-to-many relationships are also typically set up by a foreign key rela-
tionship in the database. In a unidirectional one-to-many relationship, the
application server automatically generates a join table. The join table has two
foreign key columns. The first foreign key column references the “one” side of
the relationship, while the second foreign key column references the “many”
side of the relationship. There is unique constraint placed on the second for-
eign key column. This ensures that the “many” side of the relationship can’t be
repeated. See the “Join Table Generation Rules” sidebar in the “Many-to-
Many” section for more information on join table generation rules. Figure 9.3
shows this database layout.

Figure 9.3 Unidirectional one-to-many relationship with join table.

12345

id

id

M*Power Internet Services, Inc.

name

12345

12345

company_id

Company

employees_id

20202

20203

sex

20202

20203

Micah

Tes

name

M

F

Company_Employee

Employee

Advanced Persistence Concepts 245

15_785415 ch09.qxp 6/5/06 7:01 PM Page 245

Let’s take a look at a unidirectional one-to-many example using the layout
from Figure 9.3. Sources 9.24 and 9.25 show the code for our two entities
involved in the unidirectional one-to-many relationship.

...

@Entity(name=”CompanyOMUni”)

public class Company implements Serializable {

private int id;

private String name;

private Collection<Employee> employees;

...

// other getters and setters go here

// including the Id

...

@OneToMany(cascade={CascadeType.ALL},fetch=FetchType.EAGER)

public Collection<Employee> getEmployees() {

return employees;

}

public void setEmployees(Collection<Employee> employees) {

this.employees = employees;

}

}

Source 9.24 Company.java.

...

@Entity(name=”EmployeeOMUni”)

public class Employee implements Serializable {

private int id;

private String name;

private char sex;

...

// other getters and setters go here

// including the Id

...

}

Source 9.25 Employee.java.

246 Chapter 9

15_785415 ch09.qxp 6/5/06 7:01 PM Page 246

In Source 9.24, we indicate the one-to-many on the getEmployeesmethod.
In this example, we use the fetch element of the @OneToMany annotation.
The reason is that we will be returning the entities (detached) to a standalone
client. The default behavior is to use lazy fetching (FetchType.LAZY), which
fills in related entities only as needed. Lazy fetching is an important tool to
improve performance on the server side. However, we must use eager fetching
because the returned collection will become detached when sent back to the
standalone client. Source 9.26 shows a code snippet from a stateless session
bean and Source 9.27 shows a snippet from a standalone client that interacts
with the stateless session bean.

Advanced Persistence Concepts 247

LAZY AND EAGER FETCHING

Understanding the difference between lazy and eager loading, and when to use
them, is critical to dealing with relationships efficiently.

Lazy loading will retrieve related entities only as needed, while eager
loading attempts to retrieve all related entities at once.

The type of loading is marked using the fetch element to one of the
relationship types, as in Source 9.24.

Eager loading is generally less efficient because the entire relationship map
is retrieved. For instance, take the example where we have multiple customers,
each of whom can have many orders, where each order can have many line
items. If our fetch type is eager among all of these relationships, then a simple
query of customers would produce a huge object map, including all of the
orders for each customer with each order including all of the line items for that
order. Marking everything as FetchType.EAGER often leads to poor
performance.

If you are operating on a set of managed entities within an existing
persistence context, then lazy loading is usually more efficient. In most cases,
behind the scenes, related entities will be loaded as needed. In the customers
example, if we wanted to query the list of customers for the purpose of
retrieving each of their e-mail addresses, lazy loading would ensure that the
related orders (and the orders’ line items) were not retrieved because they
would not be needed (referenced) in such a query.

A more granular level of loading can be achieved by using lazy loading in
conjunction with fetch joins. Fetch joins are described in more detail in the
“Join Operations” section. For now, we’ll just state that a fetch join allows for
eager loading on a case-by-case basis through a specific query. That is, if the
query doesn’t explicitly specify a fetch join, then the query will return results
using lazy loading. If a fetch join is specified in the query, those entities
involved in the join will be eagerly loaded.

15_785415 ch09.qxp 6/5/06 7:01 PM Page 247

...

@Stateless

public class CompanyEmployeeOMUniBean implements CompanyEmployeeOM {

@PersistenceContext

EntityManager em;

public void doSomeStuff() {

Company c = new Company();

c.setName(“M*Power Internet Services, Inc.”);

Collection<Employee> employees = new ArrayList<Employee>();

Employee e = new Employee();

e.setName(“Micah Silverman”);

e.setSex(‘M’);

employees.add(e);

e = new Employee();

e.setName(“Tes Silverman”);

e.setSex(‘F’);

employees.add(e);

c.setEmployees(employees);

em.persist(c);

c = new Company();

c.setName(“Sun Microsystems”);

employees = new ArrayList<Employee>();

e = new Employee();

e.setName(“Rima Patel”);

e.setSex(‘F’);

employees.add(e);

e = new Employee();

e.setName(“James Gosling”);

e.setSex(‘M’);

employees.add(e);

c.setEmployees(employees);

em.persist(c);

}

public List getCompanies() {

Query q = em.createQuery(“SELECT c FROM CompanyOMUni c”);

return q.getResultList();

}

}

Source 9.26 CompanyEmployeeOMUniBean.java.

248 Chapter 9

15_785415 ch09.qxp 6/5/06 7:01 PM Page 248

...

InitialContext ic = new InitialContext();

CompanyEmployeeOM ceom = (CompanyEmployeeOM)ic.lookup(

CompanyEmployeeOM.class.getName());

ceom.doSomeStuff();

for (Object o : ceom.getCompanies()) {

Company c = (Company)o;

System.out.println(“Here are the employees for company: “+

c.getName());

for (Employee e : c.getEmployees()) {

System.out.println(“\tName: “+

e.getName()+”, Sex: “+e.getSex());

}

System.out.println();

}

...

Source 9.27 CompanyEmployeeClient.java.

In Source 9.26, we set up two Company entities in the doSomeStuff
method. Each Company entity has two Employees associated with it. Just
before we persist the company to the database, we call the setEmployees
method and pass in the Employees collection. Since we have a cascade setting
of CascadeType.ALL defined on the @OneToMany annotation, the related
Employees entities will be persisted as well. Source 9.27 is a snippet from a
standalone client. The getCompanies method returns all the Company enti-
ties based on the query from Source 9.26. We iterate over these Company enti-
ties, and for each one get the collection of related Employees.

The bidirectional version of this code requires some more annotation, but
results in an underlying database model that does not require a join table.

In Figure 9.4, each employee has a foreign key, which is the company table’s
primary key. Thus, the employees are pointing back to their company. This
may seem backward if we want to get from the company to the employees. It
works, however, because the database doesn’t care—it is a flat structure with-
out a sense of direction. You can still construct queries that get from the com-
pany to employees.

Advanced Persistence Concepts 249

15_785415 ch09.qxp 6/5/06 7:01 PM Page 249

Figure 9.4 A one-to-many database schema.

Let’s see how the code changes to be bidirectional. Source 9.28 shows a snip-
pet from Company.java.

...

@Entity(name=”CompanyOMBid”)

public class Company implements Serializable {

private int id;

private String name;

private Collection<Employee> employees;

...

@OneToMany(cascade={CascadeType.ALL},

fetch=FetchType.EAGER,

mappedBy=”company”)

public Collection<Employee> getEmployees() {

return employees;

}

public void setEmployees(Collection<Employee> employees) {

this.employees = employees;

}

...

Source 9.28 Company.java bidirectional annotation.

The only change to our code is to add the mappedBy element to the
@OneToMany annotation. This indicates the property from the target entity
that will participate in the relationship. Source 9.29 shows the bidirectional
version of the Employee,java code.

12345 The Middleware Company

NameCompanyPK

M

12345Ed20202

12345Floyd20203

Sex CompanyNameEmployeePK

M

250 Chapter 9

15_785415 ch09.qxp 6/5/06 7:01 PM Page 250

...

@Entity(name=”EmployeeOMBid”)

public class Employee implements Serializable {

private int id;

private String name;

private char sex;

private Company company;

...

@ManyToOne

public Company getCompany() {

return company;

}

public void setCompany(Company company) {

this.company = company;

}

}

...

Source 9.29 Employee.java with bidirectional annotation.

You will notice that we added a Company property to the Employee class.
This enables the reference from Employee to Company without the need for a
join table. The @ManyToOne annotation is used to identify the relationship
from Employee back to Company.

Let’s take a look at the stateless session bean code for the bidirectional exam-
ple. Source 9.30 shows the CompanyEmployeeOMBidBean.java code.

...

@Stateless

public class CompanyEmployeeOMBidBean implements CompanyEmployeeOM {

@PersistenceContext

EntityManager em;

public void doSomeStuff() {

Company c = new Company();

c.setName(“M*Power Internet Services, Inc.”);

Collection<Employee> employees = new ArrayList<Employee>();

Employee e = new Employee();

e.setName(“Micah Silverman”);

e.setSex(‘M’);

e.setCompany(c);

Source 9.30 CompanyEmployeeOMBidBean.java. (continued)

Advanced Persistence Concepts 251

15_785415 ch09.qxp 6/5/06 7:01 PM Page 251

252 Chapter 9

employees.add(e);

e = new Employee();

e.setName(“Tes Silverman”);

e.setSex(‘F’);

e.setCompany(c);

employees.add(e);

c.setEmployees(employees);

em.persist(c);

...

// the other Company and Employee code

// comes after this

...

}

...

}

Source 9.30 (continued)

This code is the same as before, except that now we must explicitly set the
Company reference for each Employee entity.

For the final part of this section, we’ll focus on the unidirectional many-to-
one relationship. In this example, we have many Employees that all have the
same (one) business Address. Source 9.31 shows the Employee class, and
Source 9.32 shows the BusinessAddress class.

...

@Entity

public class Employee implements Serializable {

private int id;

private String name;

private BusinessAddress address;

public Employee() {

id = (int)System.nanoTime();

}

@Id

public int getId() {

return id;

}

public void setId(int id) {

Source 9.31 Employee.java. (continued)

15_785415 ch09.qxp 6/5/06 7:01 PM Page 252

this.id = id;

}

public String getName() {

return name;

}

public void setName(String name) {

this.name = name;

}

@ManyToOne(cascade={CascadeType.ALL})

public BusinessAddress getAddress() {

return address;

}

public void setAddress(BusinessAddress address) {

this.address = address;

}

}

Source 9.31 (continued)

...

@Entity

public class BusinessAddress implements Serializable {

private int id;

private String city;

private String zipcode;

...

// setters and getters go here

...

}

Source 9.32 BusinessAddress.java.

The owner side of the unidirectional relationship, the Employee entity, has the
@ManyToOne annotation. Since it is a unidirectional relationship, no other anno-
tation is required on the target side of the relationship, the BusinessAddress
entity.

To close the relationship section of this chapter, we will examine the many-
to-many relationship.

Advanced Persistence Concepts 253

15_785415 ch09.qxp 6/5/06 7:01 PM Page 253

Many-to-Many
Many-to-many relationships are not as common as one-to-many relationship
but are still important. Examples of many-to-many relationships include:

■■ Student:Course

■■ Investor:MutualFund

■■ Stock:Portfolio

Many-to-many relationships are typically set up by a join table in the data-
base. As you saw in the unidirectional one-to-many example, a join table con-
tains foreign keys to the two other tables. Figure 9.5 shows a possible database
setup.

We’re going to first look at the unidirectional implementation of the many-
to-many Student/Course example. Source 9.33 shows the Student entity
code, and Source 9.34 shows the Course entity code.

Figure 9.5 A possible many-to-many database schema.

202021010112345

CoursePKStudentPKEnrollmentPK

EJB for Architects20202

CourseNameCoursePK

Joe
Student10101

StudentNameStudentPK

254 Chapter 9

15_785415 ch09.qxp 6/5/06 7:01 PM Page 254

...

@Entity(name=”StudentUni”)

public class Student implements Serializable {

private int id;

private String name;

private Collection<Course> courses = new ArrayList<Course>();

public Student() {

id = (int)System.nanoTime();

}

@Id

public int getId() {

return id;

}

...

//other setters and getters go here

...

@ManyToMany(cascade={CascadeType.ALL},fetch=FetchType.EAGER)

@JoinTable(name=”STUDENTUNI_COURSEUNI”)

public Collection<Course> getCourses() {

return courses;

}

public void setCourses(Collection<Course> courses) {

this.courses = courses;

}

}

Source 9.33 Student.java.

...

@Entity(name=”CourseUni”)

public class Course implements Serializable {

private int id;

private String courseName;

private Collection<Student> students = new ArrayList<Student>();

...

//setters and getters go here

...

}

Source 9.34 Course.java.

Advanced Persistence Concepts 255

15_785415 ch09.qxp 6/5/06 7:01 PM Page 255

First, notice that each entity uses the name element of the @Entity annota-
tion. This has nothing to do with the many-to-many nature of them, but since
further along we will use this same example in a bidirectional configuration,
we want to distinguish between the entity names. This will have the effect of
auto-creating database tables with the same entity name (more on this later).
As before, each of the entities implements the Serializable interface so that
they can be returned to a standalone client.

The Student entity has a collection of Course entities. This collection is
initialized when a new Student entity is created. You will see a little farther
down why we initialize the collection this way.

The Student entity also has the @ManyToMany annotation. This gives the
hint to the container to generate the appropriate tables, including a join table
to model the relationship. In this example, we also specify the @JoinTable
annotation. This is done because the default behavior of the join table genera-
tion is to use the names of the entities involved with an underscore (_) in
between (see the “Lazy and Eager Fetching” sidebar in the “One-to-Many”
section). Thus, without the @JoinTable annotation, the generated join table
would be named STUDENT_COURSE. Since we will have similar entities
defined for the bidirectional example, we want to explicitly name the join table
so that there is no naming conflict.

The Course entity has no further annotation, since this is a unidirectional
relationship.

256 Chapter 9

JOIN TABLE GENERATION RULES

The EJB 3.0 specification defines specific rules to auto-generating join tables
and the columns of join tables. These rules take effect if not overridden by
annotations (see Appendix B for a full treatment of all the EJB 3.0 annotations).

The rules for generating a join table are:

1. The name of the join table will be the name of the owning entity, followed
by an underscore (_), followed by the name of the target entity.

2. The name of the first column in the join table will be the property name,
followed by an underscore, followed by the primary key name in the
owner entity.

3. The name of the second column in the join table will be the property
name, followed by an underscore, followed by the primary key name in
the target entity.

4. The types of the columns in the join table will match the primary key
types of the tables that will be referenced by it.

In the Student/Course many-to-many example (without any overriding
annotation), the join table would be named STUDENT_COURSE. This first
column would be named STUDENTS_ID, and the second column would be
named COURSES_ID.

15_785415 ch09.qxp 6/5/06 7:01 PM Page 256

Let’s take a look at these entities in action. Source 9.35 shows a stateless ses-
sion bean used to interact with the entities. Source 9.36 shows code for a stand-
alone client.

...

@Stateless

public class StudentCourseUniBean implements StudentCourse {

@PersistenceContext

EntityManager em;

public void doSomeStuff() {

Course c1 = new Course();

c1.setCourseName(“EJB 3.0 101”);

Course c2 = new Course();

c2.setCourseName(“EJB 3.0 202”);

Student s1 = new Student();

s1.setName(“Micah”);

s1.getCourses().add(c1);

c1.getStudents().add(s1);

Student s2 = new Student();

s2.setName(“Tes”);

s2.getCourses().add(c1);

s2.getCourses().add(c2);

c1.getStudents().add(s2);

c2.getStudents().add(s2);

em.persist(s1);

em.persist(s2);

}

public List<Student> getAllStudents() {

Query q = em.createQuery(“SELECT s FROM StudentUni s”);

return q.getResultList();

}

}

Source 9.35 StudentCourseUniBean.java stateless session bean.

Advanced Persistence Concepts 257

15_785415 ch09.qxp 6/5/06 7:01 PM Page 257

258 Chapter 9

...

InitialContext ic = new InitialContext();

StudentCourse sc = (StudentCourse)ic.lookup(

StudentCourse.class.getName());

sc.doSomeStuff();

for (Student s : sc.getAllStudents()) {

System.out.println(“Student: “+s.getName());

for (Course c : s.getCourses()) {

System.out.println(“\tCourse: “+c.getCourseName());

}

}

...

Source 9.36 StudentCourseClient.java code snippet.

In the doSomeStuff method of Source 9.35, we create two Course entities.
We then create a Student entity. The first bolded line of code shows how
we use methods to manage the Collection of Courses. We first call the
getCourses method, which returns the Collection. We then call its add
method to add the course to the Collection. This highlights why we initialize
the Collection in Source 9.33 and Source 9.34. The first Student is taking one
Course and the second Student is taking two Courses.

We perform the same collection operations with the Course entity in order
to register Students. The first Course has two students, and the second
Course has one Student. Output 9.2 shows the output from the standalone
client code above.

Student: Micah

Course: EJB 3.0 101

Student: Tes

Course: EJB 3.0 101

Course: EJB 3.0 202

Output 9.2 Output from standalone client.

Since this is a unidirectional many-to-many relationship with Student
being the “owner,” we iterate over the list of all Students and show the
Courses that each student has.

The bidirectional version of this code is more interesting and more power-
ful, since we can get at the data from both sides. Given a Student, we can
see all the Courses she is taking, and given a Course, we can see all the
Students enrolled in that course.

15_785415 ch09.qxp 6/5/06 7:01 PM Page 258

Let’s take a look at the differences in the code when we make it bidirectional.
The only changes to Student.java are the entity name (StudentBid) and the
join table name (STUDENTBID_COURSEBID). Other than that, the code is
exactly the same. Source 9.37 shows the changes to Course.java to enable a
bidirectional relationship.

...

@Entity(name=”CourseBid”)

public class Course implements Serializable {

private int id;

private String courseName;

private Collection<Student> students = new ArrayList<Student>();

...

//getters and setters go here

...

@ManyToMany(cascade={CascadeType.ALL},

fetch=FetchType.EAGER,mappedBy=”courses”)

public Collection<Student> getStudents() {

return students;

}

public void setStudents(Collection<Student> students) {

this.students = students;

}

}

Source 9.37 Course.java bidirectional.

In this version of the code, the @ManyToMany annotation is used and the
mappedBy element is used to indicate which property of the “owner” entity is
used in the mapping. When using a many-to-many bidirectional relationship
either side can be the owner.

Source 9.38 shows a snippet from the stateless session bean. The only
change is the addition of a method to return all of the Course entities.

...

public List getAllCourses() {

Query q = em.createQuery(“SELECT c FROM CourseBid c”);

return q.getResultList();

}

...

Source 9.38 StudentCourseBidBean.java snippet

Advanced Persistence Concepts 259

15_785415 ch09.qxp 6/5/06 7:01 PM Page 259

260 Chapter 9

Source 9.39 shows the bidirectional many-to-many entities in action.

...

InitialContext ic = new InitialContext();

StudentCourse sc = (StudentCourse)ic.lookup(

StudentCourse.class.getName());

sc.doSomeStuff();

for (Object o : sc.getAllStudents()) {

Student s = (Student)o;

System.out.println(“Student: “+s.getName());

for (Object o1 : s.getCourses()) {

Course c = (Course)o1;

System.out.println(“\tCourse: “+c.getCourseName());

}

}

System.out.println();

for (Object o : sc.getAllCourses()) {

Course c = (Course)o;

System.out.println(“Course: “+c.getCourseName());

for (Object o1 : c.getStudents()) {

Student s = (Student)o1;

System.out.println(“\tStudent: “+s.getName());

}

}

...

Source 9.39 Standalone client.

In this version of the standalone client, we still iterate over all of the
Students and show the Collection of Courses for each Student. We also
iterate over all of the Courses and show the Collection of Students for each
Course.

Output 9.3 shows the output from the standalone client.

Student: Micah

Course: EJB 3.0 101

Student: Tes

Course: EJB 3.0 101

Course: EJB 3.0 202

Course: EJB 3.0 202

Student: Tes

Course: EJB 3.0 101

Student: Tes

Student: Micah

Output 9.3 Output from standalone client.

15_785415 ch09.qxp 6/5/06 7:01 PM Page 260

We have covered a huge amount of ground in this section. The way that the
new Java Persistence specification handles the various types of relationships
makes bridging the gap between Java objects and relational databases more
straightforward than it has ever been.

There are many more annotations that offer a finer grain of control than we
covered in this section. Using these annotations, we have total control over the
mapping process, including table names and column names. This is extremely
important when dealing with legacy databases, where we may not be able to
use the defaults of table generation. See Appendix B for a more thorough dis-
cussion of available annotations.

In the next section you look at enhancements to the standardized query lan-
guage for EJB 3.0.

EJB-QL Enhancements

In this section, we will focus on enhancements to EJB-QL for EJB 3.0. EJB-QL
was introduced in Chapter 6. (For more information on EJB-QL, see Appendix
D, available from this book’s companion Web site.)

EJB-QL has been enhanced from the EJB 2.1 specification to include opera-
tions and modes common to those familiar with relational databases. These
enhancements include:

■■ Bulk updates

■■ Bulk deletes

■■ JOIN operations

■■ GROUP BY clause

■■ HAVING clause

■■ Projection

■■ Subqueries

■■ Dynamic queries

■■ Named parameters

■■ Constructing new objects in SELECT statements

We will look at each of these in turn.

Bulk Updates and Deletes
Bulk updates and deletes are a common operation when working with a rela-
tional database. As you might guess (or already know), the idea is to remove a
number of entities at once (which in turn removes a number of rows from the
database all at once) or to update a number of entities at once (which, in turn,

Advanced Persistence Concepts 261

15_785415 ch09.qxp 6/5/06 7:01 PM Page 261

updates a number of rows from the database all at once). There are a few rules
that apply to these operations:

1. The operation applies to the specified entity and all subclasses of the
entity.

2. The operation does not cascade to any related entities.

3. The new value specified in a bulk update must be the right type for the
update field in the database.

4. Bulk updates occur directly in the database. This means that optimistic
locking checks are bypassed and the value of the version column (if it
exists) is not automatically updated.

5. The persistence context is not synchronized with the result of the
operation.

The first three items are fairly intuitive. It is critical to understand the impli-
cations of the last two items. Because of the way that bulk updates and deletes
are handled, they should be performed either at the beginning of a transaction
or should be performed in a separate transaction. Doing otherwise could result
in an invalid or inconsistent state between entities in the current persistence
context and the database.

Let’s look at a few examples. We’ll examine the bulk operations on a previ-
ous example involving inheritance. Recall our RoadVehicle entity from the
beginning of the chapter. In particular, we’ll focus on the single-table inheri-
tance example, although everything we cover here would work for the table
per subclass method as well. We’re going to add a few methods to the stateless
session bean (and its corresponding business interface) in order to perform
some bulk update and delete operations. Source 9.40 shows these methods.

...

public void deleteAll(String type) {

Query q = em.createQuery(“DELETE FROM “+type);

q.executeUpdate();

}

public void updateAll(String type) {

Query q = em.createQuery(“UPDATE “+type+

“ r SET r.numPassengers = 1”);

q.executeUpdate();

}

...

Source 9.40 RoadVehicleStatelessBean.java snippet.

262 Chapter 9

15_785415 ch09.qxp 6/5/06 7:01 PM Page 262

Both the deleteAll and updateAll methods take a type parameter. We
will see this in action in a moment. Source 9.41 shows a standalone client to
exercise all the methods of our stateless session bean, which in turn works
with our entities.

...

public class RoadVehicleClient {

public static void main(String[] args) {

String action = “insert”;

String type = “RoadVehicleSingle”;

if (args.length>0) {

if (args[0].startsWith(“update”)) {

action=”update”;

}

else if (args[0].startsWith(“delete”)) {

action=”delete”;

}

if (args.length == 2) {

type = args[1];

}

}

InitialContext ic;

try {

ic = new InitialContext();

RoadVehicleStateless rvs =

(RoadVehicleStateless)ic.lookup(

RoadVehicleStateless.class.getName());

if (action.equals(“insert”)) {

System.out.println(“Inserting...”);

rvs.doSomeStuff();

}

else if (action.equals(“update”)) {

System.out.println(“Updating “+type+”...”);

rvs.updateAll(type);

}

else if (action.equals(“delete”)) {

System.out.println(“Deleting “+type+”...”);

rvs.deleteAll(type);

}

System.out.println(

“Here is the list of all RoadVehicles:\n”);

for (Object o : rvs.getAllRoadVehicles()) {

System.out.println(“RoadVehicle: “+o);

Source 9.41 RoadVehicleClient.java. (continued)

Advanced Persistence Concepts 263

15_785415 ch09.qxp 6/5/06 7:01 PM Page 263

264 Chapter 9

}

}

catch (NamingException e) {

e.printStackTrace();

}

}

}

Source 9.41 (continued)

This client takes an optional action parameter and an optional type
parameter. By default the action will be insert and the type will be
RoadVehicleSingle. We perform the indicated action and then call the
getAllRoadVehicles method. This conforms to our rules above in that we
are performing a bulk update or delete before we retrieve a collection of
RoadVehicle entities.

The type parameter only applies for the update and delete actions. By spec-
ifying a valid entity type, the bulk operation will be performed only on that
type. Output 9.4 shows the result of performing an insert and Output 9.5
shows the result of a subsequent update using the default parameters. Note:
Extra whitespace and formatting have been added for readability.

Inserting...

Here is the list of all RoadVehicles:

RoadVehicle: Coupe: Car:

Make: Bob, Model: E400, Number of passengers: 5

RoadVehicle: Motorcycle:

Make: null, Model: null, Number of passengers: 2

RoadVehicle: Roadster: Car:

Make: Mini, Model: Cooper S, Number of passengers: 2

Output 9.4 Create some entities and persist to the database.

Updating RoadVehicleSingle...

Here is the list of all RoadVehicles:

RoadVehicle: Coupe: Car:

Make: Bob, Model: E400, Number of passengers: 1

RoadVehicle: Motorcycle:

Make: null, Model: null, Number of passengers: 1

RoadVehicle: Roadster: Car:

Make: Mini, Model: Cooper S, Number of passengers: 1

Output 9.5 Bulk update.

15_785415 ch09.qxp 6/5/06 7:01 PM Page 264

After the bulk update operation is performed (per the code in Source 9.40)
you can see that all the values for the number of passengers have been
changed to 1.

Given the same setup as in Output 9.4, let’s do the bulk update again,
only this time we will perform the update only for the Car entities (named
CarSingle). Output 9.6 shows this.

Updating CarSingle...

Here is the list of all RoadVehicles:

RoadVehicle: Coupe: Car:

Make: Bob, Model: E400, Number of passengers: 1

RoadVehicle: Motorcycle:

Make: null, Model: null, Number of passengers: 2

RoadVehicle: Roadster: Car:

Make: Mini, Model: Cooper S, Number of passengers: 1

Output 9.6 Bulk update only for CarSingle.

Notice that only those entities of type Car (Coupe and Roadster) have had
their number of passengers updated. This is a powerful example of object rela-
tional mapping in action.

Let’s do a bulk delete. Output 9.7 shows the result of a bulk delete where the
passed in type is CarSingle.

Deleting CarSingle...

Here is the list of all RoadVehicles:

RoadVehicle: Motorcycle:

Make: null, Model: null, Number of passengers: 2

Output 9.7 Bulk delete only for CarSingle.

Notice that all of the Car entities have been deleted. In the next section, we
will look at EJB-QL enhancements for JOIN operations.

JOIN Operations
Joins are a very common operation in the relational database world. A table
will have a foreign key that corresponds to the primary key in another table.
This process is critical to having normalized databases. A normalized database
is one in which, to the greatest extent possible, data is not repeated across
tables.

Advanced Persistence Concepts 265

15_785415 ch09.qxp 6/5/06 7:01 PM Page 265

Join operations are performed to identify which data should be selected. An
inner join (the default) will only select records when the join condition is satis-
fied. For instance, the following query will select companies that have at least
one associated employee:

SELECT c FROM CompanyOMUni c JOIN c.employees e

A left join (synonymous with the term left outer join) will retrieve entities
where matching values from the join condition may be absent. The following
query will select companies even if there are not associated employees:

SELECT c FROM CompanyOMUni LEFT JOIN c.employees e

A fetch join enables the prefetching of related entities specified in a query.
Fetch joins take precedence over FetchTypes specified in relationships (see
the “Lazy and Eager Fetching” sidebar in the “One-to-Many” section). Let’s
say that you have customers, each of whom may have made any number of
orders (one-to-many relationship). Let’s also say that lazy loading was speci-
fied for the orders when querying customers. Why would you want the orders
to be “lazy loaded”? If you were performing a query just to get a list of cus-
tomers to get their contact information, it would be a much more efficient
query if all of the associated orders were not fetched as part of that query. Now,
though, let’s say we do want to perform a query that will prefetch all the orders
as well as the customers. We might have an EJB-QL query that looks like this:

SELECT c from Customer c LEFT JOIN FETCH c.orders

Using the fetch join above, all orders for each customer would be prefetched
which (in this use case) would make getting at this information much more
efficient.

GROUP BY and HAVING clauses
The GROUP BY and HAVING clauses are also very common to relational data-
bases. They are new, however, to EJB-QL. GROUP BY allows the results to be
grouped according to a set of properties. For instance, if we wanted to know
how many female and male employees there were in the database, we might
have the following query:

SELECT

e.sex, count(e)

FROM

EmployeeOMBid e

GROUP BY

e.sex

266 Chapter 9

15_785415 ch09.qxp 6/5/06 7:01 PM Page 266

Advanced Persistence Concepts 267

This will give us the information across the entire collection of employees.
The HAVING clause allows us to further filter the results. For instance, if we just
wanted to see the number of female employees, we would add a HAVING
clause to our query:

SELECT

e.sex, count(e)

FROM

EmployeeOMBid e

GROUP BY

e.sex

HAVING

e.sex = ‘F’

The following rules apply to the use of these clauses:

■■ Any argument that appears in the SELECT clause that is not an aggrega-
tion function (such as SUM, AVG, etc.) must appear in the GROUP BY clause.

■■ The HAVING clause must specify conditions on the GROUP BY argu-
ments or by other aggregation functions (such as SUM, AVG, and so on).

■■ The use of HAVING in the absence of GROUP BY is not required to be
supported by implementations of the EJB 3.0 specification and, there-
fore, should not be used.

Projection
Projections allow us to write a query over a (potentially large) set of entities,
but only return certain attributes from the entities. This optimization allows
for more efficient querying if the entire entity or set of entities is not required
to be returned. Take the following query, for instance:

SELECT

e.name,c.name

FROM

EmployeeOMBid e, CompanyOMBid c

WHERE

e.company = c

In this case, we are querying over the EmployeeOMBid entity and the
CompanyOMBid entity, but we are only interested in the Employee name and
the Company name attributes. This query would return a Vector containing
an array of type Object for each element. In this case, each Object array in
the Vector would contain two elements: a String for the employee name
and a String for the company name.

15_785415 ch09.qxp 6/5/06 7:01 PM Page 267

Fun with Queries
EJB-QL now supports many common query operations from the relational
database world, including dynamic queries (with named parameters), sub-
queries, and named queries. We will look at each of these in turn.

Dynamic Queries and Named Parameters

Elements of a query, and even the entire query itself, can be processed at run-
time. Let’s look at a simple example in the following snippet, Source 9.42.

...

@PersistenceContext

EntityManager manager;

...

public List findByName(String name) {

return manager.createQuery(“SELECT e FROM Employee e “+

“WHERE e.name LIKE :empName”)

.setParameter(“empName”, name)

.listResults();

}

...

Source 9.42 Dynamic query with named parameter.

In the preceding example, the named parameter :empName is replaced at
runtime through the setParameter method of the Query class (returned by
the createQuery method).

Subqueries

Subqueries allow us to perform complete queries as part (or all) of a WHERE
clause. Note, that deep subqueries can affect performance. Often, subqueries
can be optimized as joins. Let’s look at an example where we select only com-
panies that have at least one employee.

SELECT

c

FROM

CompanyOMBid c

WHERE

(SELECT COUNT(e) FROM c.employees e) > 0

268 Chapter 9

15_785415 ch09.qxp 6/5/06 7:01 PM Page 268

We can see that the left side of the WHERE expression is a fully contained
query.

Named queries allow us to reference a query much in the same way that we
use variables in programming. Refer to Chapter 6 for more information about
named queries.

Object Construction in SELECT Statements
One of the most exciting and convenient enhancements to EJB-QL is the abil-
ity to instantiate an object to be used as the target of a query operation. This is
commonly used in queries using projection (as explained above). Source 9.43
shows a simple Java Bean. Source 9.44 shows this bean being used in a query.

public class CompanyEmployeeInfo {

private String companyName;

private String employeeName;

public CompanyEmployeeInfo(String cName, String eName) {

companyName = cName;

employeeName = eName;

}

...

// setters and getters go here

...

}

Source 9.43 CompanyEmployeeInfo.java.

...

@PersistenceContext

EntityManager manager;

...

public List getSomeInfo() {

return

manager.createQuery(

“SELECT “+

“NEW examples.entity.relation.bid.one_to_many.”+

“CompanyEmployeeInfo(c.name, e.name) “+

“FROM EmployeeOMBid e JOIN e.company c”)

.getResultList();

}

...

Source 9.44 Constructor in query code snippet.

Advanced Persistence Concepts 269

15_785415 ch09.qxp 6/5/06 7:01 PM Page 269

Note that the highlighted lines are split for readability. The getSomeInfo
method returns a Collection of CompanyEmployeeInfo objects because of
the constructor in the SELECT clause. The fully qualified name of the class
must be supplied.

Summary

Whew! In this chapter, we covered some of the most exciting material in the
EJB 3.0 specification. The ability to handle inheritance in a standard object-
oriented way and still easily map to a relational database is a big advancement
in the technology. The ability to model standard relationships found in data-
bases in our Java objects using annotations is another big advancement in the
technology.

EJB-QL creates a true standard for querying that is database-platform-
independent and is fully object-aware. We query against objects, not database
tables (although we can use native queries when absolutely necessary).

Persistence and associated persistence operations are the most powerful
and the easiest to work with in this version of the specification. EJB has now
(finally) achieved its original intended goal of being able to take advantage of
common cross-cutting services provided by an application server, while being
able to handle long-term persistence in a straightforward way.

In the next chapter, we will jump into transactions. Transactions enable us to
group multiple operations into a single unit. Either the whole group of opera-
tions succeeds or, if something fails along the way, the whole group fails. So
read on to learn all there is to know about EJB 3.0 transactions.

270 Chapter 9

15_785415 ch09.qxp 6/5/06 7:01 PM Page 270

271

Many middleware services are needed for secure, scalable, and reliable server-
side development. This includes resource pooling services, security services,
remoting services, persistence services, and more.

A key service required for robust server-side development is transactions.
Transactions, when used properly, can make your mission-critical operations
run predictably in an enterprise environment. Transactions are an advanced
programming paradigm that enables you to write robust code. Transactions
are also very useful constructs when performing persistent operations such as
updates to a database.

In the past, transactions have been difficult to use because developers
needed to code directly to a transaction API. With EJB, you can gain the bene-
fits of transactions without writing any transaction code.

In this chapter, we’ll discuss some of the problems that transactions solve.
We’ll also discuss how transactions work and show how they’re used in EJB.
Because transactions are at the very core of EJB and are somewhat difficult to
understand, we’ll provide extensive background on the subject. To explain
transactions properly, we’ll occasionally get a bit theoretical. If the theory pre-
sented in this chapter piques your interest, many tomes written on transac-
tions are available for further reading. See the book’s accompanying Web site,
www.wiley.com/go/sriganesh, for links to more information.

Transactions

C H A P T E R

10

16_785415 ch10.qxp 6/5/06 7:02 PM Page 271

Motivation for Transactions

We begin our discussion with a few motivational problems that transactions
address.

Atomic Operations
Imagine that you would like to perform multiple discrete operations yet have
them execute as one contiguous, large, atomic operation. Take the classic bank
account example. When you transfer money from one bank account to
another, you want to withdraw funds from one account and deposit those
funds into the other account. Ideally, both operations will succeed. But if an
error occurs, you would like both operations to always fail; otherwise, you’ll
have incorrect funds in one of the accounts. You never want one operation to
succeed and the other to fail, because both operations are part of a single
atomic transaction.

One simplistic way to handle this is to perform exception handling. You
could use exceptions to write a banking module to transfer funds from one
account to another, as in the following pseudo-code:

try {

// Withdraw funds from account 1

}

catch (Exception e) {

// If an error occurred, do not proceed.

return;

}

try {

// Otherwise, deposit funds into account 2

}

catch (Exception e) {

// If an error occurred, do not proceed,

// and redeposit the funds back into account 1.

return;

}

This code tries to withdraw funds from account 1. If a problem occurs, the
application exits and no permanent operations occur. Otherwise, we try to
deposit the funds into account 2. If a problem occurs here, we redeposit the
money back into account 1 and exit the application.

272 Chapter 10

16_785415 ch10.qxp 6/5/06 7:02 PM Page 272

There are many problems with this approach:

■■ The code is bulky and unwieldy.

■■ We need to consider every possible problem that might occur at every
step and code error-handling routines to consider how to roll back our
changes.

■■ Error handling gets out of control if we perform more complex
processes than a simple withdrawal and deposit. It is easy to imagine,
for example, a 10-step process that updates several financial records.
We’d need to code error-handling routines for each step. In the case of a
problem, we need to code facilities to undo each operation. This gets
tricky and error-prone to write.

■■ Testing this code is yet another challenge. You would have to simulate
logical problems as well as failures at many different levels.

Ideally, we would like a way to perform both operations in a single, large,
atomic operation, with a guarantee that both operations either always succeed
or always fail.

Network or Machine Failure
Let’s extend our classic bank account example and assume that our bank
account logic is distributed across a multi-tier deployment. This may be neces-
sary to achieve necessary scalability, and modularization. In a multitier deploy-
ment, any client code that wants to use our bank account application must do
so across the network via a remote method invocation (see Figure 10.1).

Figure 10.1 A distributed banking application.

Bank Logic
Implementation

Bank
Application
(with GUI)

Tier Boundary

Transactions 273

16_785415 ch10.qxp 6/5/06 7:02 PM Page 273

Distributing our application across the network introduces failure and
reliability concerns. For example, what happens if the network crashes dur-
ing a banking operation? Typically, an exception (such as a Java RMI
RemoteException) is generated and thrown back to the client code—but
this exception is quite ambiguous. The network may have failed before money
was withdrawn from an account. It’s also possible that the network failed after
we withdrew the money. There’s no way to distinguish between these two
cases—all the client code sees is a network failure exception. Thus, we can
never know for sure how much money is in the bank account.

The network may not be the only source of problems. In dealing with bank
account data, we’re dealing with persistent information residing in a database.
It’s entirely possible that the database itself could crash. The machine on
which the database is deployed could also crash. If a crash occurs during a
database write, the database could be in an inconsistent, corrupted state.

None of these situations is acceptable for a mission-critical enterprise applica-
tion. Big iron systems, such as mainframes or mid-frames, do offer preventive
measures, such as system component redundancy and hot swapping of failed
components to handle system crashes more graciously. But in reality, nothing is
perfect. Machines, processes, and networks will always fail. There needs to be a
recovery process to handle these crashes. Simple exception handling such as
RemoteException is not sufficient for enterprise-class deployments.

Multiple Users Sharing Data
In any enterprise-level distributed system, you will see the familiar pattern of
multiple clients connecting to multiple application servers, with those appli-
cation servers maintaining some persistent data in a database. Let’s assume
that these application servers all share the same database, as in Figure 10.2.
Because each server is tied to the same database image, servers could poten-
tially be modifying the same set of data records within that database.

For example, you might have written an application to maintain your com-
pany’s catalog of products in a database. Your catalog may contain product
information that spans more than one database record. Information about a
single product could span several database records or even tables.

Several people in your organization may need to use your catalog applica-
tion simultaneously. But if two users modify the same product data simultane-
ously, their operations may become interleaved. Therefore, your database may
contain product data that’s been partially supplied by one user and partially
supplied by another user. This is essentially corrupted data, and it is not accept-
able in any serious deployment. Having the wrong data in a bank account
could result in loss of millions of dollars to a bank or the bank’s customers.

274 Chapter 10

16_785415 ch10.qxp 6/5/06 7:02 PM Page 274

Figure 10.2 Application servers tied to a single database.

Thus, there needs to be a mechanism to deal with multiple users concur-
rently modifying data. We must guarantee data integrity even when many
users concurrently update the data.

Benefits of Transactions

The problems raised in the previous sections can lead to catastrophic errors.
You can avoid these problems by properly using transactions.

A transaction is a series of operations that appear to execute as one large,
atomic operation. Transactions guarantee an all-or-nothing value proposition:
Either all of your operations will succeed or none of them will. Transactions
account for network or machine failure in a graceful, reliable way. Transactions
allow multiple users to share the same data and guarantee that any set of data
they update will be completely and wholly written, with no interleaving of
updates from other clients.

Application
Server

Application
Server

Application
Server

Database

Client Code Client Code Client CodeClient Code

Table

Transactions 275

16_785415 ch10.qxp 6/5/06 7:02 PM Page 275

By using transactions properly, you can force multi-user interactions with
databases (or other resources) to occur independently. For example, two
clients reading and writing from the same database will be mutually exclusive
if transactions are properly used. The database system automatically performs
the necessary concurrency control (that is, locking) on the database to keep
client threads from affecting each other.

Transactions offer far more than simply letting simultaneous users use the
same persistent stores. By having your operations run within a transaction,
you are effectively performing an advanced form of concurrency control and
exception handling.

The ACID Properties
When you properly use transactions, your operations will always execute with
a suite of four guarantees. These four guarantees are well known as the ACID
properties of transactions. The word ACID stands for atomicity, consistency, iso-
lation, and durability. The following list explains each property.

276 Chapter 10

TRANSACTION VOCABULARY

Before we get into the specifics of transactions, let’s establish a vocabulary.
There are several types of participants in a transaction: transactional objects,
transaction managers, resources, and resource managers. Let’s take a look at
each of these parties in more detail.

A transactional object (or transactional component) is an application
component, such as a banking component, that is involved in a transaction.
This could be an enterprise bean, a Microsoft .NET–managed component, a
CORBA component, and so on. These components perform operations that
need to execute in a robust fashion, like database interactions.

A transaction manager is responsible for managing the transactional
operations of the transactional components. It manages the entire overhead of
a transaction, running behind the scenes to coordinate things (similar to the
way a conductor coordinates a symphony).

A resource is persistent storage from which you read or write. A resource
could be a database, a message queue, or other storage.

A resource manager manages a resource. An example of a resource manager
is a driver for a relational database, object database, message queue, or other
store. Resource managers are responsible for managing all state that is
permanent. The most popular interface for communication between resource
managers and the transaction manager is the X/Open XA resource manager
interface. Most database drivers support this interface. Supporting this
interface will allow the resource manager to participate in transactions
managed by a third party such as an EJB transaction manager.

16_785415 ch10.qxp 6/5/06 7:02 PM Page 276

■■ Atomicity guarantees that many operations are bundled together and
appear as one contiguous unit of work. In our banking example, when
you transfer money from one bank account to another, you want to add
funds to one account and remove funds from the other account, and you
want both operations to occur or neither operation to occur. Atomicity
guarantees that operations performed within a transaction undergo an
all-or-nothing paradigm—either all the database updates are performed or
nothing happens if an error occurs at any time. Many different parties
can participate in a transaction, such as an enterprise bean, a CORBA
object, a servlet, and a database driver. These transaction participants
can force the transaction to result in nothing due to any malfunction. This
is similar to a voting scheme: Each transaction participant votes on
whether the transaction should be successful, and if any of the partici-
pants votes no, the transaction fails. If a transaction fails, all the partial
database updates are automatically undone. In this way, you can think
of transactions as a robust way of performing error handling.

■■ Consistency guarantees that a transaction leaves the system’s state to
be consistent after a transaction completes. What is a consistent system
state? A bank system state could be consistent if the rule bank account
balances must always be positive is always followed. This is an example of
an invariant set of rules that define a consistent system state. During
the course of a transaction, these rules may be violated, resulting in a
temporarily inconsistent state. For example, your enterprise bean com-
ponent may temporarily make your account balance negative during a
withdrawal. When the transaction completes, the state is consistent
once again; that is, your bean never leaves your account at a negative
balance. And even though your state can be made inconsistent tem-
porarily, this is not a problem. Remember that transactions execute
atomically as one contiguous unit of work (from the atomicity property
discussed previously). Thus, to a third party, it appears that the sys-
tem’s state is always consistent. Atomicity helps enforce that the system
always appears to be consistent.

■■ Isolation protects concurrently executing transactions without seeing
each other’s incomplete results. Isolation allows multiple transactions
to read or write to a database without knowing about each other
because each transaction is isolated from the others. This is useful for
multiple clients modifying a database at once. It appears to each client
that he or she is the only client modifying the database at that time. The
transaction system achieves isolation by using low-level synchroniza-
tion protocols on the underlying database data. This synchronization
isolates the work of one transaction from that of another. During a
transaction, locks on data are automatically assigned as necessary. If

Transactions 277

16_785415 ch10.qxp 6/5/06 7:02 PM Page 277

one transaction holds a lock on data, the lock prevents other concurrent
transactions from interacting with that data until the lock is released.
For example, if you write bank account data to a database, the transac-
tion may obtain locks on the bank account record or table. The locks
guarantee that, while the transaction is occurring, no other concurrent
updates can interfere. This enables many users to modify the same set
of database records simultaneously without concern for the interleaving
of database operations.

■■ Durability guarantees that updates to managed resources, such as
database records, survive failures. Some examples of failures are
machines crashing, networks crashing, hard disks crashing, and power
failures. Recoverable resources keep a transactional log for exactly this
purpose. If the resource crashes, the permanent data can be recon-
structed by reapplying the steps in the log.

Transactional Models

Now that you’ve seen the transaction value proposition, let’s explore how
transactions work. We begin by taking a look at transactional models, which are
the different ways you can perform transactions.

There are many different models for performing transactions. Each model
adds its own complexity and features to your transactions. The two most pop-
ular models are flat transactions and nested transactions.

NOTE To use a particular transaction model, your underlying transaction
manager must support it. The EJB-defined transaction manager does not
support nested transactions; it requires support for only flat transactions.
Nested transactions are a good way to solve a host of transactional problems.
Even though most of the transactionally aware applications can get around fine
with flat transactions, nested transactions provide an elegant solution in many
cases. To avoid the additional burden of having to implement nested
transactions that most of the business applications might not even end up
using, The EJB Expert Group did not mandate support for nested transactions.

Flat Transactions
A flat transaction is the simplest transactional model to understand. A flat trans-
action is a series of operations that are performed atomically as a single unit of
work. After a flat transaction begins, your application can perform any number
of operations. Some may be persistent operations, and some may not. When
you decide to end the transaction, there is always a binary result: either success
or failure. A successful transaction is committed, while a failed transaction is

278 Chapter 10

16_785415 ch10.qxp 6/5/06 7:02 PM Page 278

aborted. When a transaction is committed, all persistent operations become per-
manent changes; that is, all updates to resources, such as databases, are made
durable in permanent storage only if the transaction ends with a commit. If the
transaction is aborted, none of the resource updates are made durable, and thus
all changes are rolled back. When a transaction aborts, all persistent operations
that your application may have performed are automatically undone by the
underlying system. Your application can also be notified in case of an abort, so
that your application can undo in-memory changes that occurred during the
transaction.

This is the all-or-nothing proposition we described earlier. The flat transac-
tion process is outlined in Figure 10.3.

A transaction might abort for many reasons. Many components can be
involved in a transaction, and any one component could suffer a problem that
would cause an abort. These problems include the following:

■■ Invalid parameters passed to one of the components. For instance, a
banking component may be called with a null argument when it was
expecting a bank account ID string.

■■ An invariant system state was violated. For example, if an ongoing
transactional operation can cause the bank account to reach a negative
balance, your banking component can force the transaction to abort,
undoing all associated bank account operations.

■■ Hardware or software failure. If the database that your component is
using crashes, the transaction is rolled back and all permanent changes
are undone. Similarly, if there is a software failure (such as a JVM crash)
the transaction is rolled back.

Figure 10.3 The flat transaction.

Transaction
OccurringH

Begin Transaction

Initial State
(No Transaction Occurring)

H
Final State
(Transaction Rolled Back)

If All Goes Well, Commit Transaction

H

Final State
(Transaction Succeeded)

If Problem Occurs, Abort Transaction

Transactions 279

16_785415 ch10.qxp 6/5/06 7:02 PM Page 279

Any of these problems can cause a transaction to abort. But when an abort
occurs, how is the transactional state rolled back? That is the topic of the next
section.

How Transactional State Is Rolled Back

Let’s assume that you’re performing a flat transaction that includes operations
on physical, persistent resources, such as databases. After the transaction
begins, one of your business components requests a connection to a database.
This database connection is automatically enlisted in the transaction in which
your component is involved. Next, your component performs some persistent
operations, such as database updates. But when this happens, your database’s
resource manager does not permanently apply the updates to the database—
your persistent operations are not yet durable and permanent. The resource
manager waits until a commit statement has been issued. A commit is issued
only when the transaction is complete, meaning when all your business com-
ponents have finished performing all of the operations under that transaction.
If the resource is told to commit, it persists the data permanently. If the trans-
action aborts, the data is not persisted at all.

The take-away point from this discussion is that if there’s an abort, the
resource (such as a database) does not make your database updates perma-
nent. Your components don’t have any undo logic for permanent data inside of
them; rather, the underlying system does it for you behind the scenes. Your
components control the transaction and tell the transaction to abort, but the
persistent state rollback is performed for you automatically. Thus, when your
business components perform operations under a transaction, each compo-
nent should perform all persistent operations assuming that the transaction
will complete properly.

Now that you’ve seen flat transactions, let’s take a quick look at nested
transactions.

Nested Transactions
We begin our discussion of nested transactions with a motivational example.
Let’s say you need to write an application that can plan trips for a travel
agency. You need to code your application to plan trips around the world, and
your application must purchase the necessary travel tickets for the trip. Con-
sider that your application performs the following operations:

1. Your application purchases a train ticket from Boston, USA, to New
York, USA.

2. Your application purchases a plane ticket from New York, USA, to Lon-
don, England.

280 Chapter 10

16_785415 ch10.qxp 6/5/06 7:02 PM Page 280

3. Your application purchases a balloon ride ticket from London, England,
to Paris, France.

4. Your application finds out that there are no outgoing flights from
France.

This is the famous trip-planning problem. If this sequence of bookings were
performed under a flat transaction, your application would have only one
option: to roll back the entire transaction. Thus, because there are no outgoing
flights from France, your application has to rollback all the work done as part
of the bookings made from Boston to New York, New York to London, and
London to Paris! But it may be possible to use another means of transportation
out of France, which might allow you to salvage the bookings for the other
segments. Thus, a flat transaction is insufficient. The all-or-nothing proposi-
tion is inefficient for such scenarios, and we need a more comprehensive trans-
actional model.

A nested transaction solves this problem. A nested transaction enables you to
embed atomic units of work within other units of work. The unit of work that
is nested within another unit of work can roll back without forcing the entire
transaction to roll back. Therefore, the larger unit can attempt to retry the
embedded unit of work. If the embedded unit can be made to succeed, the
larger unit can succeed. If the embedded unit of work cannot be made to work,
it will ultimately force the entire unit to fail.

You can think of a nested transaction as a tree of transactions, all spawning
off one root- or top-level transaction. The root transaction is the main transaction:
In the trip-planning example, the root transaction is the overall process of
booking tickets around the world. Every other transaction in the tree is called
a subtransaction. The subtransactions can be flat or nested transactions (see Fig-
ure 10.4).

What’s special about nested transactions is that subtransactions can inde-
pendently roll back without affecting higher transactions in the tree. That’s a
very powerful idea, and it solves our trip-planning problem: If each individual
booking is a nested transaction, we can roll back any one booking without can-
celing all our other reservations. But in the end, if the nested transaction can-
not be committed, the entire transaction will fail.

Other Transactional Models
This concludes our discussion of transactional models. There are other models
as well, such as chained transactions and sagas, but we will not address these sub-
jects here because the EJB specification does not support them. And because the
EJB specification does not currently mandate support for nested transactions,
for the rest of this chapter we’ll assume that our transactions are flat.

Transactions 281

16_785415 ch10.qxp 6/5/06 7:02 PM Page 281

Figure 10.4 The nested transaction.

Distributed Transactions

Now that we’ve concluded our discussion of various transaction models, we’ll
shift gears a bit and talk about distributed transactions, which are transactions
spanning multiple tiers of deployments and potentially involving multiple
types of resources.

The most basic transaction occurs when components deployed on a single
application server make changes to data on a single resource (a database, say).
Depending on the functionality of your application server’s transaction ser-
vice, you may be able to perform distributed transactions as well. Distributed
transactions obey the same rules as simple transactions (also known as local
transactions), that is if a component on one machine aborts the transaction, the
entire transaction is aborted. But with distributed transactions, you can have
many different types of resources coordinating in a single transaction across
the network. Here are some possible scenarios where distributed transactions
are applicable:

■■ You have multiple application servers coordinating in the same
transaction.

■■ You have updates to different databases in the same transaction.

■■ You are trying to perform a database update and send or receive a JMS
message from a message queue in the same transaction.

Transaction
OccurringH

Begin Transaction

Initial State
(No Transaction Occurring)

H
Final State
(Transaction Rolled Back)

If All Goes Well, Commit Transaction

H

Final State
(Transaction Succeeded)

If Problem Occurs, Abort Transaction

Perform One or More
Smaller-Grained Transactions

The smaller-grained
transactions can be retried
without affecting the main
transaction.

282 Chapter 10

16_785415 ch10.qxp 6/5/06 7:02 PM Page 282

■■ You are connecting to a legacy system as well as one or more other
types of resources (such as databases, message queues, or other legacy
systems) in the same transaction.

Each of these scenarios requires collaboration of one or more types of
resource managers across multiple processes, potentially across a network, to
solve a business problem. Distributed transactions come to your aid here.
They allow multiple transaction participants to collaborate under one transac-
tional hood.

The two-phase commit protocol is one of the widely implemented technolo-
gies for supporting distributed transactions. In the next section, we discuss the
two-phase commit protocol, also known as 2PC.

Durability and the Two-Phase Commit Protocol
One important ACID property is durability. Durability guarantees that all
resource updates that are committed are made permanent. Durability is easy
to implement if you are manipulating the state of just one resource. But what
if multiple resource managers are involved? If one of your resources under-
goes a catastrophic failure, such as a database crash, you need to have a recov-
ery mechanism. How do transactions accomplish this?

One way would be to log all database operations before they actually hap-
pen, allowing you to recover from a crash by consulting the log and reapply-
ing the updates. This is exactly how transactions guarantee durability under
the two-phase commit protocol. In this protocol, the transactions complete in
two phases.

■■ Phase One begins by sending a before commit message to all resources
involved in the transaction. At this time, the resources involved in a
transaction have a final chance to abort the transaction. If any resource
involved decides to abort, the entire transaction is cancelled and no
resource updates are performed. Otherwise, the transaction proceeds
on course and cannot be stopped, unless a catastrophic failure occurs.
To prevent catastrophic failures, all resource updates are written to a
transactional log or journal. This journal is persisted by all 2PC-enabled
resource managers, so that it survives crashes and can be consulted
after a crash to reapply all resource updates.

■■ Phase Two occurs only if Phase One completed without an abort. At
this time, all of the resource managers perform the actual data updates.

If any participant votes that the transaction should abort, all participants
must be rolled back.

In the distributed two-phase commit, there is one master transaction man-
ager called the distributed transaction coordinator. The transaction coordinator

Transactions 283

16_785415 ch10.qxp 6/5/06 7:02 PM Page 283

runs the show and coordinates operations among the other transaction man-
agers across the network. The following steps occur in a distributed two-phase
commit transaction:

1. The transaction coordinator sends a prepare to commit message to each
transaction manager involved.

2. Each transaction manager may propagate this message to the resource
managers that are tied to that transaction manager.

3. Each transaction manager reports back to the transaction coordinator. If
everyone agrees to commit, the commit operation that’s about to hap-
pen is logged in case of a crash.

4. Finally, the transaction coordinator tells each transaction manager to
commit. Each transaction manager, in turn, calls each resource manager,
which makes all resource updates permanent and durable. If anything
goes wrong, the log entry can be used to reapply this last step.

This flow is shown in Figure 10.5.

Figure 10.5 A distributed transaction accomplished using two-phase commit protocol.

Transaction
Coordinator

Transaction
Manager

Transaction
Manager

Transaction
Manager

Resource Manager

Resource Manager

1: Prepare to
Commit

Transaction Participants

4: Commit

2: Return

3: Log Result

5: Return

284 Chapter 10

16_785415 ch10.qxp 6/5/06 7:02 PM Page 284

The Transactional Communications Protocol and
Transaction Contexts
A distributed two-phase commit transaction complicates matters, because the
transaction managers must all agree on a standard mechanism of communi-
cating. Remember that each of the participants in a distributed transaction
may have been written by a different vendor, as is the case in a deployment
with heterogeneous application servers. The communication mechanism used
is called the transactional communications protocol. An example of such a proto-
col is the Internet Inter-ORB Protocol (IIOP), which we describe in Appendix A.

The most important piece of information sent over the transactional com-
munications protocol is the transaction context. A transaction context is an
object that holds information about the system’s current transactional state. It
is passed around among parties involved in transactions. By querying the
transaction context, you can gain insight into whether you’re in a transaction,
what stage of a transaction you are at, and other useful data. For any compo-
nent to be involved in a transaction, the current thread in which the compo-
nent is executing must have a transaction context associated with it.

Java Transaction Service and Java Transaction API

The Enterprise JavaBeans Expert Group chose to reuse a lot of work that went
into CORBA while defining the EJB container’s support for transaction ser-
vices. When we described the ACID properties earlier in this chapter, we men-
tioned that many parties, such as an enterprise bean and a database driver,
could participate in a transaction. This is really an extension to the basic ACID
properties, and it’s the primary reason that Object Management Group (OMG)
developed a standardized Object Transaction Service (OTS) as an optional
CORBA service. OTS provides various improvements on many earlier transac-
tion systems that didn’t support multiple parties participating in a transaction.

OTS and Java Transaction Service
OTS is a suite of well-defined interfaces that specify how transactions can run
behind the scenes—interfaces that the transaction manager, resource manager,
and transactional objects use to collaborate. OTS is composed of two parts:
CosTransactions and CosTSPortability.

■■ The CosTransactions interfaces are the basic interfaces that transac-
tional objects or components, resources, resource managers, and trans-
action managers use to interoperate. These interfaces ensure that any
combination of these parties is possible.

Transactions 285

16_785415 ch10.qxp 6/5/06 7:02 PM Page 285

■■ The CosTSPortability interface offers a portable way to perform
transactions with many participants.

In the EJB world, Java Transaction Service is the technology that provides Java
binding to CORBA’s OTS services at a very low level. Only system developers
are interested in working with JTS at this level. Most of us, business applica-
tion programmers, deal with JTS through the Java Transaction API.

The Java Transaction API
The Java Transaction API (JTA) defines the core of transaction support in EJB. It
defines interfaces between a transaction manager and other parties, namely,
application programs such as enterprise beans, resource managers, and appli-
cation servers. JTA can be based upon the low-level JTS; the communication
between transaction manager that implements JTA and JTS takes place
through proprietary interfaces.

In this last case, we don’t care about the lack of standardization for dealing
with disparate JTS interfaces, since we will never work with JTS directly. We
work only with JTA. So integration between JTS and JTA is not our concern.
Non-EJB applications can use the JTA as well—for example, a standalone
client application can call your beans within a transaction boundary that it
marks using the JTA APIs.

JTA consists of three sets of interfaces:

■■ The javax.transaction.xa.XAResource interface that JTA uses to
communicate with X/Open XA–enabled resource managers.

■■ The javax.transaction.TransactionManager interface that JTA
uses to communicate with the application servers.

■■ And finally, the javax.transaction.UserTransaction interface,
which can be used by beans and other application programs to work
with the EJB transactions.

Figure 10.6 further clarifies the relationship of transaction manager, which
implements JTA, with the rest of the parties in a distributed transactional
system.

One of the things OTS defines is Communications Resource Manager
(CRM), which is shown in Figure 10.6. CRM supports propagation of transac-
tion contexts among other things. The EJB specification does not mandate the
support for JTS, and hence, the support for CRM cannot be taken for granted
in your EJB container. This has some implications on interoperability of dis-
tributed transactions across multiple application servers. Let us see how
exactly does JTS support affect the distributed transaction interoperability in
the next section.

286 Chapter 10

16_785415 ch10.qxp 6/5/06 7:02 PM Page 286

Figure 10.6 JTA: The glue between application program, application server, resource
manager, and JTS.

JTS and Distributed Transaction Interoperability across
Application Servers
The EJB specification suggests, but does not require, that application server
vendors support on-the-wire transaction context interoperability. If an appli-
cation server does support interoperable transactions, EJB requires that it
leverage the transaction context propagation facilities built into CORBA OTS
and IIOP. Application servers that use these technologies should be interoper-
able and run in a distributed two-phase commit transaction.

Since the EJB specification does not require this level of interoperability,
application servers from different vendors cannot be guaranteed to work
together and participate in a distributed two-phase commit transaction,
because they may not be able to communicate in an interoperable way. Thus,
it is important to understand which communication protocol your application

Application Server

Application
(EJB)

Resource
Manager

Transaction
Manager

(JTA)

JTS

javax.transaction.
UserTransaction

javax.transaction.
xa.XAResource

javax.transaction.
TransactionManager

OTS 1.1

Inbound tx

IIOP

Outbound tx

IIOPCommunication
Resource

Manager (CRM)

Transactions 287

16_785415 ch10.qxp 6/5/06 7:02 PM Page 287

server uses. If you want to perform a distributed two-phase commit transac-
tion across multiple application servers, all the application servers must sup-
port OTS to facilitate interoperable propagation of transaction context.

Enterprise JavaBeans Transactions

Let’s apply what we’ve learned so far about transactions to the EJB world.
Enterprise beans can be transactional in nature. This means they can fully

leverage the ACID properties to perform reliable, robust server-side operations.
Thus, enterprise beans are ideal modules for performing mission-critical tasks.

Underlying Transaction System Abstraction
In EJB, your code never gets directly involved with the low-level transaction
system. Your enterprise beans never interact with a transaction manager or a
resource manager. You write your application logic at a much higher level,
without regard for the specific underlying transaction system. The low-level
transaction system is totally abstracted out by the EJB container, which runs
behind the scenes. Your bean components are responsible for simply voting on
whether a transaction should commit or abort. If things run smoothly, you
should commit; otherwise, abort.

Container-Managed, Bean-Managed, and
Client-Controlled Transactions
Throughout this chapter, we’ve said that once a transaction begins, it ends with
either commit or abort. The key pieces of information we’re lacking are who
begins a transaction, who issues either a commit or abort, and when each of these
steps occurs. This is called demarcating transactional boundaries. In the EJB world,
you can demarcate the transactions yourselves or let the container do that for
you or rely upon your clients to demarcate them. Depending on who demar-
cates the transactional boundaries, the transaction management style is called
bean-managed, container-managed, or client-controlled, respectively. When
using bean-managed transactions, the bean provider is responsible for pro-
gramming transaction logic into the application code. That is, you are responsi-
ble for issuing a begin statement and either a commit or an abort statement.

For example, an EJB banking application might have an enterprise bean that
acts as a bank teller. A teller bean would expose a method to transfer funds from
one bank account to another. With bean-managed transactions, the teller bean
is responsible for issuing a begin statement to start the transaction, performing
the transfer of funds, and issuing either a commit or abort statement. This is the
traditional way to program transactions, and it is shown in Figure 10.7.

288 Chapter 10

16_785415 ch10.qxp 6/5/06 7:02 PM Page 288

Figure 10.7 Bean-managed transactions.

Container-Managed Transactions

Container-managed transactions allow for components to automatically be
enlisted in transactions. That is, your enterprise beans never explicitly issue a
begin, commit, or abort statement. The EJB container performs it for you. The
container demarcates the transaction boundaries based on the transactional
behavior specified by the bean provider.

Let’s take our bank teller example again, and assume some client code has
called our teller bean to transfer funds from one account to another. With
container-managed transactions, the EJB container starts a transaction automat-
ically on behalf of your bean. That is, the container issues the begin statement to
the underlying transaction system to start the transaction. The container then
delegates the invocation to your enterprise bean, which performs operations in
the scope of that transaction. Your bean can do anything it wants to, such as per-
form logic, write to a database, send an asynchronous message, or call other
enterprise beans. If a problem occurs, the bean can signal to the container that
the transaction must abort. When the bean is done, it returns control to the con-
tainer. The container then issues either a commit or abort statement to the under-
lying transaction system, depending on the success of the operation(s). This is a
very simple model, and it is shown in Figure 10.8.

Client Code

Container
classes that
implement

session bean’s
POJI

Teller Bean Transaction
Service

4. Perform business operations

3. Call begin()

5. Call commit() or abort()

EJB Container

2. Delegate

1. Call business method

Transactions 289

16_785415 ch10.qxp 6/5/06 7:02 PM Page 289

Figure 10.8 Container-managed transactions.

EJB container-managed transactions add huge value to your deployments
because your beans may not need to interact with any transaction API. In
essence, your bean code and your client are not even really aware of transac-
tions happening around them.

So how do you instruct the container about whether your bean is using
container-managed or bean-managed transactions? In EJB 3.0, you can
specify your enterprise bean’s transaction management style either by using
@TransactionManagement annotation or through the deployment descriptor.

If neither the bean provider nor the deployer specifies transaction manage-
ment, then the default is assumed to be container-managed.

Client-Controlled Transactions

The final way to perform transactions is to write code to start and end the
transaction from the client code outside of your bean. For example, if you have
a servlet, JSP tag library, standalone application, applet, CORBA client, or
other enterprise bean as a client of your beans, you can begin and end the
transaction in that caller. This is shown in Figure 10.9.

Client Code

Container
classes that
implement

session bean’s
POJI

Teller Bean

Transaction
Service

4. Perform business operations

2. Call begin()

5. Call commit() or abort()

EJB Container

3. Delegate

1. Call business method

290 Chapter 10

16_785415 ch10.qxp 6/5/06 7:02 PM Page 290

Figure 10.9 Client-controlled transactions.

Note that the enterprise bean the client calls still need to specify whether
they support container-managed or bean-managed transactions.

Choosing a Transaction Style
One question that developers often ask is “Should I use declarative, program-
matic, or client-controlled transactions?”

The benefit of bean-managed transactions is that you, as a developer, have
full control over transactional boundaries. For instance, you can use bean-
managed transactions to run a series of mini-transactions within a bean’s
method. In comparison, with container-managed or client-controlled transac-
tions, your entire bean method must either run under a transaction or not run
under a transaction.

The benefit of container-managed transactions is that they are simpler. You
don’t need to write transactional logic into your bean class, which saves cod-
ing time. Also, by having transactions configured at the level of bean, you keep
client code from misusing your beans under inappropriate transaction set-
tings. This reduces a great number of headaches for a component provider.

Client
Code

Container
classes that
implement

Teller session
bean’s POJI

Teller Bean

Transaction
Service

4. Perform business operations

1. Call begin()

5. Call commit() or abort()

EJB Container

3. Delegate

2. Call business method

Transactions 291

16_785415 ch10.qxp 6/5/06 7:02 PM Page 291

To understand the benefit of client-initiated transactions, consider the fol-
lowing scenario in which we don’t use client-initiated transactions. Imagine
that a nontransactional remote client calls an enterprise bean that performs its
own transactions (either bean-managed or container-managed). The bean suc-
ceeds in the transaction, but the network or application server crashes before
the result is returned to a remote client. The remote client would receive a Java
RMI RemoteException indicating a network error but would not know
whether the transaction that took place in the enterprise bean was a success or
a failure. The remote client would then have to write code to check the state of
the resources to find out whether they were updated successfully by the trans-
action. This code places an additional burden on the application developer.

With client-initiated transactions, you do not need to worry about this sce-
nario, because the transaction is demarcated from within the client code. If
anything goes wrong, the client will know about it. The downside to client-ini-
tiated transactions is that, for distributed applications, there may be a greater
chance of client-controlled transaction rollbacks because the transactions are
occurring over a network and, hence, network failures can cause the transac-
tion to roll back more often. Because of this, use client-transactions sparingly—
especially if the network connectivity between client and the bean is
intermittent.

Container-Managed Transactions

Let’s now assume that we are using container-managed transactions and
understand how to implement them. Although we’re not writing any code
that starts and stops transactions, we still need to provide instructions to the
container for how we’d like our transactions to operate. For example, how can
we choose whether a bean always runs in a transaction, or whether a bean
never runs in a transaction?

A transaction attribute is a setting that you give to a bean to control how your
bean is enlisted in container-managed transactions. You can specify a different
transaction attribute on each bean in your system, no matter how many beans
are working together.

The transaction attribute can be specified either using @Transaction
Attribute annotation or in the bean’s deployment descriptor. The container
knows how transactions should be handled for a bean from its transaction
attribute. You must specify transaction attributes on all business methods for
your beans.

292 Chapter 10

16_785415 ch10.qxp 6/5/06 7:02 PM Page 292

EJB Transaction Attribute Values
Every enterprise bean must have a transaction attribute setting. The following
subsections explain the possible values for the transaction attributes.

Required

You should use the Required mode if you want your bean to always run in a
transaction. If a transaction is already running, your bean joins in on that
transaction. If no transaction is running, the EJB container starts one for you.

For example, say you write a credit card component that performs opera-
tions on credit cards, such as charging a credit card or refunding money on a
credit card. Let’s assume that you ship the component with the Required
transaction attribute. You then deploy that component for two customers.

■■ Customer 1 deploys the component in its customer service center, using
the component to refund money when an angry customer calls. The
customer writes some code to call your bean as necessary. When the
client code calls your bean method, the container automatically starts a
transaction by calling begin and then delegating the call to your bean.
When your method completes, the container issues either a commit or
abort statement, depending on whether a problem occurred.

■■ Customer 2 uses the billing component as part of a complete workflow
solution. The customer wants to use the credit card component to
charge a user’s credit card when a user purchases a product from a Web
site. The customer then wants to submit an order to manufacture that
product, which is handled by a separate component. Thus, the cus-
tomer has two separate components running but both of them run
under the same transaction. If the credit card cannot be charged, the
customer doesn’t want the order to be submitted. If the order cannot be
submitted, the customer doesn’t want the credit card charged. There-
fore, the customer produces his or her own workflow bean, which first
calls the credit card–charging bean and then calls the bean to generate a
manufacturing order. The workflow bean is deployed with Required,
so a transaction automatically starts up. Because your credit card bean
is also deployed with Required, you join that transaction, rather than
start your own transaction. If the order submission component is also
deployed with Required, it joins the transaction as well. The container
commits or aborts the transaction when the workflow bean is done.

Thus, Required is a flexible transaction attribute that enables you to start
your own transaction or join existing ones, depending on the scenario.

Transactions 293

16_785415 ch10.qxp 6/5/06 7:02 PM Page 293

RequiresNew

You should use the RequiresNew attribute if you always want a new transac-
tion to begin when your bean is called. If a transaction is already under way
when your bean is called, that transaction is suspended during the bean invoca-
tion. The container then launches a new transaction and delegates the call to the
bean. The bean performs its operations and eventually completes. The container
then commits or aborts the transaction and finally resumes the old transaction.
Of course, if no transaction is running when your bean is called, there is nothing
to suspend or resume.
RequiresNew is useful if your bean needs the ACID properties of transac-

tions but wants to run as a single unit of work without allowing other external
logic to also run in its transaction.

Supports

When a bean is called with Supports, it runs in a transaction only if the client
had one running already. If the client does not have a transaction, the bean
runs with no transaction at all.
Supports is similar in nature to Required, with the one exception:

Required enforces the starting of a new transaction if one is not running
already. Because Supports will sometimes not run within a transaction, you
should be careful when using this attribute. Mission-critical operations should
be encapsulated with a stricter transaction attribute (like Required).

Mandatory

Mandatory mandates that a transaction must be already running when your
bean method is called. If a transaction isn’t running, the javax.ejb
.EJBTransactionRequiredException exception is thrown back to the
caller.
Mandatory is a safe transaction attribute to use. It guarantees that your

bean should run in a transaction. There is no way that your bean can be called
if a transaction isn’t already running. However, Mandatory relies on a third
party to start the transaction before your bean is called. The container will not
automatically start a transaction; rather, an exception will be thrown back to
the caller. This is the chief difference between Mandatory and Supports.
Mandatory is useful if your component is designed to run within a larger sys-
tem, such as a workflow system, where your bean is only part of a larger suite
of operations, and you want to mandate that the larger operations start a trans-
action before calling your bean.

294 Chapter 10

16_785415 ch10.qxp 6/5/06 7:02 PM Page 294

NotSupported

If you set your bean to use NotSupported, then your bean cannot be involved
in a transaction at all. For example, assume that we have two enterprise beans,
A and B. Let’s assume bean A begins a transaction and then calls bean B. If
bean B is using the NotSupported attribute, the transaction that A started is
suspended. None of B’s operations are transactional, such as reads/writes to
databases. When B completes, A’s transaction is resumed.

You should use NotSupported if you are certain that your bean operations
do not need the ACID properties. This should be used only if your beans are per-
forming non–mission-critical operations, where you are not worried about iso-
lating your bean’s operations from other concurrent operations. An example
here is an enterprise bean that performs rough reporting. If you have an
e-commerce portal, you might write a bean that routinely reports a rough aver-
age number of online purchases per hour by scanning a database. Because this is
not a critical operation and you don’t need exact figures, NotSupported is an
ideal, low-overhead mode to use.

Never

The Never transaction attribute means that your bean cannot be involved in a
transaction. Furthermore, if the client calls your bean in a transaction, the con-
tainer throws javax.ejb.EJBException back to the client.

This transaction attribute is useful when you want to make sure all clients
that call your bean do not use transactions. This can help reduce errors in client
code, because a client will not be able to call your bean erroneously in a trans-
action and expect your bean to participate in the ACID properties with other
transaction participants. If you are developing a system that is not transac-
tional in nature and would like to enforce that behavior, consider using the
Never attribute.

Transaction Attribute Summary

Table 10.1 is a summary of the effects of each transaction attribute. In the chart,
T1 and T2 are two different transactions. T1 is a transaction passed with the
client request, and T2 is a secondary transaction initiated by the container.

Table 10.1 is important because you need to understand how various trans-
action attributes will affect the length and scope of your transaction.

Transactions 295

16_785415 ch10.qxp 6/5/06 7:02 PM Page 295

Table 10.1 The Effects of Transaction Attributes

TRANSACTION CLIENT’S BEAN’S
ATTRIBUTE TRANSACTION TRANSACTION

Required None T2

T1 T1

RequiresNew None T2

T1 T2

Supports None None

T1 T1

Mandatory None Error

T1 T1

NotSupported none None

T1 None

Never none None

T1 Error

Container-Managed Transaction Example
Let us consider an example to better understand container-managed transac-
tions. Let’s say that you want to perform a transfer between two bank
accounts. To achieve this, you might have a bank teller session bean that calls
into two bank account entities. If you deploy the teller bean with say
Required transaction attribute, all three of them—the bean as well as the
bank account entities—will be involved in a single transaction such that
changes made to one bank account will be made durable only if the changes
made to the other bank account succeed. Since, at the time of persistence con-
text creation of the account entities, the teller bean’s transaction is active, both
the bank account entities are enlisted in the Teller’s active transaction. This
scenario is illustrated in Figure 10.10.

Let us now take a look at the teller bean class that uses container-managed
transactions. We use annotations in the bean class to specify the transaction
management style as well as transaction attribute applicable to one of its meth-
ods, transferFunds(). Source 10.1 shows source for TellerBean.

296 Chapter 10

16_785415 ch10.qxp 6/5/06 7:02 PM Page 296

Figure 10.10 Using transaction attributes to control transactional boundaries.

import javax.ejb.*;

import javax.annotation.Resource;

import javax.persistence.PersistenceContext;

import javax.persistence.EntityManager;

@Stateless()

@TransactionManagement(javax.ejb.TransactionManagementType.CONTAINER)

public class TellerBean implements Teller {

@PersistenceContext private EntityManager em;

@Resource private SessionContext ctx;

@TransactionAttribute(javax.ejb.TransactionAttributeType.REQUIRED)

public void transferFunds(float amount, String fromAccount, String

toAccount)

{

// Lookup for accts with the provided account IDs

BankAccount acct1 = em.find(BankAccount.class, fromAccount);

Source 10.1 Specifying transaction attributes using annotations. (continued)

Client Code

Container
classes that
implement

Teller session
bean’s POJI

Teller Bean

Transaction
Service

Account
Entity

#1

Account
Entity

#2

2. Call begin()

6. Call commit() or abort()

EJB Container

3. Delegate

1. Call business method

4. Withdraw()

5. deposit()

In this example,
the Teller session
bean is deployed
with a Required
transaction
attribute.

Notice:

• Transactions
always begin
and end in the
same place.

 • Both the
account entities’
persistence
context enlist in
the teller bean’s
transaction.

Transactions 297

16_785415 ch10.qxp 6/5/06 7:02 PM Page 297

298 Chapter 10

BankAccount acct2 = em.find(BankAccount.class, toAccount);

if (acct1.balance < amount)

ctx.setRollbackOnly();

acct1.withdraw(amount);

acct2.deposit(amount);

em.persist(acct1);

em.persist(acct2);

}

}

Source 10.1 (continued)

As can be seen in Source 10.1, the bean provider doesn’t have to worry about
beginning or committing the transaction; the container begins the transaction
before calling the transferFunds() method, and commits or rolls back the
transaction once the method ends. Also notice a small rule that we have set in
our method—if the balance of the withdrawal account is less than the amount
that is being withdrawn, it should mark the transaction for rollback by calling
the setRollbackOnly()method on the bean’s context object. This will ensure
that the container never commits the transaction under such a condition.

Another way to specify the transactional behavior for the teller bean is by
using deployment descriptors. Once again note that if transactional attributes
are specified in both the bean class through annotations as well as in the
deployment descriptor, the deployment descriptor configuration always take
precedence. Source 10.2 shows the listing of deployment descriptor for the
teller bean containing transaction attribute settings.

<?xml version=”1.0” encoding=”UTF-8”?>

<ejb-jar xmlns=”http://java.sun.com/xml/ns/javaee”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance” full=”false”

version=”3.0” xsi:schemaLocation=”http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd”>

<enterprise-beans>

<session>

<display-name>TellerBean</display-name>

<ejb-name>TellerBean</ejb-name>

<business-remote>Teller</business-remote>

<ejb-class>TellerBean</ejb-class>

<session-type>Stateless</session-type>

<transaction-type>Container</transaction-type>

<security-identity>

<use-caller-identity/>

Source 10.2 Specifying transaction attribute using deployment descriptor. (continued)

16_785415 ch10.qxp 6/5/06 7:02 PM Page 298

</security-identity>

</session>

</enterprise-beans>

<assembly-descriptor>

<container-transaction>

<method>

<ejb-name>TellerBean</ejb-name>

<method-name>transferFunds</method-name>

</method>

<trans-attribute>Required</trans-attribute>

</container-transaction>

</assembly-descriptor>

</ejb-jar>

Source 10.2 (continued)

Thus we created a transaction spanning one session bean and two entities
by merely using transaction attributes.

Transactions 299

DOOMED TRANSACTIONS

Dooming a transaction means to force a transaction to abort. You may need to
doom a transaction if something goes wrong, such as a database being
unavailable or the client sending you bad parameters. The question is how do
you doom a transaction that the container started? The answer to this lies in
using the setRollbackOnly() method of the EJBContext interface. When
you call this method, you essentially are declaring that the container should
never commit the given transaction.

Dooming transactions brings up an interesting side discussion. Imagine that
you have 10 beans in a chain executing in the same transaction, and bean 2
decides to doom the transaction by calling setRollbackOnly(). Why should
beans 3 through 10 perform their work if the transaction is doomed to failure
anyway? After all, those beans might be performing CPU- or database-intensive
operations, all of which will be wasted away when the transaction aborts. The
solution to avoiding this unnecessary work lies in your beans detecting
whether the active transaction is doomed, and if it is, then just not performing
the work. Your bean can detect whether the transaction is marked for rollback
by calling the getRollbackOnly() method on bean’s context. If this method
returns true, then that means the transaction is set for rollback.

In general, it is a good practice to check for a transaction’s status at various
points in your code if a lot of intensive work is happening within a single
transaction in your bean. In our example, we can improve the implementation
of the transferFunds() method further by checking the status of the active
transaction by calling getRollbackOnly() right before we make persist()
calls on bank account entities.

16_785415 ch10.qxp 6/5/06 7:02 PM Page 299

Applicability of Transaction Attributes to Various Beans
Finally, you should note that not all transaction attributes are available for use
on all beans. Table 10.2 shows permissible transaction attributes for session
beans and message-driven beans.

Table 10.2 provides the following important information about the support
of transactions in various types of beans:

■■ Stateless session beans support all transactional attributes.

■■ A method on a Web service endpoint interface for a stateless session
bean cannot support the Mandatory attribute. This is so because there
is not yet a way to propagate a transaction context within the SOAP
protocol that can then be translated to IIOP transaction context for invo-
cations of a stateless session bean’s Web service endpoint interface busi-
ness methods.

■■ Stateful session beans that implement the javax.ejb.Session
Synchronization interface should not specify the Supports,
NotSupported, and Never transaction attributes. Implementing the
SessionSynchronization interface is a mechanism for a stateful
session bean to find out about the life cycle of the transaction in which
it participates. In essence, a stateful bean must have the ability to
participate in transactions whenever it implements the Session
Synchronization interface to fulfill the latter’s purpose. Note that
we will discuss SessionSynchronization later in this chapter.

■■ A message-driven bean’s client does not call a message-driven bean
directly; rather, message-driven beans read messages off a message
queue in transactions separate from the client’s transaction. There is no
client, and therefore transaction attributes that deal with the notion of a
client’s transaction make no sense for message-drivenbeans—namely
Never, Supports, RequiresNew, and Mandatory.

A client does not call a message-driven bean directly; rather, message-
driven beans read messages off a message queue in transactions separate from
the client’s transaction. There is no client, and therefore transaction attributes
that deal with the notion of a client’s transaction make no sense for message-
driven beans.

300 Chapter 10

16_785415 ch10.qxp 6/5/06 7:02 PM Page 300

Transactions 301

Table 10.2 Permissible Transaction Attributes for Session and Message-driven beans

STATEFUL
STATELESS SESSION
SESSION BEAN
BEAN WEB (IMPLEMENTS

STATELESS SERVICE SESSION MESSAGE-
TRANSACTION SESSION ENDPOINT SYNCHRO- DRIVEN
ATTRIBUTE BEAN METHOD NIZATION) BEAN

Required Yes Yes Yes Yes

RequiresNew Yes Yes Yes No

Mandatory Yes No Yes No

Supports Yes Yes No No

NotSupported Yes Yes No Yes

Never Yes Yes No No

TRANSACTIONS AND JMS MESSAGE-DRIVEN BEANS

When using JMS message-drivenbeans, your choice of transaction style has a
big impact on your bean. As we know now, only the Required and
NotSupported transaction attributes can be applied to the JMS message-
driven bean listener method onMessage().

If you use container-managed transactions, your JMS message-driven bean
will read a message off the destination in the same transaction as it performs
its business logic. If something goes wrong, the transaction will roll back and
the message acknowledgment will occur.

If you use bean-managed transactions, the transaction begins after your
JMS message-driven bean receives the message. You can then use the
acknowledgeMode property of the @MessageDriven annotation or
deployment descriptor acknowledgment modes to instruct the container about
when to acknowledge messages (see Chapter 7).

If you don’t support transactions at all, the container will acknowledge the
message at some later time, perhaps when your bean’s method completes. The
timing is not guaranteed, however.

So which style do you use? If you don’t use container-managed transactions,
you can’t cause the JMS messages to stay on the original destination if
something goes wrong, because your bean has no way to indicate that a
problem has occurred.

In general, we recommend using container-managed transactions with JMS
message-driven beans. If you want to perform many smaller transactions,
consider breaking up your JMS message-driven bean into several other beans,
with each bean having a granularity of a single transaction, and call these
beans from this overarching MDB.

(continued)

16_785415 ch10.qxp 6/5/06 7:02 PM Page 301

Bean-Managed Transactions

Next let’s discuss how a bean provider can control bean-managed transactions
programmatically in EJB. Programmatically demarcating transactions allow
for more transaction control than container-managed transactions do, but they
are trickier to use. To control transaction boundaries yourself, you must use
the JTA interface javax.transaction.UserTransaction.

302 Chapter 10

TRANSACTIONS AND JMS MESSAGE-DRIVEN BEANS (continued)

Note that there is a huge caveat with using container-managed transactions
with JMS message-driven beans in a certain scenario. Let’s say you have an EJB
component (any type of component) that sends and then receives a message
all within one big container-managed transaction. In this case, the send
operation will never get its message on the queue, because the transaction
doesn’t commit until after the receive operation ends. Thus, you’ll be waiting
for the receive operation to complete forever. This is called the infinite block
problem, also known as the halting problem in computer science.

An easy solution to this problem is, after sending the request message, you
can call commit() on the JMS Session, which is your JMS transaction helper
object. This causes the outgoing message buffer to be flushed. Hence, the
receive operation does not have to wait forever for the transaction to commit
to get a message.

EJB AND ENTITIES: HOW THEY WORK TOGETHER IN A TRANSACTION

As we know already, persistence API supports both JTA and local transactions
at the entity manager’s level. The type of transactions supported by the entity
manager is specified when the underlying entity manager factory is created.
When Persistence API is used within a managed environment such as a Java
EE/EJB container, it is required to support both JTA as well as local transactions.
The JTA transaction always begins and ends externally to the JTA entity
manager. Beans and container, in case of bean-managed and container-
managed transactions, respectively, will begin and end the JTA transactions;
they make entities a part of their active transactions by enlisting the entity
manager’s persistence context.

The entity manager, therefore, only participates in an already active JTA
transaction; it does not actually begin or commit a JTA transaction on its own.
Hence, there is no mechanism to specify the transactional behavior of the
entities. Their transactional behavior is completely dependent on the caller. This
is just as well—entities are concerned with providing persistence, and not with
transaction processing. Transaction processing is left up to the EJB layer.
Entities play to the tune of beans when it comes to transactions.

16_785415 ch10.qxp 6/5/06 7:02 PM Page 302

Transactions 303

When an entity manager is invoked from within an already active JTA
transaction in a managed environment, a new persistence context is created if
one doesn’t exist already. The persistence context ends when the JTA
transaction completes and all entities that were managed by entity manager
are detached. This is what we term as transaction-scoped persistence context.
Then there is the notion of an extended persistence context, wherein the
entities don’t detach even after the JTA transactions are committed. The idea is
to use extended persistence contexts in scenarios where stateful conversations
take place, such as when we use entities from within stateful session bean. We
do not want the persistence context to be created each time a transaction is
committed on a container-managed stateful session bean. Hence, we specify an
extended persistence context when we first get hold of an entity manager. The
extended persistence context is destroyed only when the entity manager closes.

We discuss transactions as they pertain to entities in Chapter 6 as well.

The javax.transaction.UserTransaction Interface
The javax.transaction.UserTransaction interface enables you to pro-
grammatically control transactions. Here is what the javax.transac-
tion.UserTransaction interface looks like:

public interface javax.transaction.UserTransaction

public void begin();

public void commit();

public int getStatus();

public void rollback();

public void setRollbackOnly();

public void setTransactionTimeout(int);

}

As you can see, six methods are exposed by the UserTransaction inter-
face. Three of them—begin, commit, and rollback—are used to begin a
new transaction, commit a transaction permanently, and roll back a transac-
tion if some problem occurred, respectively. These methods are explained in
Table 10.3.

16_785415 ch10.qxp 6/5/06 7:02 PM Page 303

304 Chapter 10

TRANSACTIONS AND JAVA EE CONNECTORS

The Java EE Connector Architecture defines a standard contract between Resource
Adapters (RA) and application servers such that RA can leverage the container
services for supporting transactions. This standard contract enables an application
server to provide the infrastructure and runtime environment for transaction
management of RA components. RA can support either a local transaction, which
is managed internally by the resource manager, or it can support a distributed
transaction, whose coordination does involve external transaction managers. If RA
supports local transactions, the client component, such as an EJB, will have to
acquire the common client interface API object, such as javax.resource
.cci.LocalTransaction or an equivalent from the resource adapter to
demarcate the transactions. If RA supports distributed transactions, the container
will automatically enlist the client in the transaction context, if the client wants to
work within a distributed transaction.Java EE Connector Architecture 1.5 supports
the inflow of transactions from Enterprise Information System (EIS) to the Java EE
environment. This is a powerful concept because it enables the Java EE
applications to participate in transactions initiated by backend EIS. For example,
you can make your stateless session bean participate in a transaction that was
initiated in the Tuxedo environment, given that the underlying RA supports this
contract. Chapter 15 explains Java EE Connector Architecture in more details.

Table 10.3 The javax.transaction.UserTransaction Methods for Transactional Boundary
Interaction

METHOD DESCRIPTION

begin() Begins a new transaction. This transaction
becomes associated with the current thread.

commit() Runs the two-phase commit protocol on an
existing transaction associated with the
current thread. Each resource manager will
make its updates durable.

getStatus() Retrieves the status of the transaction
associated with this thread.

Rollback() Forces a rollback of the transaction
associated with the current thread.

setRollbackOnly() Calls this to force the current transaction to
roll back. This will eventually force the
transaction to abort.

setTransactionTimeout(int) The transaction timeout is the maximum
amount of time that a transaction can run
before it’s aborted. This is useful for
avoiding deadlock situations, when
precious resources are being held by a
transaction that is currently running.

16_785415 ch10.qxp 6/5/06 7:02 PM Page 304

JTA also defines a number of constants that indicate the current status of a
transaction. You will be returned one of these constants when you call the
UserTransaction.getStatus() method:

public interface javax.transaction.Status {

public static final int STATUS_ACTIVE;

public static final int STATUS_NO_TRANSACTION;

public static final int STATUS_MARKED_ROLLBACK;

public static final int STATUS_PREPARING;

public static final int STATUS_PREPARED;

public static final int STATUS_COMMITTING;

public static final int STATUS_COMMITTED;

public static final int STATUS_ROLLING_BACK;

public static final int STATUS_ROLLEDBACK;

public static final int STATUS_UNKNOWN;

}

Table 10.4 explains the values of those constants.

Table 10.4 The javax.transaction.Status Constants for Transactional Status

CONSTANT MEANING

STATUS_ACTIVE A transaction is currently active.

STATUS_NO_TRANSACTION No transaction is active.

STATUS_MARKED_ROLLBACK The current transaction will eventually abort
because it’s been marked for rollback. This could
be because some party called
UserTransaction.setRollbackOnly().

STATUS_PREPARING The current transaction is preparing to be
committed (during Phase One of the two-phase
commit protocol).

STATUS_PREPARED The current transaction has been prepared to be
committed (Phase One is complete).

STATUS_COMMITTING The current transaction is in the process of being
committed right now (during Phase Two).

STATUS_COMMITTED The current transaction has been committed
(Phase Two is complete).

STATUS_ROLLING_BACK The current transaction is in the process of rolling
back.

STATUS_ROLLEDBACK The current transaction has been rolled back.

STATUS_UNKNOWN The status of the current transaction cannot be
determined.

Transactions 305

16_785415 ch10.qxp 6/5/06 7:02 PM Page 305

Bean-Managed Transaction Example
We now show you how to write an enterprise bean that uses bean-managed
transactions. To do this, we’ll use the same teller bean example that was illus-
trated in Figure 10.10. The transferFunds() method of the teller bean needs
to use transactions to make sure that the updates to the bank account entities
are done as part of the same transaction. Let us see how we do this by using
javax.transaction.UserTransaction methods. Source 10.3 shows the
TellerBean code, which now manages its own transaction boundaries.

import javax.ejb.*;

import javax.annotation.Resource;

import javax.persistence.PersistenceContext;

import javax.persistence.EntityManager;

import javax.transaction.UserTransaction;

@Stateless()

@TransactionManagement(javax.ejb.TransactionManagementType.BEAN)

public class TellerBean implements Teller {

@PersistenceContext private EntityManager em;

@Resource private javax.transaction.UserTransaction userTx;

public void transferFunds(float amount, String fromAccount, String

toAccount)

{

// Lookup for accts with the provided account Ids

try {

userTx.begin();

BankAccount acct1 = em.find(BankAccount.class, fromAccount);

BankAccount acct2 = em.find(BankAccount.class, toAccount);

if (acct1.balance < amount)

userTx.rollback();

acct1.withdraw(amount);

acct2.deposit(amount);

em.persist(acct1);

em.persist(acct2);

userTx.commit();

} catch (Exception e) {

System.out.println(“Exception occurred during transfer of

funds.” + e.getMessage());

}

}

}

Source 10.3 The transferFunds() method implementation using UserTransaction.

306 Chapter 10

16_785415 ch10.qxp 6/5/06 7:02 PM Page 306

In Source 10.3, first notice that we used annotation to specify the transaction
management style, that is bean-managed, for our teller bean. Since we are
planning to control the transaction boundaries ourselves in the code, we first
retrieve the UserTransaction JTA object from the bean’s context. Then,
rather than relying on the EJB container to begin and commit transactions, we
perform these steps ourselves. Also notice that if the bank account from which
the money is being withdrawn does not meet the specific balance condition,
we roll back the transaction, thereby dooming it right away.

NOTE When using programmatic transactions, always try to complete your
transactions in the same method in which you began them. Doing otherwise
results in spaghetti code where it is difficult to track the transactions; the
performance decreases because the transaction is held open longer, and the
behavior of your system may be odd. See the EJB specification for more details
about what the container will do if your transaction is left open.

Client-Controlled Transactions

The last way you can control transactions is from client code (by client we
mean anything that calls your beans, even other enterprise beans). You use the
Java Transaction API (JTA) to control transactions from client code. You can get
hold of the JTA UserTransaction interface either by using resource injec-
tion or by looking it up in the JNDI registry.

When you demarcate transactional boundaries in client code, you should be
very careful. Always strive to keep your transactions as short in duration as
possible. Longer-lived transactions result in multi-user performance grinding
to a halt. If you need a long transaction (that lasts for minutes, hours, or days)
use a distributed locking mechanism, such as the CORBA locking service. No
distributed locking service equivalent currently exists in the Java Enterprise
Edition.

Transactional Isolation

Now that we understand how to apply transactions to EJB applications in vari-
ous ways, let’s further discuss the advanced concepts behind the I in ACID: iso-
lation. Isolation is the guarantee that concurrent users are isolated from one
another, even if they are touching the same database data. Isolation is important
to understand because it does not come for free. As we’ll see, you can control
how isolated your transactions are from one another. Choosing the right level of
isolation is critical for the robustness and scalability of your deployment.

Transactions 307

16_785415 ch10.qxp 6/5/06 7:02 PM Page 307

The underlying transaction system achieves isolation by performing concur-
rency control behind the scenes. We elaborate on this concept in the following
section.

The Need for Concurrency Control
Let’s begin our isolation discussion with a motivational example. Imagine that
there are two instances of the same component executing concurrently, per-
haps in two different processes or two different threads. Let’s assume that the
component wants to update a shared database through an entity. Each of the
instances of the component performs the following steps:

1. Read an integer X from a database.

2. Add 10 to X.

3. Write the new value of X to the database.

If each of these three steps executes together in an atomic operation, every-
thing is fine. Neither instance can interfere with the other instance’s opera-
tions. Remember, though, that the thread-scheduling algorithm being used in
the background does not guarantee this. If two instances are executing these
three operations, the operations could be interleaved. The following order of
operations is possible:

1. Instance A reads integer X from the database. The database now
contains X = 0.

2. Instance B reads integer X from the database. The database now
contains X = 0.

3. Instance A adds 10 to its copy of X and persists it to the database.
The database now contains X = 10.

4. Instance B adds 10 to its copy of X and persists it to the database.
The database now contains X = 10.

What happened here? Due to the interleaving of database operations,
instance B is working with a stale copy of X: the copy before instance A per-
formed a write. Thus, instance A’s operations have been lost! This famous
problem is known as a lost update. It is a very serious situation—instance B has
been working with stale data and has overwritten instance A’s write. How can
transactions avoid this scenario?

The solution to this problem is to use locking on the database to prevent the
two components from reading data. By locking the data your transaction is
using, you guarantee that your transaction and only your transaction has
access to that data until you release that lock. This prevents the interleaving of
sensitive data operations.

308 Chapter 10

16_785415 ch10.qxp 6/5/06 7:02 PM Page 308

In our scenario, if our component acquired an exclusive lock before the
transaction began and released that lock after the transaction, then no inter-
leaving would be possible.

1. Request a lock on X.

2. Read an integer X from a database.

3. Add 10 to X.

4. Write the new value of X to the database.

5. Release the lock on X.

If another component ran concurrently with ours, that component would
have to wait until we relinquished our lock, which would give that component
our fresh copy of X. We explore locking further in the “Isolation and Locking”
sidebar.

Transactions 309

ISOLATION AND LOCKING

During a transaction, a number of locks are acquired on the resource being
updated. These locks are used to ensure isolation: Multiple clients all updating
the same data set cannot interfere with each other. The locks are implicitly
retrieved when you interact with resource managers—you do not have to worry
about obtaining them yourself.

By intelligently acquiring locks on the resource being used, transactions
guarantee a special property: serializability. Serializability means that a suite of
concurrently executing transactions behaves as if the transactions were
executing one after another (nonconcurrently). This is guaranteed no matter
how scheduling of the transactions is performed.

The problem with locking is that it physically locks out other concurrent
transactions from performing their database updates until you release your
locks. This can lead to major performance problems. In addition, a deadlock
scenario (not specific to databases, by the way) can arise. Deadlock causes the
entire system to screech to a dead stop. An example of deadlock occurs when
two concurrent transactions are both waiting for each other to release a lock.

To improve performance, transactions distinguish between two main types of
locks: read locks and write locks. Read locks are nonexclusive, in that any
number of concurrent transactions can acquire a read lock. In comparison, write
locks are exclusive—only one transaction can hold a write lock at any time.

Locking exists in many circles: databases, version control systems, and the
Java language itself (through the synchronized keyword). The problems
experienced in locking are common to all arenas. EJB abstracts concurrency
control away from application developers via isolation levels.

If you would like more details about locking and transactions, check out
Principles of Databases Systems by Jeffrey D. Ullman (Computer Science Press,
1980). This classic, theoretical book on databases forms the basis for many
database systems today.

16_785415 ch10.qxp 6/5/06 7:02 PM Page 309

Isolation Levels
You can control how isolated the transactions that your EJB components per-
form on various resources are from one another by using various levels of iso-
lation. You can enforce strict isolation or allow relaxed isolation. If you have
very strict isolation, you can rest assured that each concurrent transaction will
be isolated from all other transactions. But sometimes enforcing strict isolation
is a hindrance rather than a benefit. Because isolation is achieved by acquiring
locks on underlying resources, the locks can result in unacceptable perfor-
mance degradation.

Thus, you need to be smart about how much isolation you really need. Iso-
lation levels give you a choice over how much isolation you want and allow
you to specify concurrency control at a very high level. If you specify a very
strict isolation level, then your transactions will be perfectly isolated from one
another, at the expense of performance. If you specify a very loose isolation
level, your transactions will not be isolated, but you will achieve higher con-
current transaction performance.

There are four transaction isolation levels:

■■ The READ UNCOMMITTED mode does not offer any isolation guarantees
but offers the highest performance.

■■ The READ COMMITTED mode solves the dirty read problem.

■■ The REPEATABLE READ mode solves the previous problem as well as
the unrepeatable read problem.

■■ The SERIALIZABLE mode solves the previous problems as well as the
phantom problem.

It’s important to understand why dirty reads, unrepeatable reads, and phantoms
occur, or you won’t be able to use transactions properly.

The Dirty Read Problem
A dirty read occurs when your application reads data from a database that has
not been committed to the resource yet. Consider two instances of the same
component performing the following:

1. You read integer X from the database. The database now contains X = 0.

2. You add 10 to X and save it to the database. The database now contains
X = 10. You have not issued a commit statement yet, however, so your
database update has not been made permanent.

3. Another application reads integer X from the database. The value it
reads in is X = 10.

310 Chapter 10

16_785415 ch10.qxp 6/5/06 7:02 PM Page 310

4. You abort your transaction, which restores the database to X = 0.

5. The other application adds 10 to X and saves it to the database. The
database now contains X = 20.

The problem here is the other application reads your update before you
committed. Because you aborted, the database data has erroneously been set
to 20; your database update has been added in despite the abort! This problem
of reading uncommitted data is a dirty read. (The word dirty occurs in many
areas of computer science, such as caching algorithms. A dirty cache is a cache
that is out of sync with the main source.)

READ UNCOMMITTED

Dirty reads can occur if you use the weakest isolation level, called READ
UNCOMMITTED. With this isolation level, if your transaction is executing con-
currently with another transaction, and the other transaction writes some data
to the database without committing, your transaction will read that data in. This
occurs regardless of the isolation level being used by the other transaction.
READ UNCOMMITTED experiences the other transactional problems as well:

unrepeatable reads and phantoms. We’ll describe those problems in the pages
to come.

When to Use READ UNCOMMITTED

This isolation level is dangerous to use in mission-critical systems with shared
data being updated by concurrent transactions. It is inappropriate to use this
mode in sensitive calculations, such as in banking transactions while you are
updating the balances on accounts, say. For those scenarios, it’s better to go
with one of the stricter isolation levels.

This level is most appropriate if you know beforehand that an instance of
your component will be running only when there are no other concurrent
transactions. Because there are no other transactions to be isolated from, this
isolation level is adequate. But for most applications that use transactions, this
isolation level is insufficient.

The advantage of this isolation level is performance. The underlying trans-
action system doesn’t have to acquire any locks on shared data in this mode.
This reduces the amount of time that you need to wait before executing, and it
also reduces the time concurrent transactions waste waiting for you to finish.

READ COMMITTED

The READ COMMITTED isolation level is very similar to READ UNCOMMITTED.
The chief difference is that your code will read committed data only when run-
ning in READ COMMITTED mode. When you execute with this isolation level,

Transactions 311

16_785415 ch10.qxp 6/5/06 7:02 PM Page 311

you will not read data that has been written but is uncommitted. This isolation
level thus solves the dirty read problem.

Note that this isolation level does not protect against the more advanced
transactional problems, such as unrepeatable reads and phantoms.

When to Use READ COMMITTED

This isolation level offers a step up in robustness from the READ UNCOMMITTED
mode. You aren’t going to be reading in data that has just been written but is
uncommitted, which means that any data you read is going to be consistent
data.

One great use for this mode is for programs that read data from a database
to report values of the data. Because reporting tools aren’t in general mission-
critical, taking a snapshot of committed data in a database makes sense.

When you run in READ COMMITTED mode, the underlying concurrency con-
trol system needs to acquire additional locking. This makes performance
slower than with READ UNCOMMITTED. READ COMMITTED is the default isola-
tion level for most databases, such as Oracle or Microsoft SQL Server.

The Unrepeatable Read Problem
Our next concurrency control problem is an unrepeatable read. Unrepeatable
reads occur when a component reads some data from a database, but upon
rereading the data, the data has been changed. This can arise when another
concurrently executing transaction modifies the data being read. For example:

1. You read a data set X from the database.

2. Another application overwrites data set X with new values.

3. You reread the data set X from the database. The values have magically
changed.

Again, by using transactional locks to lock out those other transactions from
modifying the data, we can guarantee that unrepeatable reads will never
occur.

REPEATABLE READ

REPEATABLE READ guarantees yet another property on top of READ
COMMITTED: Whenever you read committed data from a database, you will be
able to reread the same data again at a later time, and the data will have the
same values as the first time. Hence, your database reads are repeatable. In con-
trast, if you are using the READ COMMITTED mode or a weaker mode, another
concurrent transaction may commit data between your reads.

312 Chapter 10

16_785415 ch10.qxp 6/5/06 7:02 PM Page 312

When to Use REPEATABLE READ

Use REPEATABLE READ when you need to update one or more data elements
in a resource, such as one or more records in a relational database. You want to
read each of the rows that you’re modifying and then be able to update each
row, knowing that none of the rows are being modified by other concurrent
transactions. If you choose to reread any of the rows at any time later in the
transaction, you’d be guaranteed that the rows still have the same data that
they did at the beginning of the transaction.

The Phantom Problem
Finally, we have the phantom problem. A phantom is a new set of data that
magically appears in a database between two read operations. For example:

1. Your application queries the database using some criteria and retrieves
a data set.

2. Another application inserts new data that would satisfy your query.

3. You perform the query again, and new sets of data have magically
appeared.

The difference between the unrepeatable read problem and the phantom
problem is that unrepeatable reads occur when existing data is changed,
whereas phantoms occur when new data that didn’t exist before is inserted.
For example, if your transaction reads a relational record, and a concurrent
transaction commits a new record to the database, a new phantom record
appears that wasn’t there before.

SERIALIZABLE

You can easily avoid phantoms (as well as the other problems described ear-
lier) by using the strictest isolation level: SERIALIZABLE. SERIALIZABLE
guarantees that transactions execute serially with respect to each other, and it
enforces the isolation ACID property to its fullest. This means that each trans-
action truly appears to be independent of the others.

When to Use SERIALIZABLE

Use SERIALIZABLE for mission-critical systems that absolutely must have
perfect transactional isolation. You are guaranteed that no data will be read
that has been uncommitted. You’ll be able to reread the same data again and
again. And mysterious committed data will not show up in your database
while you’re operating due to concurrent transactions.

Transactions 313

16_785415 ch10.qxp 6/5/06 7:02 PM Page 313

Use this isolation level with care because serializability does have its cost. If
all of your operations execute in SERIALIZABLE mode, you will quickly see
how fast your database performance grinds to a halt. However, because trans-
actional errors can be very difficult to detect, due to scheduling of processes,
variable throughput, and other issues, we subscribe to the view that it’s better
to be safe than sorry.

Transaction Isolation Summary
The various isolation levels and their effects are summarized in Table 10.5.

Using Various Isolation Levels in EJB Applications
EJB does not provide a way to specify isolation levels directly, in that the spec-
ification doesn’t provide an API, an annotation or a deployment descriptor set-
ting through which we can set isolation level directly on our beans. Instead, we
specify the isolation levels on the resource API itself. For example, if our
resource happens to be a database, then we use the JDBC API, specifically,
Connection.setIsolationLevel(), to set the isolation level. Bottom
line—isolation levels are always set on the resource API, however, the isolation
level in use has a deep impact on the performance of your EJB applications.

Now if you’re using different resource managers within a single transaction,
each resource manager can have a different isolation level, yet all run together
under a single transaction. At the same time, access to a particular resource
manager under a given transaction should always occur under the same isola-
tion level.

Table 10.5 The Isolation Levels

ISOLATION DIRTY UNREPEATABLE PHANTOM
LEVEL READS? READS? READS?

READ UNCOMMITTED Yes Yes Yes

READ COMMITTED No Yes Yes

REPEATABLE READ No No Yes

SERIALIZABLE No No No

314 Chapter 10

16_785415 ch10.qxp 6/5/06 7:02 PM Page 314

Pessimistic and Optimistic Concurrency Control
The two basic object concurrency control strategies that EJBs may follow, pes-
simistic and optimistic, are summarized in Table 10.6. Pessimistic concurrency
control is the algorithm we’ve been assuming throughout this chapter—you
acquire a lock for the data for the duration of the transaction, ensuring that
nobody messes with your data.

Table 10.6 Comparing Pessimistic and Optimistic Concurrency Control Strategies

STRATEGY ADVANTAGES DISADVANTAGES

Pessimistic—Your EJB * Brute force approach * Does not scale well
locks the source data * Provides reliable because it blocks
for the entire time it access to data simultaneous access to
needs the data, not * Suitable for common resources
allowing anything small-scale systems
greater (at least anything * Suitable for systems
greater than read/view simultaneous access
access) to potentially where concurrent
update the data systems access is rare
until it completes its
transaction.

Transactions 315

WHY DOESN’T EJB ALLOW ISOLATION LEVEL SETTINGS?

As we now know, the EJB standard does not deal with isolation levels directly,
and rightly so. EJB is a component specification. It defines the behavior and
contracts of a business component with clients and middleware infrastructure
(containers) such that the component can be rendered as various middleware
services properly. EJBs therefore are transactional components that interact
with resource managers, such as the JDBC resource manager or JMS resource
manager, via JTS, as part of a transaction. They are not, hence, resource
components in themselves. Since isolation levels are very specific to the
behavior and capabilities of the underlying resources, they should therefore be
specified at the resource API levels.

In fact, when EJB was first introduced, it did have a way to specify isolation
levels at the component level. Later on the EJB Expert Group realized that this
was a wrong place to specify isolation level. Besides, vendors found that
implementing isolation levels at the component level was way too clumsy.
Hence, the next revision to the specification got rid of component-level
isolation setting and suggested that isolation level be set at the individual
resource level, through the usage of the respective resource APIs or some other
means of configuration.

16_785415 ch10.qxp 6/5/06 7:02 PM Page 315

With optimistic concurrency control, your EJB component does not hold the
lock for the duration of the transaction. Instead, you hope everything will be
okay. Then if the database detects a collision, the transaction is rolled back. The
basic assumption behind optimistic concurrency is that because it is unlikely
that separate users will access the same object simultaneously, it is better to
handle the occasional collision than to limit the request-handling throughput
of your system.

Designing Transactional Conversations in EJB

In this chapter, we’ve seen that a transactional abort entails an automatic roll-
back of database updates that were performed during the transaction. But
database updates are only half of the picture. Your application code needs to
consider the impacts of a failed transaction as well.

When a transaction aborts, your application code has several choices. You
can abort your business process and throw an exception back to the client, or
you can attempt to retry the transaction several times. But unfortunately, your
application cannot sit in a loop retrying transactions forever, because that
would yield horrible performance for concurrent threads of execution. If the
transaction cannot eventually be made to succeed, you should consider abort-
ing your business process.

For a stateless session bean, aborting a business process is a simple task—
simply throw an exception back to the client. But for a stateful session bean,
things are a bit trickier. Stateful session beans represent business processes that
span multiple method calls and hence have in-memory conversational state.
Tossing away that conversation and throwing an exception to the client could
entail a significant amount of lost work.

Fortunately, a well-designed stateful session bean can salvage its conversa-
tions in the case of failed transactions. The key is to design your beans to be
aware of changes to conversational state and to be smart enough to undo any
of those changes if a transactional abort occurs.

Because this process is highly application-specific, your application server
cannot automate this task for you. Your application server can aid you in deter-
mining when a transaction failed, enabling you to take application-specific
steps. If your session bean needs to be alerted to transaction status (such as
failed transactions), your enterprise bean class can implement an optional
interface called javax.ejb.SessionSynchronization, shown in the fol-
lowing code:

316 Chapter 10

16_785415 ch10.qxp 6/5/06 7:02 PM Page 316

public interface javax.ejb.SessionSynchronization

{

public void afterBegin();

public void beforeCompletion();

public void afterCompletion(boolean);

}

You should implement this interface in your enterprise bean class and define
your own implementations of each of these methods. The container will call your
methods automatically at the appropriate times during transactions, alerting
you to important transactional events. This adds to the existing arsenal of alerts
that your session beans receive already—life-cycle alerts via PostConstruct
and PreDestroy methods, passivation alerts via PrePassivate and
PostActivate methods, and now transactional alerts via afterBegin(),
beforeCompletion(), and afterCompletion().

Here’s what each of the SessionSynchronization methods do:

■■ afterBegin() is called by the container directly after a transaction
begins.

■■ beforeCompletion() is called by the container right before a trans-
action completes.

■■ afterCompletion() is called by the container directly after a trans-
action completes.

The key method that is most important for rolling back conversations is
afterCompletion(). The container calls your afterCompletion()
method when a transaction completes in either a commit or an abort. You can
figure out whether a commit or an abort happened by the Boolean parameter
that gets passed to you in afterCompletion(): true indicates a successful
commit, false indicates an abort. If an abort happened, you should roll back
your conversational state to preserve your session bean’s conversation.

Source 10.4 shows afterCompletion() method in action:

import javax.ejb.*;

@Stateful

@Remote(examples.Count.class)

public class CountBean implements examples.Count,

SessionSynchronization{

private int val;

private int oldVal;

public int count() {

Source 10.4 Using SessionSynchronization to manage transactional conversations in
stateful session beans. (continued)

Transactions 317

16_785415 ch10.qxp 6/5/06 7:02 PM Page 317

System.out.println(“count()”);

return ++val;

}

public void set(int val) {

this.val = val;

System.out.println(“set()”);

}

@PostConstruct

public void construct(examples.Count bean)

{

this.val = val;

this.oldVal = val;

}

@Remove

public void remove() {

System.out.println(“remove()”);

}

public void afterBegin(){}

public void beforeCompletion(){}

public void afterCompletion(boolean b){

if (b==false)

val = oldVal;

}

}

Source 10.4 (continued)

This is the same count bean that you saw in Chapter 4. The conversational
state is val, an integer that increases incrementally whenever count() is
called. We also keep a backup copy of val, called oldVal, which we revert to
in case of a transactional rollback. Here is what’s going on:

1. When the bean is first initialized in the PostConstruct method
construct(), or when a transaction first begins in afterBegin(),
val and oldVal are set to the same value.

2. One or more count() business methods are called, incrementing val.

3. If the transaction fails, the afterCompletion() method is called
when the transaction completes. If the transaction failed (that is, if a
false value was passed into afterCompletion()), we roll back the
conversational state by reverting back to oldVal.

318 Chapter 10

16_785415 ch10.qxp 6/5/06 7:02 PM Page 318

Note that for this to work, we must make count() transactional using
either annotations or deployment descriptor. We will use one of the transac-
tion attributes discussed earlier in this chapter to achieve that.
SessionSynchronization is also useful when your stateful session

bean caches database data in memory during a transaction. You can use
SessionSynchronization to track when to cache and when not to cache
data as follows:

■■ When the container calls afterBegin(), the transaction has just
started. You should read in any database data you want to cache in
your stateful session bean.

■■ When the container calls beforeCompletion(), the transaction has
ended. Write out any database data you’ve cached.

NOTE You can implement SessionSynchronization only if you’re
using a stateful session bean with container-managed transactions. If your
bean is using bean-managed transactions, you are already in control of the
transaction because you issue the begin(), commit(), and abort()
statements. Stateless session beans do not hold conversations and hence do
not need these callbacks.

Summary

Whew! That’s a lot of information to digest. You may want to reread this chap-
ter later to make sure you’ve grasped all the concepts.

In this chapter, we discussed transactions and how they can make a server-
side deployment robust. We saw the virtues of transactions, which are called
the ACID properties. We looked at different transactional models, including flat
and nested transactions, followed by a discussion on distributed transactions
and two-phase commit protocol. We also provided notes on Java Transaction
API, the underpinning that provides support of transactions on EJB platform,
and Java Transaction Service, the Java binding to the robust CORBA OTS.

We then applied this transactional knowledge to EJB. We discussed how
container-managed, bean-managed, and client-controlled transactions are
useful in EJB and learned how to code with each model. We also threw in a lot
of information about how EJB transactions work in unison with entities, Java
EE connectors, and JMS resources. We looked at transaction isolation levels
and understood the problems that each level solves. Finally, we covered how
to write transactional conversations to manage state according to the outcome
of the transactions in stateful session beans.

Transactions 319

16_785415 ch10.qxp 6/5/06 7:02 PM Page 319

Reading this chapter will prove well worth the effort, because now you have
a wealth of knowledge about the importance and usefulness of transactions in
EJB. You should definitely refer this chapter frequently when you’re creating
transactional beans.

320 Chapter 10

16_785415 ch10.qxp 6/5/06 7:02 PM Page 320

321

This chapter introduces and explains EJB security in detail. Let’s start with a
fundamental observation: When building systems based on enterprise mid-
dleware, you typically want to integrate important business resources.
Because important also means critical, security can be one of the most important
aspects of your EJB application architecture. To build a secure system, you
need to make informed and balanced decisions about placing security controls.
Without understanding the fundamental risks in your application and its envi-
ronment, you won’t be able to make these decisions. Balancing your decisions
is important because security comes at a price, such as increased cost or com-
plexity; reduced performance, maintainability, or functionality; and so on.

An introduction to important security concepts is given in the introductory
section. We will then take a look at Web application security in Java EE as a
prelude to introducing the two basic security approaches in EJB—declarative
and programmatic security. We provide information on security interoperabil-
ity aspects that are important for applications that span different EJB vendors’
platforms and communicate across individual networks. Finally, we explain
the latest and greatest in security technology for Web services.

Security

C H A P T E R

11

17_785415 ch11.qxp 6/5/06 7:02 PM Page 321

Introduction

Security is often a nebulous thing. It can be difficult and costly, and dealing
with it is often avoided until very late in a project. In large-scale projects
involving enterprise middleware like EJB, however, the risks of a badly or alto-
gether unprotected infrastructure can be enormous. For example, losing the
customer data in your enterprise database because someone drilled a hole into
the back end with an unprotected EJB application can put you out of business
very quickly.

Being secure means that no harmful events can happen to you and your
assets (data, processes, infrastructure, whatever). What makes security some-
times hard to grasp is that it spans a wide variety of technologies, such as net-
works, operating systems, databases, application servers, EJBs, and so on.
Moreover, security is not confined to information technology but also involves
physical controls like door locks and alarms. It also depends to a great degree
on appropriate human behavior, such as correct operations, proper monitor-
ing of systems, swift responses to alarms, and users not sharing passwords or
keys with others. Security books abound with anecdotes about successful
social engineering attacks, where attackers simply exploited people’s good
will and trust in others. To complete the story, it can sometimes be very hard to
say exactly (and completely) what must be considered secure or insecure. This
last issue is the domain of security policy design. In a broader sense, then,
security is the process that aims at securing systems rather than the idealized
state of absolute security itself.

NOTE One word of caution before we start getting into details: don’t roll your
own security systems! Don’t start designing new exciting crypto algorithms,
authentication protocols, or access control systems. This is a discipline that
takes years of experience, and you need to understand the faults and
sidetracks taken in the past in order to avoid repeating them. At best, it is a
waste of time and money. At worst, the false sense of security created by
homegrown technology will cloud up the enormous risks created by the subtle
or not so subtle design flaws in your protections.

For further reading on EJB and enterprise security with many more details
than we are able to cover in this one chapter, please refer to Enterprise Security
with EJB and CORBA by Bret Hartman et al. (John Wiley & Sons, 2001; ISBN:
0471401315). For in-depth treatment of security as an engineering discipline,
we recommend Ross Anderson’s Security Engineering (John Wiley & Sons,
2001; ISBN 0471389226).

322 Chapter 11

17_785415 ch11.qxp 6/5/06 7:02 PM Page 322

Violations, Vulnerabilities, and Risk
Let’s quickly define a handful of terms that we need on the following pages.
Feel free to jump ahead and skip this and the following section if you are famil-
iar with these terms. The events that you would like to avoid are often called
security breaches or violations, for example an intruder reading files that you
would prefer to remain confidential. A security violation is possible if there are
no safeguards that protect against them, in other words no file system protec-
tion. Alternatively, violations are possible if the system has weaknesses that
allow users to circumvent security, for example, where a user can obtain
another user’s privileges and thus get access. Both these deficiencies are called
vulnerabilities, which can be exploited by those who find them. Another exam-
ple of a vulnerable system is one that has its default administrator password
unchanged after installation and is thus open to anyone who can read the
installation documentation, or a program using libraries that are ridden with
buffer overflow bugs.

Because the list of potential vulnerabilities is open-ended and increases with
every piece of hardware or software that is added to a system, complete pro-
tection is not a realistic goal. Also, it may be very expensive to protect even
against all known vulnerabilities. As there is no perfect security anyway, it has
become common practice to try to reduce the overall risks to an acceptable level
instead. To reduce risks, however, we first need to know them, meaning that
we need to perform a risk assessment before we can decide how much and what
needs to be done.

In the simplest definition, risk is a product of two factors: probability of the
occurrence of a violation and the estimated damage caused by this event. This
may sound a bit like insurance business, and in fact it is very similar. The prob-
ability of occurrence is a function of your system’s vulnerabilities and the
attacker’s resources, and the potential damage is a function of the value of
your assets. In other words, if you have a complex system with weak protec-
tions and a resourceful enemy, then the probability of a successful attack is
high. Don’t let this turn your hair gray yet; given our definition of risk, we may
not have to worry about this: If the system is just a gaming console that does
not represent any business value (and the resourceful attackers are students
doing an internship at your company), then the actual risk is low!

Controls
By eliminating or reducing the vulnerabilities in your systems, risks are
reduced, ideally down to zero. (The obvious other measure, reducing the
value of your assets, is not a desirable option in most cases.) This is done by
placing security controls in the right places.

Security 323

17_785415 ch11.qxp 6/5/06 7:02 PM Page 323

As you saw, it is important to understand the risks in a system before you
start setting up arbitrary controls. Without such an understanding, you may be
spending an enormous amount of time and resources protecting against rela-
tively harmless events that may not be more than a nuisance—while not pay-
ing attention to the others that will ruin your company. For example, the actual
risk associated with an attacker observing the update() method calls in an
MVC pattern may not even warrant the use of SSL/TLS protection, with the
associated performance hit at connection setup time and the administrative
overhead of distributing credentials such as public key certificates.

The term control is generally translated to one or more of the following,
canonic security functions:

■■ Authentication. Verifying the authenticity of user information. In most
cases, this means verifying that the other side is who it claims to be. The
authenticated entity is called principal. Authentication can mean check-
ing a provided user ID and password against a database, or it can
involve verifying a digital signature on a public key certificate to estab-
lish trust in the holder of that key.

■■ Authorization. Controlling principals’ accesses to resources. This usu-
ally involves checking access privileges to find out who is authorized.

■■ Data integrity protection. Preventing, or at least detecting, modifica-
tions of data. Data integrity mishaps can be prevented by controlling all
write accesses to that data. When data is communicated over an open
transport channel, such as a WLAN, access to that data cannot be pre-
vented at all times. In these cases, integrity protection usually means
applying a cryptographic hash and later recomputing that hash to
determine whether the data has been modified in transit.

324 Chapter 11

ATTACKER MODEL

As we saw, risk assessment should include a model of your potential adversary,
such as foreign intelligence services, determined criminals, or bored high-
school students. The motivation for defining who to defend against is that the
different levels of skills, determination, and resources that are associated with
the different model attackers shed a different light on the concept of
vulnerability. A password that is hard to crack for some people using their
limited attacker toolbox and computing resources may be very easy to crack for
others using offline attacks with terabytes of precomputed passwords that are
indexed for faster lookup. A bored teenager will not be sufficiently motivated to
spend more than the weekend to analyze messages encrypted with even low-
grade cryptography, but a foreign intelligence service may be. Defining your
model attacker is a more precise way of estimating your vulnerabilities by
establishing additional context.

17_785415 ch11.qxp 6/5/06 7:02 PM Page 324

■■ Data confidentiality protection. Preventing unauthorized disclosure of
information. As with data integrity, data confidentiality can be protected
by controlling read access to data, or by encrypting the data on the wire so
that it can be read only by receivers with the correct cryptographic keys.

To conclude this introductory section before taking a dive into the security
technologies that are relevant for EJB, let’s take a minute to think about the secu-
rity of the EJB infrastructure itself. This chapter is about protecting applications
using EJB security, but this obviously hinges on the security of the system that
provides it, meaning your application server. We need not go as far as looking
for programming errors in the software; all the security that we are about to
introduce now can be turned off again, just like that, if administrator access is
not adequately controlled. This means that choosing a good password and pro-
tecting it is a prerequisite for any higher-level security. Protecting the application
server is necessarily a product-specific task, and you should take the time to con-
sult your product documentation to find out what needs to be done.

In addition, consider the security of the services that the EJB container pro-
vides to applications and that may be externally accessible. Most importantly,
this means the Java Naming and Directory Service (JNDI). Can anyone other than
your expected clients connect to your container’s JNDI contexts, for example
by using RMI over IIOP (RMI/IIOP) applications? With most application
servers, this is possible by default. If there is no protection for the JNDI, then
your application may think it is retrieving a particular bean reference, but in
fact it is receiving an object reference to a carefully crafted man-in-the-middle
bean at hacker.org that was skillfully bound to the very name of the bean that
you expected to use. This bean can then intercept and inspect any application
traffic and may actually forward it to the appropriate server so that its exis-
tence can remain concealed for a while. Rebinding a name in JNDI is simple,
so you must make sure that only trusted clients may bind or rebind names.

Web Application Security

In Java EE applications with a Web tier, the first point of interaction with a
client is the Web container and the JSP files or servlets it hosts, as shown Fig-
ure 11.1. Clients send HyperText Transfer Protocol (HTTP) requests, and the
servlets, JSP or JSF files would call bean instances in the EJB containers using
RMI-IIOP or SOAP.

Web application security is not covered by the EJB specifications but rather
by the Java Servlet Specification and the Java EE 5 Platform Specification. The gen-
eral security concepts used by Java EE for both servlets and EJB are very simi-
lar, but if you are building complex Web applications, we recommend that you
consult the Java Servlet Specification that is available at http://java.sun.com/
products/servlet.

Security 325

17_785415 ch11.qxp 6/5/06 7:02 PM Page 325

Figure 11.1 Web applications.

Authentication in Web Applications
Web applications are accessed by sending HTTP request messages to the
servlet container. The servlet specification does not define any additional
authentication mechanisms beyond the ones that are available in HTTP, so the
actual authentication is done by the general Web server component.

Authentication requirements for Web applications can be specified in the
Web application’s deployment descriptor (the web.xml file). This file is found
underneath the (required) WEB-INF folder within the Web application.

The supported mechanisms are:

■■ HTTP Basic and Digest authentication. A user ID and password mech-
anism, where both the user name and password are transmitted in a
special header field of the HTTP request. With basic authentication, the
password is transmitted in base64 encoding, but unencrypted. This is
insecure and only appropriate in combination with SSL (HTTPS), or in
relatively trusted environments. With digest authentication, the pass-
word is transmitted in encrypted form. Digest authentication is not in
widespread use, and hence not required to be available in all products.

■■ Form-based authentication. Another form of user ID and password
authentication. The user information is sent in the request message
body as part of HTML form input data. Like basic authentication, this
data is unprotected unless additional mechanisms (HTTPS) are used.

■■ HTTPS Client authentication. A strong authentication mechanism
based on public key certificates exchanged in the Secure Socket Layer
(SSL/TLS) underneath HTTP. HTTPS client authentication requires
clients to provide a public key certificate in X.509 format. When client
authentication is required, the SSL layer performs a handshake proce-
dure as part of the connection establishment process. In this process, the
SSL layer will transmit the client’s public key certificate and use the cor-
responding private key to prove possession of the public key. These
keys may reside in a Java keystore file at the client.

JSF/JSP/Servlet

Web Container

Web Client
EJB

EJB Container

326 Chapter 11

17_785415 ch11.qxp 6/5/06 7:02 PM Page 326

Authentication requirements for Web applications are specified in the Web
application’s deployment descriptor using the login-config element. To
require HTTP basic authentication for a servlet, the login-config element
would look like this, where realm-name refers to an authentication realm (a
set of users) that is known to the servlet container:

<login-config>

<auth-method>BASIC</auth-method>

<realm-name>basic-file</realm-name>

</login-config>

Other valid content for the login-config element is DIGEST, FORM, or
CLIENT-CERT, as in the following example:

<login-config>

<auth-method>CLIENT-CERT</auth-method>

<realm-name>basic-file</realm-name>

</login-config>

Authorization
There are two options for authorization checking for a Java EE Web
application:

■■ Declarative security. The servlet container checks access to Web
resources based on access rules in deployment descriptors.

■■ Programmatic security. The servlet performs its own access checks
based on internal state, hard-coded access rules, and the authentication
information provided by the container. The security context API pro-
vided by the servlet container is similar to the one provided by EJB con-
tainers, which we explain later in this section. Servlets can use the
isUserinRole and the getUserPrincipal methods to make autho-
rization decisions. Refer to the servlet specification for details.

To specify access rules declaratively, the servlet specification uses the
security-constraint element of the deployment descriptor, which defines
constraints for a collection of Web resources. Here is an example:

<security-constraint>

<web-resource-collection>

<web-resource-name>basic security test</web-resource-name>

<url-pattern>/*</url-pattern>

</web-resource-collection>

Security 327

17_785415 ch11.qxp 6/5/06 7:02 PM Page 327

328 Chapter 11

<auth-constraint>

<role-name>staffmember</role-name>

</auth-constraint>

</security-constraint>

The preceding descriptor snippet specifies that all HTTP requests that apply
to the URL pattern /*, in other words to all URLs in the Web application, are
to be constrained to the listed role staffmember, meaning that only users
who are members of that role are allowed access. An auth-constraint with
empty content would be taken as denial. How users are mapped to roles is
vendor-specific. Typically, application servers will use an additional descrip-
tor file with a role-mapping element for this purpose.

Confidentiality and Integrity
Confidentiality and integrity protection for Web applications is based entirely
on secure transport, meaning on HTTPS. A Web application’s requirements are
again expressed in the deployment descriptor, as in the following example:

<security-constraint>

<web-resource-collection>

<web-resource-name>wholesale</web-resource-name>

<url-pattern>/acme/wholesale/*</url-pattern>

<http-method>GET</http-method>

<http-method>POST</http-method>

</web-resource-collection>

<auth-constraint>

<role-name>CONTRACTOR</role-name>

</auth-constraint>

<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>

</user-data-constraint>

</security-constraint>

Here, the user-data-constraint contains a transport-guarantee
element that requires confidentiality protection from the transport layer. Other
values for the transport-guarantee are INTEGRAL and NONE, where
NONE means that no requirements exist. Note that CONFIDENTIAL implies
INTEGRAL because any encrypted data is implicitly protected against modifi-
cations: Modified encrypted data simply does not correctly decrypt on the
receiver side.

The confidentiality and integrity protections for Web applications are rela-
tively coarse-grained in that there is no way for the deployment descriptor to

17_785415 ch11.qxp 6/5/06 7:02 PM Page 328

express requirements on the cryptographic strength of the protection through
the choice of SSL/TLS cipher suite. When you deploy a Web application, you
must trust the container that its provision of a CONFIDENTIAL transport is
confidential enough.

Understanding EJB Security

There are two security measures that clients must pass when you add security
to an EJB system: authentication and authorization. Authentication must be
performed before any EJB method is called. Authorization, on the other hand,
occurs at the beginning of each EJB method call.

Authentication in EJB
Since EJB 2.0, authentication is now portable and robust. You can call authen-
tication logic through the Java Authentication and Authorization Service (JAAS),
an integral part of Java since Java 2 SDK v1.4. Let’s now take a mini-tutorial of
JAAS and see how it can be used in an EJB environment.

We will see below that the authorization piece on EJB methods is easily
achieved via security annotations.

JAAS Overview

JAAS is a portable interface that enables you to authenticate and authorize
users in Java. In a nutshell, it allows you to log in to a system without know-
ing about the underlying security system being used. Behind the scenes in
JAAS, the implementation (such as an application server) then determines if
your credentials are authentic. Moreover, JAAS enables you to write your own
customized authentication modules that can then be plugged in without the
need to change client code.

The power of JAAS lies in its ability to use almost any underlying security
system. Some application servers allow you to set up user names and pass-
words in the application server’s properties, which the application server
reads in at runtime. More advanced servers support complex integration with
existing security systems, such as a list of user names and passwords stored in
an LDAP server, database, or custom security system. Other systems support
certificate-based authentication. Regardless, the integration is performed
behind the scenes by the container and does not affect your application code.

There are two likely candidate scenarios for use when you may want to uti-
lize JAAS from your code, shown in Figure 11.2.

Security 329

17_785415 ch11.qxp 6/5/06 7:02 PM Page 329

Fi
gu

re
 1

1.
2

JA
AS

 o
ve

rv
ie

w
.

C
lie

nt
 -

 e
.g

. s
er

vl
et

, J
S

P,
 o

r
ap

pl
ic

ai
to

n
(y

ou
 w

rit
e

th
is

)

Lo
gi

nC
on

te
xt

(p
ro

vi
de

d
fo

r
yo

u)

1:
 n

ew
()

7:
 lo

gi
n(

)

C
on

fig
ur

at
io

n
(y

ou
 w

rit
e

th
is

)

O
ne

 o
r

m
or

e
Lo

gi
nM

od
ul

es
(y

ou
 w

rit
e

th
em

)

5:
 n

ew
()

6:
 in

iti
al

iz
e(

)
8:

 lo
gi

n(
)

10
: c

om
m

it(
)

or
 a

bo
rt

()

S
ub

je
ct

(p
ro

vi
de

d
fo

r
yo

u)

9:
 g

et
S

ub
je

ct
()

11
: r

et
ur

n
su

bj
ec

t

13
:

do
A

s(
su

bj
ec

t,
ac

tio
n)

A
ct

io
n

(y
ou

 w
rit

e
th

is
)

12
: n

ew
()

14
: r

un
()

2:
 n

ew
()

4:
 r

et
ur

n
lis

t o
f L

og
in

M
od

ul
es

J2
E

E
 S

er
ve

r

9:
 a

ut
he

nt
ic

at
e

us
in

g
pr

op
rie

ta
ry

 A
P

I

N
et

w
or

k

15
: p

er
fo

rm
 s

ec
ur

e
op

er
at

io
n

(s
uc

h
as

 c
al

lin
g

an
 E

JB
)

N
et

w
or

k

3:
 g

et
A

pp
C

on
fig

ur
at

io
nE

nt
ry

()

17_785415 ch11.qxp 6/5/06 7:02 PM Page 330

■■ When you have a standalone application connecting to a remote EJB
system, the user would supply credentials to the application (or per-
haps the application would retrieve the credentials from a file or other
system). The standalone application would then use the JAAS API to
authenticate the user prior to calling the EJB components residing
within the application server. The application server would verify the
user’s credentials. Once the user has been authenticated via JAAS, the
client can call EJB methods securely, and the user’s security identity
will be propagated to the server upon method invocations.

■■ When you have a Web browser client connecting to a servlet or JSP layer,
the Web browser user supplies credentials to a servlet/JSP layer, and the
servlet or JSP layer can use JAAS to authenticate the user. The Web
browser could supply the credentials in one of the four ways that we
discussed in the section on Web application security. To recap, these are:

■■ Basic authentication

■■ Form-based authentication

■■ Digest authentication

■■ Certificate authentication

As with standalone applications, once the user has been authenticated via
JAAS, the client can call EJB methods securely, and the user’s security identity
will be propagated to the server upon method invocations.

The JAAS Architecture

JAAS has a flexible design, but can be surprisingly complicated for what you
think would be a simple function. We have distilled JAAS down into a simple
procedure to make it easier for you to understand.

Figure 11.3 shows the basics of a JAAS authentication procedure.
The JAAS authentication procedure breaks down as follows (follow along

with the picture as we review each step):

1. The client instantiates a new login context. This is a container-provided
class. It’s responsible for coordinating the authentication process.

2. The login context retrieves a configuration object. The configuration
object knows about the type of authentication you want to achieve by
consulting a configuration file that lists the login modules. For example,
your configuration object might know that you want to perform both
password-based authentication and certificate-based authentication.

3. The login context asks the configuration object for the list of authentica-
tion mechanisms to use (such as password-based and certificate-based).

Security 331

17_785415 ch11.qxp 6/5/06 7:02 PM Page 331

4. The configuration object returns a list of authentication mechanisms.
Each one is called a login module. A login module knows how to contact
a specific security provider and authenticate in some proprietary way.

5. The login context instantiates your login modules. You can have many
login modules if you want to authenticate across several different secu-
rity providers. In the example we’re about to show, we will use only
one login module, and it will know how to authenticate using a user
name and password combination to a Java EE server.

6. The login context initializes the login modules.

7. The client code tries to log in by calling the login() method on the
login context.

8. The login context delegates the login() call to the login modules, since
only the login modules know how to perform the actual authentication.

9. The login modules (written by you) authenticate you using a propri-
etary means. In the example we’re about to show, the user name and
password login module will perform a local authentication only that
always succeeds because the authentication data is not checked on the
client side at all. After the login succeeds, the login module is told to
commit(). It can also abort() if the login process fails. This is not a
very critical step to understand—read the JAAS docs if you’re curious,
to understand more.

10. Authentication information is kept in a subject. You can use this subject
to perform secure operations or just have it sit in the context.

11. Your client code calls remote operations (such as in an EJB component)
and the logged-in security context is automatically propagated along
with the method call. If you are curious: for RMI/IIOP clients the
machinery to pass this context is based on the CSIv2 standard that we
will explain later in this chapter. The EJB server can now perform the
actual authentication using the authentication data that is passed in the
security context. The server can then perform authorization based on
the authenticated client identity.

NOTE What’s neat about JAAS is that the login modules are separate from the
configuration, which means that you can chain together different login modules
in interesting combinations by specifying different configurations in the local
configuration file. Another thing to note in the sequence outlined above is that
the authentication may succeed on the client side but fail on the server side. If
the password is incorrect, this will result in the server rejecting the invocation
with a NO_PERMISSION exception.

332 Chapter 11

17_785415 ch11.qxp 6/5/06 7:02 PM Page 332

Figure 11.3 JAAS authentication in detail.

JAAS Sample Code

Let’s show a simple JAAS example. The code will authenticate and then call a
“Hello, World” method on a bean. If the password is right, then the invocation
succeeds. If not, then the server throws an exception. The example shows both
the use of the JAAS client API and how a custom LoginModule is plugged in.

The code is in Source 11.1 through 11.3 and is fairly self-documenting. By
reviewing Figure 11.3, this sample code, and the process we laid out earlier,
you should be able to get a feeling for what this code is doing. Note in Source
11.1 that if authorization fails on the method call, an EJBException is prop-
agated back to the client. We will look at authorization in more detail in the
next section.

package examples.security;

import java.util.*;

import javax.security.auth.*;

Source 11.1 HelloClient.java. (continued)

Client
(you write this)

LoginContext
(provided for you)

One or more
LoginModules
(you write this)

Configuration
(provided for you)

Subject
(provided for you)

Config file
(you write this)

J2EE Servernetwork

11:call business methods

2:getConfiguration()
3:getAppConfigurationEntry()

1:new()
7:login()

5:new()
6:initialize()
8:login()
9:commit()

10:add credentials

4:return list of LoginModules

Security 333

17_785415 ch11.qxp 6/5/06 7:02 PM Page 333

import javax.security.auth.login.*;

import javax.naming.*;

/**

* A client program that uses JAAS to authenticate

*/

public class HelloClient

{

public static void main(String[] args)

{

try

{

/* Authenticate via JAAS */

LoginContext loginContext =

new LoginContext(“HelloClient”, new CallbackHandler());

loginContext.login();

/* Get a bean */

Context ctx = new InitialContext();

Object obj = ctx.lookup(Hello.class.getName());

Hello hello = (Hello)obj;

/*

Call a business method, propagating the security context

*/

String result;

try {

result = hello.hello();

}

catch (javax.ejb.EJBException e) {

result = e.getCausedByException().getMessage();

}

/* Print the return result from the business logic */

System.out.println(result);

}

catch (Exception e)

{

e.printStackTrace();

}

}

}

Source 11.1 (continued)

334 Chapter 11

17_785415 ch11.qxp 6/5/06 7:02 PM Page 334

package examples.security;

import java.util.*;

import java.io.IOException;

import javax.security.auth.*;

import javax.security.auth.callback.*;

import javax.security.auth.login.*;

import javax.security.auth.spi.*;

javax.resource.spi.security.PasswordCredential;

/**

* A login module that performs password authentication.

*

* The purpose of this class is to actually use a callback handler

* to collect authentication information and add it to the subject

*/

public class PasswordLoginModule

implements LoginModule

{

private Subject subject;

/**

the callback handler is the mechanism to

collect authentication data

*/

private

javax.security.auth.callback.CallbackHandler callbackHandler;

/** credentials: username and password */

private String username;

private char[] password;

/**

* Initializes us with a particular subject to which we will later

* add the collected password data.

*/

public void initialize(Subject subject,

javax.security.auth.callback.CallbackHandler callbackHandler,

Map sharedState,

Map options)

{

this.subject = subject;

this.callbackHandler = callbackHandler;

}

/**

Source 11.2 PasswordLoginModule.java. (continued)

Security 335

17_785415 ch11.qxp 6/5/06 7:02 PM Page 335

* Authenticate the user by prompting for a user name and password.

* It is called when the client tries to log in.

*

* @return true in all cases since this <code>LoginModule</code>

* should not be ignored.

* @exception FailedLoginException if the authentication fails.

* @exception LoginException if this <code>LoginModule</code>

* is unable to perform the authentication.

*/

public boolean login()

throws LoginException

{

// prompt for a username and password

if (callbackHandler == null)

{

throw new LoginException(“Error: No CallbackHandler “+

“available to collect authentication information”);

}

// set up a name callback and a password callback

Callback[] callbacks = new Callback[2];

callbacks[0] = new NameCallback(“username: “);

callbacks[1] = new PasswordCallback(“password: “, false);

try

{

// let handler handle these

callbackHandler.handle(callbacks);

// get authentication data

username = ((NameCallback)callbacks[0]).getName();

if(username == null)

{

throw new LoginException(“No user specified”);

}

char[] tmpPassword =

((PasswordCallback)callbacks[1]).getPassword();

if (tmpPassword == null)

{

// treat null password as an empty password

tmpPassword = new char[0];

}

password = new char[tmpPassword.length];

System.arraycopy(

tmpPassword, 0, password, 0,

tmpPassword.length

Source 11.2 (continued)

336 Chapter 11

17_785415 ch11.qxp 6/5/06 7:02 PM Page 336

);

((PasswordCallback)callbacks[1]).clearPassword();

}

catch (java.io.IOException ioe)

{

throw new LoginException(ioe.toString());

}

catch (UnsupportedCallbackException uce)

{

throw new LoginException(“Error: No Callback available “+

“to collect authentication data :” +

uce.getCallback().toString());

}

catch(Exception e)

{

e.printStackTrace();

}

// The client side login module will always succeed. The

// actual login will take place on the server side when the

// security context is passed.

return true;

}

/**

* This method is called if the overall authentication succeeds

* after potentially many login modules had their way. In our

* simple case, we always succeed. The important part here is

* adding the newly authenticated principal to the security

* context.

*

* @return true if this method executes properly

*/

public boolean commit()

throws LoginException

{

// add the user name and password as credentials to the

// security context, i.e., the Subject

PasswordCredential pc =

new PasswordCredential(username,password);

subject.getPrivateCredentials().add(pc);

username = null;

password = null;

return true;

Source 11.2 (continued)

Security 337

17_785415 ch11.qxp 6/5/06 7:02 PM Page 337

}

/**

* This method is called if the overall authentication failed

* (even if this particular login module succeeded). This cannot

* happen in our simple examples.

*

* @return true if this method executes properly

*/

public boolean abort()

throws LoginException

{

return true;

}

/**

* Log out the user and clean up.

*

* @return true if this method executes properly

*/

public boolean logout()

throws LoginException

{

username = null;

password = null;

return true;

}

}

Source 11.2 (continued)

package examples.security;

import java.io.*;

import java.util.*;

import javax.security.auth.login.*;

import javax.security.auth.*;

import javax.security.auth.callback.*;

/**

* Implements the CallbackHandler that gathers uid/pw input from

* System.in.

*/

public class CallbackHandler

implements javax.security.auth.callback.CallbackHandler

Source 11.3 CallbackHandler.java/

338 Chapter 11

17_785415 ch11.qxp 6/5/06 7:02 PM Page 338

{

/**

* @param callbacks an array of <code>Callback</code> objects

*

* @exception java.io.IOException

* @exception UnsupportedCallbackException if the

* <code>callbacks</code> parameter contains unknown

* callback objects

*/

public void handle(Callback[] callbacks)

throws IOException, UnsupportedCallbackException

{

for (int i = 0; i < callbacks.length; i++) {

if (callbacks[i] instanceof NameCallback) {

// prompt user for name

NameCallback nc = (NameCallback)callbacks[i];

System.out.print(nc.getPrompt());

String name = (new BufferedReader(

new InputStreamReader(System.in))).readLine();

nc.setName(name);

}

else if (callbacks[i] instanceof PasswordCallback) {

// prompt user for password

PasswordCallback pc = (PasswordCallback)callbacks[i];

System.out.print(pc.getPrompt());

String pwLine = (new BufferedReader(

new InputStreamReader(System.in))).readLine();

pc.setPassword(pwLine.toCharArray());

}

else {

throw new UnsupportedCallbackException(

callbacks[i], “Unrecognized Callback”);

}

}

}

}

Source 11.3 (continued)

Finally, here is the content of a client-side configuration file that specifies
that the PasswordLoginModule is used both as the default login module
and for applications that provide the name “HelloClient” as the parameter to
the LoginContext constructor.

certificate {

com.sun.enterprise.security.auth.login.ClientCertificateLoginModule

required debug=false;

Security 339

17_785415 ch11.qxp 6/5/06 7:02 PM Page 339

};

default {

examples.security.PasswordLoginModule required debug=false;

};

HelloClient {

examples.security.PasswordLoginModule required debug=false;

};

The java system property java.security.auth.login.config is used
to reference the resource containing the above configuration information. For
instance, if the above configuration information were contained in a file
named client.conf, you might have the following on your java command
line:

java -Djava.security.auth.login.config=client.config ...

You will also need to specify security permissions in order to execute the
code in Sources 11.1 to 11.3. In particular, this code from Source 11.1 creates a
login context:

LoginContext loginContext =

new LoginContext(“HelloClient”, new CallbackHandler());

The code from Source 11.2 also uses private credentials, as in:

subject.getPrivateCredentials().add(pc);

The code snippets above will necessitate the following policies (respec-
tively) being set:

permission javax.security.auth.AuthPermission

createLoginContext.SecurityExampleClient”;

permission javax.security.auth.AuthPermission

“modifyPrivateCredentials”;

For a complete discussion of security and policy files, browse to: http://
java.sun.com/j2se/1.5.0/docs/guide/security/PolicyFiles.html
. Setting the policy file is also done through a system property. If the above per-
missions were set in a file named client.policy, you might have the fol-
lowing on your java command line:

java –Djava.security.policy=client.policy ...

340 Chapter 11

17_785415 ch11.qxp 6/5/06 7:02 PM Page 340

Authorization in EJB
After the client has been authenticated, it must pass an authorization test to
call methods on your beans. The EJB container enforces authorization by
defining security policies for your beans. Again, there are two ways to perform
authorization with EJB:

■■ With programmatic authorization, you hard-code security checks into
your bean code. Your business logic is interlaced with security checks.

■■ With declarative authorization, the container performs all authoriza-
tion checks for you. You declare how you’d like authorization to be
achieved through the deployment descriptor, and the container gener-
ates all necessary security checks. You are effectively delegating autho-
rization to the EJB container.

Security Roles

Regardless of whether you’re performing programmatic or declarative autho-
rization, you need to understand the concept of security roles. A security role is
a collection of client identities. For a client to be authorized to perform an oper-
ation, its security identity must be in the correct security role for that opera-
tion. The EJB deployer is responsible for associating the identities with the
correct security roles after you write your beans.

The advantage to using security roles is that you do not hard-code specific
identities into your beans. This is necessary when you are developing beans
for deployment in a wide variety of security environments, because each envi-
ronment will have its own list of identities. This also enables you to modify
access control without recompiling your bean code.

Specifying security roles in EJB is application server-specific but should not
affect the portability of your code. Table 11.1 shows some sample mappings.

Table 11.1 Sample Security Roles

SECURITY ROLE VALID IDENTITIES

Employees EmployeeA, EmployeeB

Managers ManagerA

Administrators AdminA

Security 341

17_785415 ch11.qxp 6/5/06 7:02 PM Page 341

Performing Programmatic Authorization

Let’s discuss how to authorize programmatically. Then we’ll see how to autho-
rize declaratively and compare the two approaches.

Step 1: Write the Programmatic Security Logic

To perform explicit security authorization checks in your enterprise beans, you
must first get information about who is calling your bean’s method. You can
get this information by querying the container through the EJB context object.

The EJB context object has the following relevant security methods:

public interface javax.ejb.EJBContext

{

...

public java.security.Principal getCallerPrincipal();

public boolean isCallerInRole(String roleName);

...

}

isCallerInRole(String role) checks whether the current caller is in a
particular security role. When you call this method, you pass the security role
that you want the caller compared against. For example:

@Stateless

public class EmployeeManagementBean {

@EJB private SessionContext ctx;

...

public void modifyEmployee(String employeeID)

throws SecurityException

{

/*

* If the caller is not in the ‘administrators’

* security role, throw an exception.

*/

if (!ctx.isCallerInRole(“administrators”)) {

throw new SecurityException(...);

}

// else, allow the administrator to modify the

// employee records

// ...

}

}

342 Chapter 11

17_785415 ch11.qxp 6/5/06 7:02 PM Page 342

The preceding code demonstrates how to perform different actions based on
the security role of the client. Only if the caller is in the administrators role
(defined in Table 11.1, and setup using your container’s tools) does the caller
have administrator access.

The other programmatic security method, getCallerPrincipal(),
retrieves the current caller’s security principal. You can use that principal for
many purposes, such as retrieving the caller’s distinguished name from it
to use this name in a database query. This might be handy if you’re stor-
ing your security information in a database. Here is sample code that uses
getCallerPrincipal():

import java.security.Principal;

...

@Stateless

public class EmployeeManagementBean {

@EJB private SessionContext ctx;

...

public void modifyEmployee() {

Principal id = ctx.getCallerPrincipal();

String name = id.getName();

// Query a database based on the name

// to determine if the user is authorized

}

}

Step 2: Declare the Abstract Security Roles Your Bean Uses

Next you must declare all the security roles that your bean code uses, such as
an administrators role. This can now be done via annotations on the code. The
deployment descriptor entries from the EJB 2.1 specification are still supported
in the EJB 3.0 specification. Declaring security roles signals to others (like
application assemblers and deployers) that your bean makes the security
check isCallerInRole (administrators). This is important informa-
tion for the deployer, because he or she needs to fulfill that role. Source 11.4
demonstrates the annotation approach.

@Stateless

@DeclareRoles({“administrators”})

public class EmployeeManagementBean {

...

}

Source 11.4 Declaring a bean’s required security roles via annotation.

Security 343

17_785415 ch11.qxp 6/5/06 7:02 PM Page 343

Source 11.5 shows the deployment descriptor version. This accomplishes
the exact same declaration as onSource 11.4.

. . .

<enterprise-beans>

<session>

<ejb-name>EmployeeManagement</ejb-name>

. . .

<!--

This declares that our bean code relies on

the administrators role; we must declare it here

to inform the application assembler and deployer.

-->

<security-role-ref>

<description>

This security role should be assigned to the

administrators who are responsible for

modifying employees.

</description>

<role-name>administrators</role-name>

</security-role-ref>

. . .

</session>

. . .

</enterprise-beans>

. . .

Source 11.5 Declaring a bean’s required security roles.

Step 3: Map Abstract Roles to Actual Roles

Once you’ve written your bean, you can ship it, build it into an application, or
make it part of your company’s internal library of beans. The consumer of
your bean might be combining beans from all sorts of sources, and each source
may have declared security roles a bit differently. For example, we used the
string administrators in our previous bean, but another bean provider
might use the string sysadmins or have completely different security roles.

344 Chapter 11

17_785415 ch11.qxp 6/5/06 7:02 PM Page 344

The deployer of your bean is responsible for generating the real security
roles that the final application will use (see Source 11.6).

. . .

<enterprise-beans>

<session>

<ejb-name>EmployeeManagement</ejb-name>

...

<security-role-ref>

<description>

This security role should be assigned to the

administrators who are responsible for

modifying employees.

</description>

<role-name>administrators</role-name>

<!--

Here we link what we call “administrators” above, to

a real security-role, called “admins”, defined below

-->

<role-link>admins</role-link>

</security-role-ref>

. . .

</session>

<assembly-descriptor>

. . .

<!--

This is an example of a real security role.

-->

<security-role>

<description>

This role is for personnel authorized to perform

employee administration.

</description>

<role-name>admins</role-name>

Source 11.6 Mapping abstract roles to actual roles. (continued)

Security 345

17_785415 ch11.qxp 6/5/06 7:02 PM Page 345

346 Chapter 11

</security-role>

. . .

</assembly-descriptor>

</enterprise-beans>

. . .

Source 11.6 (continued)

Once you’ve completed your application, you can deploy it in a wide vari-
ety of scenarios. For example, if you write a banking application, you could
deploy that same application at different branches of that bank, because you
haven’t hard-coded any specific principals into your application. The deployer
of your application is responsible for mapping principals to the roles you’ve
declared using proprietary container APIs and tools.

Performing Declarative Authorization

Now that you’ve seen programmatic authorization, let’s move on to declara-
tive authorization. The primary difference between the two models is that
with declarative authorization, you declare your bean’s authorization require-
ments in your deployment descriptor. The container enforces these require-
ments at runtime.

Step 1: Declare Method Permissions

You first need to declare permissions on the bean methods that you want to
secure. The container takes these instructions and generates security checks in
your EJB objects. This can be done via annotations or via the deployment
descriptor. Source 11.7 shows the annotation version and Source 11.8 shows
the equivalent deployment descriptor.

import javax.annotation.security.*;

...

@Stateless

//default role allowed will be administrators

@RolesAllowed({“administrators”})

public class EmployeeManagementBean implements EmployeeManagement {

...

//overrides default role allowed of administrators.

//only managers can call this method.

Source 11.7 Declaring a bean’s security policy via annotations. (continued)

17_785415 ch11.qxp 6/5/06 7:02 PM Page 346

@RolesAllowed({“managers”})

public void modifySubordinate() {

...

}

//overrides default role allowed of administrators.

//only managers can call this method.

@RolesAllowed({“managers”})

public void modifySelf() {

...

}

//overrides default role allowed of administrators.

//only employees can call this method.

@RolesAllowed({“employees”})

public void modifySelf(String name) {

...

}

//overrides default role allowed of administrators.

//anyone can call this method.

@PermitAll

public String getMyName() {

...

}

//no override. Only administrators can call this method

public Collection getAllEmployees() {

...

}

//no one can call this method

@DenyAll

public void modify401kPlan() {

...

}

...

}

Source 11.7 (continued)

There a few items we should note from Source 11.7. The @RolesAllowed
annotation can be used at the type level or at the method level. Using it at the
type level sets the default roles allowed for the entire bean. If no other security
annotations are present on a method, then that method’s roles allowed will be
what were specified at the type level.

However, @RolesAllowed specified at the method level take precedence
(or override) @RolesAllowed specified at the type level. The other security

Security 347

17_785415 ch11.qxp 6/5/06 7:02 PM Page 347

annotations @PermitAll and @DenyAll applied to a method also take prece-
dence over @RolesAllowed at the type level.

Denying access to a method is useful when you are using a third-party bean
and you do not want anyone to be able to use certain methods. You often will
not have access to source code in this situation, so the @DenyAll annotation is
not terribly useful here. Refer to the <exclude-list> element in the deploy-
ment descriptor in Source 11.8.

. . .

<assembly-descriptor>

. . .

<!--

You can set permissions on the entire bean.

Example: Allow role “administrators”

to call every method on the bean class.

-->

<method-permission>

<role-name>administrators</role-name>

<method>

<ejb-name>EmployeeManagement</ejb-name>

<method-name>*</method-name>

</method>

</method-permission>

<!--

You can set permissions on a method level.

Example: Allow role “managers” to call method

“modifySubordinate()” and “modifySelf()”.

-->

<method-permission>

<role-name>managers</role-name>

<method>

<ejb-name>EmployeeManagement</ejb-name>

<method-name>modifySubordinate</method-name>

</method>

<method>

<ejb-name>EmployeeManagement</ejb-name>

<method-name>modifySelf</method-name>

</method>

Source 11.8 Declaring a bean’s security policies in the deployment descriptor. (continued)

348 Chapter 11

17_785415 ch11.qxp 6/5/06 7:02 PM Page 348

</method-permission>

<!--

If you have multiple methods with the same name

but that take different parameters, you can even set

permissions that distinguish between the two.

Example: allow role “employees” to call method

“modifySelf(String)” but not “modifySelf(Int)”

-->

<method-permission>

<role-name>employees</role-name>

<method>

<ejb-name>EmployeeManagement</ejb-name>

<method-name>modifySelf</method-name>

<method-params>String</method-params>

</method>

</method-permission>

<!--

This is the list of methods that we don’t want

ANYONE to call. Useful if you receive a bean

from someone with methods that you don’t need.

-->

<exclude-list>

<description>

We don’t have a 401k plan, so we don’t

support this method.

</description>

<method>

<ejb-name>EmployeeManagement</ejb-name>

<method-name>modify401kPlan</method-name>

<method-params>String</method-params>

</method>

</exclude-list>

. . .

</assembly-descriptor>

. . .

Source 11.8 (continued)

Once defined, the EJB container automatically performs these security
checks on your bean’s methods at runtime and throws a java.rmi
.AccessException exception back to the client code if the client identity is
not authenticated or authorized.

Security 349

17_785415 ch11.qxp 6/5/06 7:02 PM Page 349

350 Chapter 11

Step 2: Declare Security Roles

Declaring security roles is a process similar to programmatic security. We need
to define our security roles and (optionally) describe each so the deployer can
understand them. Source 11.9 has the annotated version, and Source 11.10
shows the descriptor.

@Stateless

@DeclareRoles({“administrators”,”managers”,”employees”})

public class EmployeeManagementBean {

...

}

Source 11.9 Declaring security roles via annotations.

<assembly-descriptor>

. . .

<security-role>

<description>

System administrators

</description>

<role-name>administrators</role-name>

</security-role>

<security-role>

<description>

Employees that manage a group

</description>

<role-name>managers</role-name>

</security-role>

<security-role>

<description>

Employees that don’t manage anyone

</description>

<role-name>employees</role-name>

</security-role>

. . .

</assembly-descriptor>

Source 11.10 Declaring security roles for the deployer.

17_785415 ch11.qxp 6/5/06 7:02 PM Page 350

The deployer reads in Source 11.10 and, using the container’s tools, maps
these roles to principals, as shown in Table 11.1.

If annotations were used, the bean is interrogated at deployment time and
the mapping is done automatically.

Declarative or Programmatic?

As with persistence and transactions, security is a middleware service that you
should strive to externalize from your beans. By using declarative security, you
decouple your beans’ business purpose from specific security policies, thus
enabling others to modify security rules without modifying bean code. No secu-
rity role strings are hard-coded in your bean logic, keeping your code simple.

In the ideal world, we’d code all our beans with declarative security. But
unfortunately, the EJB specification does not provide adequate facilities for
this; specifically, there is no portable way to declaratively perform instance-
level authorization or condition-based authorization. This is best illustrated with an
example.

Let’s say that you have an enterprise bean that models a bank account. The
caller of the enterprise bean is a bank account manager who wants to with-
draw or deposit into that bank account. But this bank account manager is
responsible only for bank accounts with balances below $1,000, and we don’t
want him modifying bank accounts with larger balances. Declarative autho-
rization has no way to declare in your deployment descriptor that bank
account managers can modify only certain bean instances. You can specify
security roles only on the enterprise bean class, and those security rules apply
for all instances of that class. Thus, you would need to create separate methods
for each security role, as we did in Sources 11.7 and 11.8. This gets hairy and
makes your bean’s interface dependent on security roles. For these situations,
you should resort to programmatic security.

Security Propagation
Behind the scenes, all security checks are made possible due to security con-
texts. Security contexts encapsulate the current caller’s security state. You
never see security contexts in your application code, because the container
uses them behind the scenes. When you call a method in EJB, the container can
propagate your security information by implicitly passing your security con-
text within the stubs and skeletons.

For example, let’s say that a client is authenticated and has associated security
credentials. That client calls bean A, which calls bean B. Should the client’s secu-
rity credentials be sent to bean B, or should bean B receive a different principal?
By controlling security context propagation, you can specify the exact semantics
of credentials streaming from method to method in a distributed system.

Security 351

17_785415 ch11.qxp 6/5/06 7:02 PM Page 351

You can control the way that security information is propagated via annota-
tion or in your deployment descriptor. The general rule is that if there is no
explicit specification, either by descriptor or annotation, the caller principal is
propagated. The design of EJB 3.0 recognizes this rule by having the @RunAs
annotation. This annotation is applied at the class level. The parameter it takes
is the role name that will be used to run as rather than the client’s credentials.
The snippet below shows the annotation.

@RunAs(“admins”)

@Stateless

public class EmployeeManagementBean {

...

}

Here is a deployment descriptor snippet that accomplishes the same thing
as the annotation:

...

<enterprise-beans>

...

<session>

<ejb-name>EmployeeManagement</ejb-name>

...

<security-identity>

<run-as>

<role-name>admins</role-name>

</run-as>

</security-identity>

...

</session>

<assembly-descriptor>

. . .

<security-role>

<description>

This role is for personnel authorized

to perform employee administration.

</description>

<role-name>admins</role-name>

</security-role>

. . .

</assembly-descriptor>

</enterprise-beans>

The EJB container is responsible for intercepting all method calls and ensuring
that your bean is running in the propagation settings you specify. It does this by
generating code that executes at the point of interception (inside the EJB objects).

352 Chapter 11

17_785415 ch11.qxp 6/5/06 7:02 PM Page 352

Secure Interoperability

Secure interoperability means that EJB containers from different vendors
cooperate in protecting EJB invocations that originate in one vendor’s product
and target EJBs in another. The most important functionality that EJB contain-
ers must agree on here is the authentication of principals on one end of the
invocation and the propagation of the principal information to the other. In
addition, there must be consensus about how confidentiality and integrity
protections should be applied on the wire.

For this to happen, any security information that needs to be exchanged
must be standardized. Otherwise, one vendor’s product would not be able to
understand the information sent by its colleague on the other end of the wire.

The general protocol that the EJB specification requires for interoperability is
RMI-IIOP. For the additional, security-related interoperability, the EJB specifi-
cation leverages two more protocols that were originally designed for CORBA:

■■ IIOP/SSL (IIOP over SSL) for authentication, integrity, and confidentiality

■■ CSIv2 (Common Secure Interoperability version 2), for additional authenti-
cation capabilities and principal propagation.

You will probably not need to deal with the internal details of either
IIOP/SSL or CSIv2 directly in development, but if you are curious about what
is under the hood, then the rest of this section provides the background infor-
mation. Also, when you are responsible for managing large-scale EJB server
architectures that involve interoperating with external clients or servers, you
should be aware of the trust relationships that must be established to allow for
principal delegation across platforms.

IIOP/SSL
The first part of interoperable security—integrity and confidentiality protec-
tions—is actually simple thanks to SSL/TLS, which takes care of all the details
of setting up secure transports between endpoints. For deployers, there is
nothing left to do but provide proper credentials that SSL/TLS can use during
its initial handshake. This is far from trivial, but since credentials are necessary
anyway, this adds little complexity.

Internally, the hosting EJB container’s CORBA Object Request Broker (ORB)
is equipped to insert SSL-level transport information into EJBObject refer-
ences. For IIOP/SSL, these references take the format of the CORBA Interoper-
able Object References (IORs), and SSL/TLS-related information is stored in the
IOR as tagged components. The receiving container’s ORB recognizes the IOR
and its tagged components and hence knows how to let the SSL/TLS layer
open transport connections.

Security 353

17_785415 ch11.qxp 6/5/06 7:02 PM Page 353

CSIv2
SSL/TLS is not a silver bullet for all your security problems. It does offer inter-
operable, standardized means for mutual authentication between communi-
cating peers, but it requires public key certificates in X.509 format to do this.
While this is a proven mechanism, it requires some form of certificate man-
agement infrastructure. Mapping other client authentication mechanisms,
such as Kerberos, is hard, and propagating principal information from clients
a few hosts up in the invocation chain is not supported at all. Moreover, SSL/
TLS is heavyweight in the sense that the initial handshake required to set up a
secure transport adds a significant overhead. In some cases you may want to
authenticate a client but don’t actually care for the additional integrity and
confidentiality protection of SSL.

Common Secure Interoperability version 2 (CSIv2) was specified for CORBA by
the Object Management Group (OMG) in 1999 as a successor to earlier secure
interoperability protocols. CSIv2 was designed to be used together with trans-
port-level SSL security and to complement it. The Security Attribute Service
(SAS) protocol in CSIv2 defines additional client authentication functionality
that is independent of SSL/TLS and can be used with Kerberos or UserID/
Password schemes. Target authentication is not supported in the SAS protocol,
so if mutual authentication is required, the SAS protocol must be combined
with the transport-level target authentication offered by SSL/TLS.

Additionally, the CSI protocol supports identity assertions as a means of prin-
cipal propagation. An identity assertion is sent by the calling client to tell the
receiver that it should not consider the client identity (which was established
on the transport layer or by the authentication process) for making authoriza-
tion decisions, but the asserted identity instead. An asserted identity is much
like a run-as statement or a set-uid bit in the UNIX file system—with one
important difference: It is the client who wants to define a different identity for
its own actions.

With identity assertions, a single method call may have as many as three dif-
ferent identities associated with it: the transport-level identity as established
by SSL, an additional client identity established through the SAS client authen-
tication, and the asserted identity. Note that any or all of these may be missing.
Figure 11.4 illustrates these layers.

What are these many identities good for? An asserted identity is useful
when the client is acting on behalf of another principal who should be held
responsible, especially when the client cannot reuse the principal’s credentials
to impersonate it when talking to the target. For example, the client may be a
remote servlet container (running in vendor X’s application server) calling an

354 Chapter 11

17_785415 ch11.qxp 6/5/06 7:02 PM Page 354

EJB container (a product by vendor Y) on a different network, as shown in Fig-
ure 11.5. The Web container did authenticate the Web user by using SSL client
authentication and established a principal identity. It cannot itself authenticate
as the principal to the EJB container, however. Because it does not have access
to the client’s required private keys, it can authenticate only itself. However,
access control and auditing should use the actual user ID, not the servlet con-
tainer’s identity, so the Web container needs to assert the client identity.

Figure 11.4 Layers in CSIv2.

Figure 11.5 Identity assertion in a call chain.

JSF/JSP/Servlet

Web Container

Web Client
Client Id

WebContainer‘s ID
Client Id

EJB Container‘s ID
WebContainer‘s ID
or Client ID

EJB

EJB Container

EJB

EJB Container

Client Authentication
Message Protection

Target Authentication

Client Authentication

Identity Assertion

Transport Layer
(SSL/TLS)

Client Authentication
Layer

Security Attribute
Layer

Security 355

17_785415 ch11.qxp 6/5/06 7:02 PM Page 355

Obviously, accepting an asserted identity that arrives in the security context
of a method call is a matter of trust. Trust here means trusting that the JSP files
and servlets did not cheat when inserting the identity assertion, and trusting
that an attacker did not penetrate the Web container host. Looking closer, we
find that this trust actually extends to all predecessors in the call chain, which
the target has no secure way of identifying. This is also called transitive trust.
The EJB specification simply states that identity assertions should be accepted
only from containers with predefined trust, which in most practical settings
means that containers authenticate each other using public key certificates on
the transport layer that were distributed beforehand. A receiving container can
then simply accept identities that the sending container asserts.

Note that the problem with transitive trust still exists: The whole trust chain
is only as strong as its weakest link. Effectively, this means that deployers
should take considerable care when exchanging public key certificates and
marking them as trustworthy.

Because no tight control of principal propagation can be enforced by the
technology alone, there must be organizational frameworks to support coop-
eration and trust establishment.

Web Services Security

You may be wondering why, after so much security coverage, there is a need
for an extra section on security for Web services. The simple reason is that Web
services are not just an implementation approach for stateless session beans:
They need to interoperate with other, potentially non-EJB Web services, say, in
the .NET world. It follows that there must again be secure interoperability.

The standards that we mention here have been incorporated into the Java
EE 5 specification.

NOTE Sun has decided to drop the number “2” from all of its platforms and
specifications. This is, in part, because as Java has matured, the “2” (as in J2SE
and J2EE) has become a bit dated. The J2EE (Java 2 Enterprise Edition) will now
be referred to as the Java EE (Java Enterprise Edition). Likewise, the developer
tools will drop the “2.” So, the J2SDK (Java 2 Software Development Kit) will
henceforth be referred to as the JDK (Java Development Kit). JDK is actually
what it was called prior to the emergence of the Java 2 Platform. To make
matters a little more interesting (this is a polite way of saying confusing), Sun
refers to the version numbers for specifications differently from the version
numbers for its tools. For instance, the developer toolset for the latest release
is JDK 1.5, while the specification it is based on is the Java SE 5.0.

356 Chapter 11

17_785415 ch11.qxp 6/5/06 7:02 PM Page 356

The Java Specification Requests (JSRs) included here have been released.
Most modern application servers already come equipped with some Web ser-
vices security mechanisms and prestandard APIs to the functionality
described here. The remainder of this section is intended to provide you with
an overview of the relevant standards and concepts so that you will be able to
use them successfully.

The basic security functionality that must be provided in a standardized
fashion should by now sound familiar to you: authentication, authorization,
integrity, and confidentiality. Interestingly, the Web services security standards
go well beyond the traditional approaches in a number of respects. The most
important goal that the technologies we are about to meet aim for is true end-
to-end security for the messages sent to and received from Web services, such as
SOAP messages.

End-to-End Security
Let’s consider the scenario where a client uses a Web Service, which behind the
scenes delegates some of the functionality to other Web services, which may
do the same with still other services. The original client has no way of know-
ing who will see which parts of the original request message, nor does it know
who will actually create which parts of the result. (See Figure 11.6.)

Figure 11.6 End-to-end security.

Web Service

EJB Container

Web Client
SOAP

Web Service

Web Service

Web Service

Web Service

Security 357

17_785415 ch11.qxp 6/5/06 7:02 PM Page 357

This functional abstraction is fundamental for making large-scale architec-
tures possible, but from a security standpoint it means that you have to trust a
potentially unlimited number of unknown parties to play fair. This may be
okay within your own local network where you trust all servers and services,
including their administrators, but it is certainly not acceptable in cross-
enterprise applications with third- and fourth-party involvement. You don’t
want records of the hardware that you order to be compiled (and the records
potentially disclosed), and you don’t want the project schedules and design
studies that you exchange with a business partner getting fiddled with.

This is where end-to-end security comes into play. It means control over the
security of your messages from the point at which you send them until they
reach their final destination, regardless of the number and kind of intermedi-
aries that may get a chance to see your messages. Contrast this with the notion
of transitive trust in EJB that we had to accept earlier: With transitive trust,
anybody that your partner trusts is implicitly trusted by you, too. Regardless
of whether you actually trust them or if you even know they exist.

End-to-end security is not possible with a point-to-point technology like
SSL/TLS. It is possible to build a long channel out of several short ones, but
each hop in such a chain of connections terminates one SSL/TLS connection
and starts a new one. When SOAP messages and other EJB requests travel
through multiple intermediate hops before they reach their final target, the
messages are protected between hops but unprotected within each hop. All you
can do with point-to-point security is trust that the software in those hops
doesn’t read or modify your messages where it shouldn’t.

Enter two security standards that can protect XML documents (and thus
also SOAP messages) independently of the transport layer and in true end-to-
end fashion: XML Digital Signature and XML Encryption.

XML Digital Signature and XML Encryption
The names of these two standards certainly imply heavy-duty cryptography
but don’t worry: there are no new algorithms or protocols that we need to dis-
cuss here. Both standards rely on traditional cryptography and don’t add any
of their own. In fact, these two standards, issued by the World Wide Web Con-
sortium (W3C), simply define XML syntax for encrypted or signed data. The
data that is either signed or encrypted can be anything, including, of course,
XML content, but it may also be other documents, or even arbitrary binary data.

As an example, consider the following SOAP message that contains a mes-
sage body with a single, encrypted data element, the operation. The binary,
encrypted data content of the inner CipherValue has been base64-encoded,
the outer EncryptedData element describes the encryption algorithm (triple
DES) that was used to create the CipherValue. Note that the receiver must

358 Chapter 11

17_785415 ch11.qxp 6/5/06 7:02 PM Page 358

know the symmetric key that was used to encrypt the message; otherwise, he
won’t be able to decrypt it. We’ll discuss in the next section how information
about the key (or even the key itself) can be sent in the message.

<soapenv:Envelope

xmlns:soapenv=”http://schemas.xmlsoap.org/soap/envelope/”>

<soapenv:Header>

....

</soapenv:Header>

<soapenv:Body>

<EncryptedData xmlns=”http://www.w3.org/2001/04/xmlenc#”

Id=”#xdn_id0” Type=”http://www.w3.org/2001/04/xmlenc#Element”>

<EncryptionMethod

Algorithm=”http://www.w3.org/2001/04/xmlenc#tripledes-cbc”/>

<CipherData>

<CipherValue>Vy58P2KaKedALCyZt23Hoi7TSK8ZiZvygWorXUX

Q56EmS1z5LVp8frzQvivk2iIrrYQI8DSbIG+ywfNnZfoVC0QiTbWE29

HztGTRUhAE2f/VbRzpMisxe2+/Xc7EZXfurZOVFNR2NjW+Ayiuqd

W5OxkZi7la6tmQefFFYUSAzsUA6p0nabXOVsNCds8Y7pdZXeJtH+

lnMpfSCFNbS7R4GhFsZBjNL5Hxqb1vUZlgwcP9Lh6ua1yqi2DgUKvtI1/p

thPNA/QYj3VfEZzk1sit/A==</CipherValue>

</CipherData>

</EncryptedData>

</soapenv:Body>

</soapenv:Envelope>

XML digital signatures can cover data that is completely external to the
transmitted document. For example, it may be a signature value over the con-
tent of a remote Web site or over a Microsoft Word document in a knowledge
base somewhere. An XML message may even contain a signature over parts of
itself. The added value here is that this signature data can now be transported
within XML documents without having the receiver’s XML parser complain
about unexpected, non-XML data. To give you an impression, here’s an exam-
ple of an XML digital signature that was taken from another SOAP message.

<Signature xmlns=”http://www.w3.org/2000/09/xmldsig#”>

<SignedInfo>

<CanonicalizationMethod

Algorithm=”http://www.w3.org/TR/2001/REC-xml-c14n-20010315”/>

<SignatureMethod Algorithm=”http://www.w3.org/2000/09/xmldsig#rsa-sha1”/>

<Reference>

<Transforms>

<Transform Algorithm=”http://www.w3.org/TR/1999/REC-xpath-19991116”>

<XPath

xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”>

ancestor-or-self::soap:Envelope[1] and ancestor-or-self::

soap:Body[1]

Security 359

17_785415 ch11.qxp 6/5/06 7:02 PM Page 359

360 Chapter 11

</XPath>

</Transform>

<Transform

Algorithm=”http://www.w3.org/TR/2001/REC-xml-c14n-20010315”/>

</Transforms>

<DigestMethod Algorithm=”http://www.w3.org/2000/09/xmldsig#sha1”/>

<DigestValue>/VYLngXLqJP//BWhmGxVysqlrxw=</DigestValue>

</Reference>

</SignedInfo>

<SignatureValue>J+L8HqI7Q+/u0zuDWZeg5zKkiHRvQqCMZlFkmGn8x+x8KPNqu/j

RpbEvacA1MjIIY00snVIti2yIgDHtfhNTQDa5GludCINbT5sEYeGYjVQwv8nFtwCMX+EmDXig/

E2JHbQEDT4E02/1MrMV7Mk2cUorqk7bHuEG4wwIGdzqEIk=

</SignatureValue>

<KeyInfo>

<X509Data>

<X509Certificate>...</X509Certificate>

</X509Data>

</KeyInfo>

</Signature>

The Signature element has three main elements: the SignedInfo that
describes the signed data, the SignatureValue (a base64 encoding of an
encrypted hash value), and the KeyInfo, that describes which key was used
to create the signature. The SignedInfo describes the data that is signed. In
this case, it is a SOAP message header body, which is referred to using an XML
path expression (XPath). This data was then transformed using a canonical-
ization algorithm before actually applying the signature algorithm (RSA-
SHA1) to the message digest, which was computed using the SHA1 hash
algorithm. Canonicalization is necessary for all XML content before signing
because XML documents may undergo a number of changes (such as adding
or removing whitespace in some places) during transport or other processing
that do not change the document structure or content and thus should not
cause the signature to break. To allow for these XML modifications, the sender
first constructs the canonical form of an XML document and only then applies
the signature. The receiver also first constructs the canonical form of the docu-
ment he just received and then compares the outcome of another signature
computation with the signature value that was received.

The two standards discussed in this section support some very important
security features:

■■ With XML Digital Signature and XML Encryption it is possible to
send encrypted XML documents through untrusted channels. Only
legitimate receivers that possess the necessary cryptographic keys will
be able to decrypt the encrypted parts, and any in-transit modifications
of signed parts of the message will be detected by the recipients.

17_785415 ch11.qxp 6/5/06 7:02 PM Page 360

■■ With transport-independent protections it is now possible to persist
the signature, meaning that we can store the signature with the
message, for example as a signed receipt. This is not possible with
SSL/TLS: as soon as the message leaves the secure transport, the signa-
ture is gone, so SSL/TLS is not a good tool for application-level
cryptography.

■■ With the granularity of XML digital signature and XML encryption it
is possible to encrypt or sign only selected parts of a message. With
SSL/TLS, in contrast, messages were always signed and/or encrypted
completely. It would not be possible to create a controlled document-
based workflow where some parts of a message are designed for modi-
fications by processors at different stages in the workflow, whereas
others remain locked.

SAML
The acronym SAML means Security Assertion Markup Language, and this is an
open standard ratified by the OASIS consortium. OASIS is short for Organiza-
tion for the Advancement of Structured Information Standards and is a large indus-
try consortium comparable to the OMG. OASIS is also responsible for
WS-Security (see the following section). The two main application areas for
SAML are interoperability between security products and single sign-on
(SSO). SAML has two main parts: the XML syntax for security assertions, and
a simple request/response protocol for requesting assertions from SAML
authorities. We only cover the assertion syntax here.

Assertion is another word for a security token. Assertions are used by entities
that need security information in order to enforce security. In SAML speak,
these entities are policy enforcement points. The creator or issuer of a SAML asser-
tion is called a SAML authority. Obviously, there is no need for SAML if the
enforcement point creates all security tokens internally and for its own use and,
therefore, does not need any external information. But if the enforcer is not in a
position to authenticate the actual caller of a request and still needs to make an
authorization decision, then a SAML assertion made earlier by an authentica-
tion service would help a lot. Sounds a lot like principal propagation, doesn’t
it? Yes, you may think of SAML as the CSIv2 of the Web services world.

Now for a quick summary of the remaining SAML concepts: An SAML
assertion expresses statements by the issuer about the subject of the assertion,
such as “subject S is authenticated (by me),” or “subject S is authorized for
actions A and B (by me),” or even “subject S has attribute R,” where R may be
a role membership. Here is an example of an authentication assertion:

Security 361

17_785415 ch11.qxp 6/5/06 7:02 PM Page 361

<Assertion xmlns=”urn:oasis:names:tc:SAML:1.0:assertion”

MajorVersion=”1” MinorVersion=”0” AssertionID=”4711”

Issuer=”MySecuritySoftware”

IssueInstant=”2003-08-19T14:54:43”>

<Conditions NotBefore=”2003-08-19T14:54:43”

NotOnOrAfter=”2003-08-19T15:04:43”/>

<AuthenticationStatement

AuthenticationMethod=”urn:oasis:names:tc:SAML:1.0:am:unspecified”

AuthenticationInstant=”2003-08-19T14:54:43”>

<Subject>

<NameIdentifier>Bart</NameIdentifier>

</Subject>

</AuthenticationStatement>

</Assertion>

The main part of the assertion is the AuthenticationStatement ele-
ment, which states that someone named Bart was authenticated at a specific
point in time using an unspecified mechanism. The outer Assertion element
comprises further details, such as a validity condition (NotBefore and
NotOnOrAfter), information about the issuer and issue instant, an assertion
ID, and the SAML version used.

These assertions are made not just by anybody but by authorities that some-
one inspecting an assertion would trust. In the previous assertion, all we know
about the issuer is that she calls herself MySecuritySoftware. In an untrusted
environment, an assertion would normally be digitally signed by the authority
so that trust in the assertion could be established. In the example, this step
was skipped to reduce overhead because, presumably, the enforcement point
axiomatically trusts the issuer, and forgery of assertions was assumed not to be
possible.

WS-Security
WS-Security is another specification ratified by the OASIS consortium. It
describes how encryption and signatures should be used on SOAP messages
to enable end-to-end security, and defines a SOAP security header element.
Moreover, it defines a couple of security tokens, such as a user name and pass-
word token, an X.509 token, and a binary token format that can be used to
transmit Kerberos tickets. As a standard, it is comparatively short and straight-
forward, at least when compared to the EJB specification or CORBA.

The new security header was defined because the authors of the specifica-
tion knew that message-oriented, end-to-end security cannot rely on sessions
between peers along the way. The security header was, therefore, designed to
contain the complete security information about the message in the message.
In other words, the message is its own security context!

362 Chapter 11

17_785415 ch11.qxp 6/5/06 7:02 PM Page 362

Here is an example of a SOAP message with this new WS-Security header
element. In fact, this example contains the security information necessary to
decrypt the encrypted message shown in the previous section, an encrypted key
(a session key). Note how the EncryptedKey element’s child ReferenceList
refers to the encrypted data in the SOAP body using a URI reference to the Id
attribute:

<soapenv:Envelope>

<soapenv:Header>

<wsse:Security xmlns:wsse=”http://www.docs.oasis-open.org/wss/2004/

01/oasis-200401-wss-wssecurity-secext-1.0.xsd”>

<EncryptedKey xmlns=”http://www.w3.org/2001/04/xmlenc#”>

<EncryptionMethod

Algorithm=”http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p”/>

<KeyInfo/>

<CipherData>

<CipherValue>

jQEtmEsQ9CUUT0CuUM6yKKcpBbGV4psNdYN2o+eaXyAc2D1JM3Zz0xHqKoRURwy2y13nGv3q

zrjbPO55uyTn0KBG6jZRoFi6zsAdw1bJc0qBzDE3ca5LuLTKZ/PEqvtIptmgQefv80bgXXQj

mFTuyOEkOxLLv6uoobDxb29Lkf0=

</CipherValue>

</CipherData>

<ReferenceList>

<DataReference URI=”#xdn_id0”/>

</ReferenceList>

</EncryptedKey>

</wsse:Security>

</soapenv:Header>

<soapenv:Body>

<EncryptedData Id=”#xdn_id0”>

....

Figure 11.7 illustrates how the different standards can be combined to send
a SAML assertion, which is an authentication assertion, with a SOAP message.
The SOAP header contains a WS-Security header, which in turn contains the
SAML assertion. To prevent any modifications while in transit and to bind the
assertion to the message, an XML digital signature is used, which is also con-
tained in the security header. This signature not only guarantees integrity but
also serves to authenticate the SAML assertion in the context of the message:
without such a signature, the assertion could have been obtained by someone
eavesdropping on the message traffic and then attached to his or her own
messages.

Security 363

17_785415 ch11.qxp 6/5/06 7:02 PM Page 363

Figure 11.7 Standards in concert.

Summary

For all practical purposes, security should be seen as a trade-off between risks
and cost. This chapter has described the most important security standards rel-
evant in the EJB world, including the Java EE view on Web Application secu-
rity. You have encountered both declarative and programmatic security in EJB,
and the security interoperability protocol CSIv2. Moreover, we have presented
some important standards in the Web services security world that have
become standardized APIs.

SAML

XML DSig

WS-S
<SOAP:Envelope>

</SOAP:Envelope>

<wsse:Security>

<SOAP:Header>

<SOAP:Body wsu:Id="x">

</SOAP:Body >

</SOAP:Header>

Signature

Assertion
</wsse:Security>

364 Chapter 11

17_785415 ch11.qxp 6/5/06 7:02 PM Page 364

365

Until EJB 2.1came along, the Enterprise JavaBeans standard lacked a decent
scheduling mechanism. EJB 2.1 addressed this requirement by introducing the
EJB Timer Service. In this chapter, in addition to examining how to use the EJB
Timer Service with different types of beans, you will see how the EJB 3.0 pro-
gramming model further simplifies development and deployment of timer-
enabled beans. We also provide an example to walk you through a typical EJB
timer development.

Scheduling

Scheduling functionality is required in many business applications. Various
scenarios involving scheduling ensure that certain code is executed at a given
point in time. For instance, imagine a system that handles huge loads during
the peak hours and during the off hours wants to run maintenance chores such
as cleaning the file system of temporary files, generating the activity reports,
cleaning the databases, preparing audit reports of access from various parties
to its subsystems, and so on. These tasks can be carried out automatically by
scheduling them to run during off hours. This way your IT systems will not be
hard pressed for resources during peak traffic hours and also at the same time
can be utilized to perform routine maintenance tasks and all around use its
resources better.

EJB Timers

C H A P T E R

12

18_785415 ch12.qxp 6/5/06 7:03 PM Page 365

In many other similar situations scheduling can help—workflows are
another example. Simply put, a workflow is a set of activities, each of which is
scheduled to run at a specific time or when a conditional criteria is met. For
example, consider a reservation workflow rule that ensures that if a customer
does not guarantee a reservation with a credit card within 24 hours, the reser-
vation is cancelled and an e-mail notification is sent to the customer’s travel
agent and also possibly to the customer. There are numerous ways in which
scheduling can help you implement such use cases.

Scheduling techniques have been around for many years in the computer
science world. UNIX-based operating systems have supported job-scheduling
mechanisms through system services such as Cron for a long time. Cron is basi-
cally a daemon that uses the system clock to facilitate the scheduling of jobs for
execution at any given time of day. Scheduled jobs, or Cron jobs as they might
be called, are UNIX commands or scripts that you want to run on a particular
schedule. These jobs are maintained in Cron tables. Authorized UNIX users
create/edit these Cron tables, which are then read by the Cron daemon almost
every minute to start these jobs. The Cron table is an ASCII text file consisting
of entries for Cron jobs; each entry specifies a UNIX command to execute and
its scheduled time of execution in terms of hours and minutes, day of week,
day of month, and month. Another variant of the Cron service is the At utility.
While Cron enables you to schedule a repetitive task, At lets you schedule a
one-time task for execution. UNIX also supports another form of scheduling
through its Batch utility. Batch executes a set of tasks instead of a single task;
however, it is similar to At in that it executes only once.

Windows-based operating systems support a similar kind of functionality
through the At utility, which basically takes the information about the com-
mand or batch program to execute, time to execute, and other such parame-
ters, and schedules the job for execution. Linux too offers system-level
scheduling capabilities quite similar to those of UNIX.

Hence, all the operating-system environments today support sophisticated
scheduling mechanisms. It should come as no surprise that developers would
want similar scheduling functionality in their programming platforms to be
able to exploit scheduling techniques in different applications—EJB develop-
ers are no different.

EJB and Scheduling

If you think scheduling operating system commands and programs is power-
ful, think how powerful it would be to be able to schedule execution of parts
of your code or methods on your components. Yes, that is what scheduling
with EJB should allow us to do. EJB containers should let us schedule a given
method to run at a particular point in time so that the container can call back

366 Chapter 12

18_785415 ch12.qxp 6/5/06 7:03 PM Page 366

that method once the scheduled time has elapsed. This capability can open a
whole new world of possibilities with EJB.

EJB Timers 367

THE JAVA PLATFORM AND SCHEDULING

The Java language platform has been providing basic scheduling capabilities
since J2SE 1.3 via the java.util.Timer and java.util.TimerTask APIs.
Together, these are termed the Java Timer APIs. Java Timer APIs provide a
programming model in which your schedulable task, in other words the worker
class, will extend the TimerTask abstract class. TimerTask implements
Runnable and it represents a Java class that can be scheduled to run once or
repeatedly by a timer. Thus, the action you need to perform when the timer
calls your class should be put in the run() method of your TimerTask
implementation.

The Timer object provides methods that you can use to schedule TimerTask
objects for future execution in a background thread. Corresponding to each
Timer object is a single background thread that is used to execute all the
timer’s tasks sequentially. Thus, if you used the same Timer object to schedule
multiple timer tasks and if a certain timer task takes longer than expected to
complete, the subsequent timer task will be held up until the previous one
completes.

The Timer object, and hence the corresponding background thread, is kept
alive by the JVM as long as there is an outstanding task to complete. Once all
the tasks associated with the given Timer object are done executing, the JVM
will kill the thread and release the Timer object in the subsequent garbage
collection cycle. By default, your application could be held up as long as the
timer is alive. This means that if you have a repeated timer task, your
application can theoretically keep running forever. To get around this, you can
create a Timer object that uses a daemon thread so that it does not keep the
application from terminating.

An important point to understand about scheduling on the Java platform is
that due to the inherent nature of Java, it is impossible to guarantee that the
timer will execute a given timer task at exactly the specified moment. In other
words, Java does not provide us with a consistently met real-time guarantee,
the main reason for this is that the implementation of thread scheduling, on
which job scheduling is dependent, is inconsistent across various JVMs. The
Timer object schedules tasks via the Object.wait() mechanism, and so the
exact moment at which the JVM wakes up the timer task objects is dependent
on JVM’s thread scheduling policy and such factors. Garbage collection is yet
another factor that further makes job scheduling on the Java platform
nondeterministic.

Thus, the Java Timer API is more than enough for simple scheduling activities
for nonmanaged Java applications. If you need more sophisticated functionality,
you can use scheduling frameworks, such as Quartz, to meet those needs.
There is also another timer API in Java: the JMX (Java Management Extensions)
timer API. However, it is very tightly coupled with the JMX framework and
hence is not suitable for generic purposes.

18_785415 ch12.qxp 6/5/06 7:03 PM Page 367

The EJB Timer Service

EJB 2.1 introduced support for scheduling through the container-managed EJB
Timer Service. Developers interact with the EJB Timer Service through various
Timer Service APIs. These APIs can be used for creating timers for specified
dates and periods. You can also create timers scheduled to expire at recurring
intervals. As soon as the date or period specified for the timer is reached/
elapsed, the timer expires and the container notifies your bean of the timer
expiration by calling a timeout callback method on the EJB. This callback
method will implement the logic that you want to execute upon timer expira-
tion(s). Figure 12.1 illustrates the high-level interaction between the Timer Ser-
vice and an EJB interested in receiving timer notifications.

Enterprise beans interested in receiving timer notifications will register
themselves with the Timer Service. Stateless session beans, entity beans, and
message-driven beans can all receive timed notifications from the container.
Timers cannot be created for stateful session beans and Java Persistence enti-
ties; however, future versions of EJB might support timers for these as well.

NOTE As with the rest of this book, this chapter does not discuss the
applicability of timers to entity beans, since there is nothing to add there. You
can refer to the previous edition of this book if you need more information on
implementing timers for entity beans.

Timer Service API
The Timer Service API consists of four interfaces—javax.ejb.Timed
Object, javax.ejb.Timer, javax.ejb.TimerHandle, and javax.ejb.
TimerService. The following sections provide an overview of each of these
interfaces.

Figure 12.1 Interaction between the Timer Service and EJB.

Enterprise bean registers itself to EJB
Timer service by creating timer

Timer service notifies the bean via callback
method upon timer expiration

Timer Service Enterprise Bean

EJB Container

368 Chapter 12

18_785415 ch12.qxp 6/5/06 7:03 PM Page 368

javax.ejb.TimerService

This interface provides enterprise bean components with access to the con-
tainer’s Timer Service. It provides various createTimer()methods to create
timers and thereby register with the container Timer Service for timer notifica-
tions. Using these createTimer() methods, you can create mainly four
types of timers, depending on your needs.

■■ Recurrent expiration timers whose first expiration occurs at a given
point in time as specified by the Date argument to createTimer()
method. Subsequent timer expirations occur at interval durations speci-
fied in milliseconds.

■■ One-time expiration timers whose first and only expiration occurs
at a given point in time as specified by the Date argument to
createTimer() method.

■■ Recurrent expiration timers whose first expiration occurs after the spec-
ified number of milliseconds has elapsed. Subsequent timer expirations
occur at interval durations specified in milliseconds.

■■ One-time expiration timers, whose first and only expiration occurs after
the specified number of milliseconds has elapsed.

Apart from various methods for creating timers, TimerService has made
available a getTimers() method, which retrieves all the timers associated
with the given bean.

Source 12.1 shows the definition of the TimerService interface.

public interface javax.ejb.TimerService {

public Timer createTimer(long duration, Serializable info)

throws IllegalArgumentException, IllegalStateException,

EJBException;

public Timer createTimer(long initialDuration, long

intervalDuration, Serializable info) throws

IllegalArgumentException, IllegalStateException,

EJBException;

public Timer createTimer(Date expiration, Serializable info)

throws IllegalArgumentException, IllegalStateException,

EJBException;

public Timer createTimer(Date initialExpiration, long

intervalDuration, Serializable info) throws

IllegalArgumentException, IllegalStateException,

EJBException;

public Collection getTimers() throws IllegalStateException,

EJBException;

}

Source 12.1 The javax.ejb.TimerService interface.

EJB Timers 369

18_785415 ch12.qxp 6/5/06 7:03 PM Page 369

javax.ejb.Timer

This interface represents a timer instance that was created through
TimerService. Its methods provide information about the timer, such as the
point in time when the next timer expiration is scheduled, the number of
milliseconds that will elapse before the next scheduled timer expiration,
and so on.

Also, this interface provides access to the timer information class through the
getInfo() method. The timer information class has to be a Serializable
instance, and it can be used as a means to provide application-specific informa-
tion corresponding to the timer, such as the actions a bean will take upon timer
expiration. This information class is written by the application provider and
is passed as an argument to the respective createTimer() method in
TimerService. If you do not want to provide a timer information object,
pass null while creating the timer.

Finally, the getHandle() method retrieves the Serializable handle to
the timer. This handle can be persisted and retrieved at a later time to obtain a
reference to the timer instance.

Source 12.2 shows the definition of the Timer interface.

public interface javax.ejb.Timer {

public void cancel() throws IllegalStateException,

NoSuchObjectLocalException, EJBException;

public long getTimeRemaining() throws IllegalStateException,

NoSuchObjectLocalException, EJBException;

public Date getNextTimeout() throws IllegalStateException,

NoSuchObjectLocalException, EJBException;

public Serializable getInfo() throws IllegalStateException,

NoSuchObjectLocalException, EJBException;

public TimerHandle getHandle() throws IllegalStateException,

NoSuchObjectLocalException, EJBException;

}

Source 12.2 The javax.ejb.Timer interface.

javax.ejb.TimedObject

This interface contains a single method: ejbTimeout(). The container calls
this callback method to notify the EJB of timer expiration. A bean class that
implements this interface will receive timer notification from the container via
invocation of the ejbTimeout() method. This timeout callback method,
therefore, should contain the logic that you want to execute upon receiving
timer notifications.

370 Chapter 12

18_785415 ch12.qxp 6/5/06 7:03 PM Page 370

Source 12.3 shows the definition of the TimedObject interface.

public interface javax.ejb.TimedObject {

public void ejbTimeout(Timer timer);

}

Source 12.3 The javax.ejb.TimedObject interface.

So this is one way of implementing timeout callback methods. Another way
is by declaring a method as the timeout callback method, either in the
bean class via the @Timeout annotation or in the deployment descriptor.
The container will call this method upon timer expiration, just as it would
call the ejbTimeout() method had you implemented the javax.ejb
.TimedObject interface.

The container passes a corresponding instance of Timer associated with the
bean in its invocations to timeout callback methods.

javax.ejb.TimerHandle

This interface contains a single method, getTimer(), which retrieves the
reference to Timer represented by the given handle. The method throws
NoSuchObjectException if invoked for a timer that has already expired or
has been cancelled.

Source 12.4 shows the definition of the TimerHandle interface.

public interface javax.ejb.TimerHandle extends Serializable {

public Timer getTimer() throws IllegalStateException,

NoSuchObjectException, EJBException;

}

Source 12.4 The javax.ejb.TimerHandle interface.

NOTE Durations in the timer API are specified in milliseconds, taking into
consideration that the rest of the J2SE APIs use millisecond as the unit of time.
However, do not expect the timers to expire with millisecond precision given
the incapability of the Java platform to support true real-time predictability.

Interaction between the EJB and the Timer Service
It is clear that TimerService is the top-level API that allows you to create
timers. The question is—how to get access to a TimerService instance? You

EJB Timers 371

18_785415 ch12.qxp 6/5/06 7:03 PM Page 371

can get hold of the TimerService instance through EJBContext. The
EJBContext interface has the getTimerService() method, which can be
called from any business method of your stateless session bean or message-
driven bean. Another way to get access to the Timer Service is to look up the
TimerService object in the JNDI. And yet another way, in EJB 3.0 applica-
tions, is to obtain the TimerService object via dependency injection.

NOTE What happens if you create a timer from one of your EJB methods
without implementing the TimedObject interface for that EJB? Check it out.

Figure 12.2 shows the sequence diagram of interaction between EJB and the
Timer Service.

Figure 12.2 Sequence diagram of interaction between EJB and the Timer Service.

EJB Client Bean Class : EJBContext : TimerService

Calls a particular
method on EJB which
in turn creates a timer

Calls getTimerService()

Returns TimerService

Gets an instance of
TimerService

Calls the appropriate create Timer() method
Timer
starts
ticking

Callback to timeout callback method

372 Chapter 12

18_785415 ch12.qxp 6/5/06 7:03 PM Page 372

Timer Example: CleanDayLimitOrdersBean

Let us now examine the code for stateless session bean timers. The message-dri-
ven bean timers are written exactly the same way as stateless session bean
timers are. To understand this example, consider an online securities trading
system. The system allows the customer to place limit orders for a given secu-
rity, say for example equities, such that the buy or sell transaction for the given
security can be limited to occurring anytime during a day or anytime during
the trading week or anytime until the end of the current month and so on as
long as the buy/sell criteria specified by the customer is met. Limit orders are
supported by most of the contemporary online securities trading systems. Now
not all limit orders are executed, since the criteria, mainly the price criteria, set
by the customer may not be met during the specified limit period. Obviously,
such limit orders should be removed upon expiration of limit periods.

Our example bean, CleanDayLimitOrdersBean, demonstrates an ele-
gant way of cleaning the trading database by removing all the limit orders that
were not executed during the limit period. In our scenario, a client application,
CleanDayLimitOrdersClient, will invoke the cleanPeriodically
DayLimitOrders() method on CleanDayLimitOrdersBean. clean
PeriodicallyDayLimitOrders() creates a recurrent expiration timer based
on the current date such that at the end of every trading day a timer expires and
the container invokes the timeout callback method handleTimeout(). Notice
that the CleanDayLimitOrdersBean does not implement a javax.ejb.
TimedObject interface. Instead, it implements the timeout logic in the han-
dleTimeout() method and marks it with the @Timeout annotation. Basi-
cally, we are using the annotated method to implement the callback timeout
logic. For now, we are least concerned with the database logic and hence, this
example code does not elaborate the database part.

EJB Timers 373

TIMERS AND TRANSACTIONS

The creation of timers is supported within transactions.
Therefore, if an enterprise bean method that creates the timer is executed as

part of a transaction and if that transaction is rolled back, the timer creation is
rolled back too. Similarly, if an enterprise bean method cancels the timer by
calling cancel() on the Timer interface within a transaction and if that
transaction is rolled back, the container rolls back the timer cancellation as
well. The container restores the duration of the timer to the duration it would
have had, had it not been rolled back.

The timeout callback method can also be called within a transaction and
typically has transaction attributes of REQUIRES or REQUIRES_NEW. Hence, if
the transaction rolls back, the container will call the timeout callback method
again.

18_785415 ch12.qxp 6/5/06 7:03 PM Page 373

374 Chapter 12

Note that the source files for this example are available on the book’s accom-
panying Web site wiley.com/go/sriganesh.

The CleanDayLimitOrders Business Interface
First, let us define our bean’s business interface. The code is shown in
Source 12.5. The remote interface defines a single business method,
cleanPeriodicallyDayLimitOrders(), which we will implement in the
enterprise bean class.

package examples.timer;

import javax.ejb.Remote;

@Remote

public interface CleanDayLimitOrders {

public void cleanPeriodicallyDayLimitOrders();

}

Source 12.5 The examples.CleanDayLimitOrders interface.

The CleanDayLimitOrdersBean Class
Our bean class has one business method, cleanPeriodicallyDayLimit
Orders(), which is responsible for cleaning the trading system database of
expired day limit orders. The implementation of this method makes use of
java.util.TimeZone and java.util.Calendar types to manipulate the
time. It does various calculations to arrive at the number of milliseconds that
should expire until the market closes on the current day. This example takes
into consideration the U.S. exchanges’ market close time, which is 4 PM East-
ern Standard Time. Finally the method creates a recurrent expiration timer,
whose subsequent expirations occur at an interval of 86,400,000 milliseconds
(24 hours). The idea is that once the first timer is fired off sometime after 4 PM
Eastern Standard Time, the subsequent timers will fire off exactly 24 hours
after that instant.

Also the bean class does not implement the TimedObject interface.
Instead, it uses annotation to mark a method as the timeout method, thereby
letting the container know that it is interested in receiving the timer notifica-
tions and that the timeout method, handleTimeout(), should be invoked to
send the notification callbacks.

Source 12.6 shows the CleanDayLimitOrdersBean.java code.

18_785415 ch12.qxp 6/5/06 7:03 PM Page 374

package examples.timer;

import javax.ejb.*;

import javax.annotation.Resource;

import java.util.Calendar;

import java.util.TimeZone;

import java.util.SimpleTimeZone;

import java.util.GregorianCalendar;

import java.util.Date;

@Stateless

public class CleanDayLimitOrdersBean implements CleanDayLimitOrders {

@Resource private SessionContext ctx;

public void cleanPeriodicallyDayLimitOrders()

{

// Get hold of the eastern time zone assuming that the

// securities are being traded on NYSE and NASDAQ exchanges.

String[] timezoneIDs = TimeZone.getAvailableIDs (-5 * 60 * 60 *

1000);

SimpleTimeZone est = new SimpleTimeZone (-5 * 60 * 60 * 1000,

timezoneIDs[0]);

// Provide the rules for start and end days of daylight savings

// time.

est.setStartRule (Calendar.APRIL, 1, Calendar.SUNDAY, 2 * 60 * 60

* 1000);

est.setEndRule (Calendar.OCTOBER, -1, Calendar.SUNDAY, 2 * 60 * 60

* 1000);

// Get hold of a calendar instance for the eastern time zone.

Calendar cal = new GregorianCalendar(est);

// Set the calendar to the current time.

cal.setTime (new Date ());

// Calculate the difference between now and market close i.e. 4 PM

// Eastern.

int hourofday = cal.get (cal.HOUR_OF_DAY);

int minuteofhour = cal.get (cal.MINUTE);

// If this method is invoked after the market close, then set the

// timer expiration immediately, i.e. start=0. Otherwise,

// calculate the milliseconds that needs to elapse until first

// timer expiration.

long start = 0;

Source 12.6 The examples.CleanDayLimitOrdersBean class. (continued)

EJB Timers 375

18_785415 ch12.qxp 6/5/06 7:03 PM Page 375

376 Chapter 12

if (hourofday < 16)

{

int hourdiff = 16 - hourofday - 1;

int mindiff = 60 - minuteofhour;

start = (hourdiff * 60 * 60 * 1000) + (mindiff * 60 * 1000);

}

// Finally, get hold of the Timer Service instance

// from EJBContext object and create the recurrent expiration

// timer.

TimerService timerService = ctx.getTimerService();

Timer timer = timerService.createTimer(start, 86400000, null);

System.out.println(“CleanDayLimitOrdersBean: Timer created to

first expire after “ + start + “ milliseconds.”);

}

@Timeout

public void handleTimeout(Timer timer)

{

System.out.println(“CleanDayLimitOrdersBean: handleTimeout

called.”);

// Put here the code for cleaning the database of day limit orders

// that have not been executed.

}

}

Source 12.6 (continued)

When trying this example, you might want to provide smaller values for
both start and interval periods to immediately see the timer expiration results.
That’s it—our CleanDayLimitOrders EJB is all set to receive timeout call-
backs from the container.

The CleanDayLimitOrders EJB Deployment Descriptor
We can deploy our bean without the deployment descriptor. However, if you
wanted to specify the timeout callback method within the deployment
descriptor, Source 12.7 shows what your deployment descriptor should look
like.

18_785415 ch12.qxp 6/5/06 7:03 PM Page 376

<?xml version=”1.0” encoding=”UTF-8”?>

<ejb-jar xmlns=”http://java.sun.com/xml/ns/javaee”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance” full=”false”

version=”3.0” xsi:schemaLocation=”http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd”>

<enterprise-beans>

<session>

<display-name>CleanDayLimitOrdersBean</display-name>

<ejb-name>CleanDayLimitOrdersBean</ejb-name>

<business-remote>examples.timer.CleanDayLimitOrders</business-

remote>

<ejb-class>examples.timer.CleanDayLimitOrdersBean</ejb-class>

<session-type>Stateless</session-type>

<timeout-method>

<method-name>handleTimeout</method-name>

<method-params>

<method-param>javax.ejb.Timer</method-param>

</method-params>

</timeout-method>

<transaction-type>Container</transaction-type>

<security-identity>

<use-caller-identity/>

</security-identity>

</session>

</enterprise-beans>

</ejb-jar>

Source 12.7 The ejb-jar.xml file.

The CleanDayLimitOrders EJB Client
Now that the bean is ready, we need to write the client. The client runs in the
Java EE application client container. The Java EE application client container
can perform dependency injection of resources in a Java application the same
way that an EJB container does dependency injection of resources in an EJB
application. Therefore, notice that our client does not use JNDI APIs to get a
reference to CleanDayLimitOrders; instead, it injects the reference to the
CleanDayLimitOrders EJB using @EJB annotation. The client then invokes
the cleanPeriodicallyDayLimitOrders() method on this reference.
Source 12.8 shows the code for CleanDayLimitOrdersClient.java.

EJB Timers 377

18_785415 ch12.qxp 6/5/06 7:03 PM Page 377

package examples.timer;

import javax.ejb.EJB;

public class CleanDayLimitOrdersClient {

@EJB

private static CleanDayLimitOrders cleanDayLimitOrders;

public static void main(String[] args) {

try {

cleanDayLimitOrders.cleanPeriodicallyDayLimitOrders();

System.out.println (“cleanPeriodicallyDayLimitOrders()

returned successfully. Take a look at the application

server log or console for messages from bean.”);

} catch (Exception ex) {

System.err.println(“Caught an unexpected exception!”);

ex.printStackTrace();

}

}

}

Source 12.8 The examples.CleanDayLimitOrdersClient class.

Running the Client
To run the client, look at the Ant scripts bundled along with this exam-
ple. The following is the client-side output you will get upon running
CleanDayLimitOrdersClient.

C:\MEJB4.0\src\examples\timer>asant run_client_in_appcontainer

Buildfile: build.xml

build_cpath:

init_common:

setup_env:

run_client_in_appcontainer:

[exec] cleanPeriodicallyDayLimitOrders() returned successfully.

Take a look at the application server log or console for messages from

bean.

On the application server console or in the application server log file, you
should see the following output. Make sure to run your application server in
verbose mode to be able to see this output on the server console.

378 Chapter 12

18_785415 ch12.qxp 6/5/06 7:03 PM Page 378

[#|2006-03-21T15:58:11.927-0500|INFO|sun-appserver-pe9.0|javax.enterprise

.system.stream.out|_ThreadID=11;_ThreadName=p: thread-pool-1; w:

3;|CleanDayLimitOrdersBean: Timer created to first expire after 120000

milliseconds.|#]

[#|2006-03-21T16:00:11.929-0500|INFO|sun-appserver-pe9.0|javax.enterprise

.system.stream.out|_ThreadID=11;_ThreadName=p: thread-pool-1; w:

3;|CleanDayLimitOrdersBean: handleTimeout called.|#]

Take a close look at the highlighted portions. You’ll notice that our timer was
first created at around 3:58 PM Eastern Standard Time, and the first timer was
fired at 4:00:11 PM Eastern Standard Time. You should continue to get these
notifications for as long as the enterprise bean is deployed and its respective
Java EE application is running. Of course, the application server has to be run-
ning in order to receive these notifications.

Finally note that this output is for an EJB deployed on the reference imple-
mentation of Java EE 5.

NOTE We can generalize CleanDayLimitOrders EJB further so that it
can clean the end-of-week or end-of-month limit orders as well. For this, we
can create multiple timers associated with the bean in a way that each of these
timers expires at a different interval.

Now that you know how to develop EJB timers, let us take a look at some of
the strengths and shortcomings of the EJB Timer Service.

Strengths and Limitations of EJB Timer Service

The EJB Timer Service has some obvious strengths with respect to other sched-
uling utilities and frameworks, in that:

■■ Scheduling semantics provided by the EJB Timer Service are platform-
independent. You can use platform-specific utilities such as Cron or At to
schedule calls to an EJB client, which in turn calls a certain EJB method,
and this will work just fine. However, there is a caveat to this approach.
What do you do if your client needs to run on a different platform? You
will now have to learn and work with the scheduling semantics of the
new platform, which again may or may not satisfy your requirements.

■■ The EJB Timer Service lets you schedule the timers programmatically.
Consider a scenario in which EJB wants to create timers based on a cer-
tain request from a client. Without having a framework API, such as the
one provided by the EJB Timer Service, it is hard to achieve this—more
so if you use platform-specific utilities for scheduling calls to EJB meth-
ods, because then your EJB will require a way to schedule platform
timers from within the EJB environment.

EJB Timers 379

18_785415 ch12.qxp 6/5/06 7:03 PM Page 379

■■ Finally, the EJB Timer Service provides a standard interface to schedul-
ing functionality as opposed to frameworks such as Flux or Quartz.
This gives you one less thing to worry about when your application is
required to support multiple Java EE–platform products.

On the other hand, there is a lot of scope for the EJB Timer Service to improve
further. Currently, it lacks two features:

■■ Support for declaration of timer intervals in the deployment descriptors
is not available today. As a result, the developer has to embed the timer
expiration period and the subsequent expiration interval information in
the EJB bean class. This restricts the ability of the developer to declara-
tively provide timer-related information at the time of deployment.

■■ There is not much flexibility in the way the timers can be specified
today. Consider our example. Since the only unit of time that the timer
APIs accept is milliseconds, we had to write the logic for converting the
hours and minutes into milliseconds in order to create the timer for the
CleanDayLimitOrders EJB. Had the timer API given a provision for
creating timers wherein the periods could be specified in terms of
hours, days, or months, it would have been much more powerful and
simpler to use.

Also, we cannot create timers that expire on given days of the week but
not on other days. Again, consider CleanDayLimitOrders EJB. Here,
we actually want a timer that would expire after 4 PM Eastern Standard
Time every day from Monday through Friday. We do not want our timer
to expire on Saturdays and Sundays. However, because there is no
mechanism to specify this level of finer-grained scheduling information,
we will have to add this logic in our code. Our implementation does not
have this, but a real trading system should have the logic in place to
avoid hitting the database when the timer expiration occurs on Satur-
days, Sundays, and other nontrading days (such as public holidays).

Our hope is that in the subsequent EJB specifications, these features will be
added.

Summary

In this chapter, we provided a complete overview of using the EJB Timer Ser-
vice. You learned that although the EJB Timer Service is simple to use and very
helpful for implementing certain scenarios, it has some shortcomings, which
should be addressed in the upcoming EJB specifications.

In the next chapter, we discuss an advanced and very interesting topic—EJB
best practices. So sit up straight and read on!

380 Chapter 12

18_785415 ch12.qxp 6/5/06 7:03 PM Page 380

381

In this chapter, we will discuss best practices in terms of design, development,
building, testing, and working with EJB. These guidelines will help in resolv-
ing some of the dilemmas you face in real-world EJB projects. By being aware
of these best practices, you will avoid common pitfalls that others have expe-
rienced when building EJB systems.

Note that persistence-related best practices and various performance opti-
mizations are covered in Chapter 9 and Chapter 14, respectively.

Let us begin now with various design, development, testing, debugging,
and deployment strategies.

NOTE We do not discuss lower-level EJB design patterns in this chapter, since
there are many resources in terms of books, papers, and so on that already
focus on that. Besides, discussing lower-level EJB design patterns itself
warrants a whole book. Our recommendation is that you read EJB Design
Patterns (ISBN: 0-471-20831-0) published by John Wiley & Sons as a guide for
EJB design patterns.

EJB Best Practices

C H A P T E R

13

19_785415 ch13.qxp 6/5/06 7:03 PM Page 381

When to Use EJB

The cost of not making a correct go or no-go decision for EJB can be very high.
It can range from a project getting delayed to a project getting scrapped.
Hence, we would like to take a few moments to address this very crucial
design point in the very beginning.

In our opinion, you should think of using EJB in the following design
situations:

■■ Remoting is required. Gone are the days when everybody used to
think of distributed systems as a panacea. Modeling an application’s
functionality into various tiers composed of reusable components is
surely a way to achieve a clean and manageable design. However,
deploying these components on separate boxes just for the heck of it
does not necessarily result in the best systems. Do not confuse the need
for componentization with the distribution of these components on
multiple systems. Both are quite different and both have different costs
associated with them.

With that said, once you determine the need for distributed compo-
nents in your application, consider EJB as your first alternative. Their
sole purpose is to provide a programming model to build managed and
distributed components on the Java platform.

■■ Distributed transactions are required. Transaction semantics are beau-
tifully defined by the EJB standard. A protocol as complicated as the
two-phase commit—one of the most widely used distributed transac-
tions protocols in enterprise applications today—is neatly supported by
the EJB architecture. Although, nonstandard frameworks such as Spring
and Hibernate do support distributed transactions, the level of support
of these in EJB containers is one of the best. It probably has to do with
maturity gained by EJB server vendors on account of implementing dis-
tributed transactions for years. Hence, for large-scale distributed trans-
actional systems, leveraging EJB makes a lot of sense.

NOTE One of the common complaints against the EJB transaction model is its
lack of support for nested transactions and long-running transactions. Well, this
will not remain the case for long. JSR 095 (Java EE Activity Service for Extended
Transactions) defines a low-level framework for creating various transaction
models. At the time of this writing, JSR 095 is in the proposed final draft stage.
Hopefully, it shall become part of Java EE 1.5 platform.

382 Chapter 13

19_785415 ch13.qxp 6/5/06 7:03 PM Page 382

■■ Component-security is required. EJB architecture defines a standard
fine-grained security model for the components. Although, EJB archi-
tecture does not provide support for fancy security schemes, such as
single sign-on or biometric authentication, as yet, it does provide a
basic framework for authentication and access control that is more than
enough to meet security needs of 85 percent of enterprise applications.
So if you have a requirement for access control at the application-
component level (and not just at the Web level), then you should con-
sider using EJB.

■■ Persistence is required. Much has been said—both, good and bad—
about the persistence functionality as defined by the EJB standard. With
EJB 3.0, the persistence model is a whole new ball game. It incorporates
the best of what has been learned from lightweight approaches, such as
Hibernate, into a mature standard. EJB persistence is now based on plain
old Java objects (POJOs). It can be used outside the container. It supports
declarative relationships and true object orientation (such as polymor-
phism). Early benchmarks show that common design patterns for per-
sistence perform twice as fast compared to EJB 2.1 (for further details,
see http://java.sys-con.com/read/131767_2.htm). The persis-
tence model is now easily understood and, thus, if persistence is a
requirement for your project, you should strongly consider using EJB.
(Chapters 6 and 9 cover the EJB 3.0 persistence model in detail.)

■■ Integration with legacy applications is required. More recently, this has
become one of the main selling points of EJB architecture. EJB provides
multiple elegant models through Java EE Connector Architecture, EJB
Web services, and JMS for integrating with legacy/nonlegacy applica-
tions deployed on heterogeneous platforms. Thus, if your application
requires integration with another application, you should consider using
the EJB framework for this integration. Chapter 18 covers these EJB inte-
gration programming models and related best practices in depth.

■■ Scalability is required. EJB technology was designed with scalability in
mind. The idea is to make scaling up of applications seamless, for
example without rearchitecting and reprogramming, so that it simply
becomes a matter of throwing more hardware at an application. Java EE
enables you to scale your EJB and Web tiers separately. Remoting
allows you to keep both of these tiers on separate boxes and scale these
boxes as needed. For example, in an application that involves a simple
Web interface but complex middle-tier processing, throwing more
resources at systems on which an EJB application is deployed just
makes more sense.

EJB Best Practices 383

19_785415 ch13.qxp 6/5/06 7:03 PM Page 383

In conclusion, if you are going to need transactions, remoting, security, per-
sistence, application integration, and other such infrastructure-oriented facili-
ties in your application, consider leveraging the time-tested EJB framework in
your project. Working with EJB can get complex if not done right. However,
there are thousands of ways to deal with this complexity. However, creating
your own framework is definitely not one of them.

384 Chapter 13

IS USING A POJO + FRAMEWORK COMBINATION ALWAYS A
GOOD IDEA?

The recent wave in enterprise Java computing is to replace all or some parts of
the EJB framework with popular open source frameworks, such as Spring,
Hibernate, and so on, that have grown from the wider Java community. The
Spring framework (springframework.org) is a Java EE framework. Spring
applications can be built using EJB or POJOs. In case you choose POJOs, Spring
can provide declarative local transactions for POJOs without relying on the EJB
container. Similarly, Spring supports data access via JDBC and O/R mapping
frameworks such as Hibernate, as well as dependency injection. Thus, Spring is
unique in the sense that it makes using heavyweight EJB containers a matter of
choice and not necessity in some respects. It provides a lightweight framework
alternative for writing business tier objects.

Hibernate (hibernate.org) is another popular O/R framework whose
biggest value proposition is ease of use. It is a POJO-driven lightweight
transactional persistence and data access framework. One of the interesting
features it provides is the modeling of inheritance relationships of data.

Like always, we would like to maintain that just as EJB is not a sure-shot way
of building robust and scalable applications, using POJO frameworks is not a
sure-shot way of simplifying business tier development and deployment. Think
of using POJOs only when the architectural benefits are substantial. Note that
ease of development is not always equipped with highly transactional
enterprise functionality. For instance, if distributed transactions are a must for
your application, Spring + POJOs would not work.

The safest route is to stick to EJBs and trust the Java Community Process
(JCP) to evolve the standard, and evolve it they will. Now that EJB 3.0 supports
POJOs and can model inheritance relationships of data (having embraced the
Hibernate model), the decision on when to use EJB has been simplified.
Dependency injection is another feature, which although present in Spring, is
now being supported in EJB 3.0 via annotations. Many people turned to
Hibernate and Spring because of their flexibility and accessibility, but now EJB
3.0 offers many of the same features with the benefit of being backed by major
industry Java vendors.

19_785415 ch13.qxp 6/5/06 7:03 PM Page 384

How to Choose a Web Application Framework to
Work with EJB

Model 2 Web application frameworks have very much become a part of infra-
structure software these days and rightly so. Working with such frameworks
guarantees a lot of functionality related to localization, error handling, valida-
tion of form data, and so on out of the box. Many of these functions would oth-
erwise need to be coded when working with raw Web components, such as
servlets and Java Server Pages (JSP).

You can choose from dozens of Web application frameworks, both open
source and closed source. Choosing a Web application framework is an impor-
tant decision for you as an architect. Here are some of the factors that you
should consider when deciding on a Web application framework for your EJB
project:

■■ Integration with EJB technology. In EJB projects, one of the obvious
considerations for your Web application framework is how well it inte-
grates with EJB technology. EJB integration basically implies the sup-
port for EJB design patterns, EJB entity beans handling, and so on from
within the framework components. For instance, the Struts community
has made it quite simple to work with EJB via the StrutsEJB project
(http://strutsejb.dev.java.net). The StrutsEJB project pro-
vides base classes and patterns (mainly Service Locator, Business Dele-
gate, DTO, and Session Façade patterns) to build a Struts Web
application that uses EJB in the business tier. The Java Server Faces (JSF)
technology offers a server-side component framework for user inter-
faces (the view). It includes APIs for UI components, state management,
input validation, and handling events (among other things). There are
many in the Java community who would like to see the EJB and JSF
specifications merged. As of this writing, the effort to merge the specifi-
cations has not gained any traction, but there are many examples of
using JSF and EJB together. For more information, browse to the JSF
homepage at http://java.sun.com/j2ee/javaserverfaces.

■■ Tools support. Tools enable rapid application development (RAD)
thereby increasing productivity. Most of the framework communities
and vendors provide some kind of IDE plug-in technology-based tools
to help in development. However, usually this plug-in support is limited
to one or two IDE at most. So if you are using an IDE that the plug-in
doesn’t support, you might have no tools available for the framework.

For instance, although Tapestry is a powerful framework, Spindle, a
plug-in that provides IDE support for Tapestry, is available only for the

EJB Best Practices 385

19_785415 ch13.qxp 6/5/06 7:03 PM Page 385

Eclipse IDE. As a result, developers of projects that use other IDEs, such
as NetBeans, have to develop and deploy the framework components
manually.

On the other hand, mature frameworks, such as Struts, have good tools
support in the form of IDE plug-ins (Struts Console plug-in for Net-
Beans, Eclipse and Struts Tools for IBM WSAD, and so on) and stand-
alone GUI tools (Struts Console and Struts Studio).

■■ Small-device support. Generating content in a markup language so
that it can be rendered on small devices is a very real requirement of
today’s business applications. If your application falls in this category,
then you should select an application framework that provides a com-
paratively painless way of generating markup content for small device
browsers. Most of the device browsers today support WML, HDML,
cHTML, or XHTML markup languages. Frameworks, such as Cocoon,
SOFIA, and Struts, provide tag libraries for generating device markups,
such as WML, HDML, and XHTML.

NOTE If your candidate framework does not provide a tag library for the
needed markup language, then you should think about developing a new tag
library. Developing a tag library is a nontrivial task and, hence, should be
considered only when other options are not available.

■■ Standards support. View technology leveraged by these Web applica-
tion frameworks should be standards-based simply because you do not
want to trade innovation from the wider JCP community for innovation
from your specific Web application framework community. Although,
all the Web application frameworks are based on standards, watch out
for those proprietary hooks.

■■ Learning curve and availability of expertise. If you are planning on
using your existing staff for application development, then you should
consider the learning curve required for them, in order to develop effi-
ciently using the candidate Web application framework. Make sure that
proper help and documentation is available for the candidate frame-
work, regardless of whether it is open or closed sourced, to speed up
the learning process. On the other hand, if you are planning to hire new
people for your project, then select a framework that is popular and
widely used so that finding the right talent is possible.

■■ Open source versus closed source. At the end of the day, if most of
your requirements in the areas mentioned previously are met by a
given application framework, we’d like to say it does not matter

386 Chapter 13

19_785415 ch13.qxp 6/5/06 7:03 PM Page 386

whether it is closed source or open source. However, in the real world,
both cost and a sense of control over your own destiny are important
concerns. We have witnessed quite a few projects where open source
Web application frameworks were chosen because they were “good
enough” and were “free.” In some other projects, open source Web
application frameworks were chosen simply because their source was
made available for tweaking; whereas in a select few cases, customers
went for closed source application frameworks from vendors because
of a well-defined product support model.

Whatever your reasons might be for choosing an open or closed source
Web application framework, we recommend that you select a frame-
work that meets most of the criteria given in this section.

Applying Model Driven Development in EJB
Projects

Model Driven Development (MDD) is becoming more and more popular
within the developer community lately because of its promise of increased
productivity over the traditional code-centric development approach. MDD is
a development methodology wherein a model is at the core of development. In
this context, the model typically represents an entity in the problem domain
and applicable business logic that needs to be performed on this domain
entity. For example, in a typical order-processing system, a customer model
will represent appropriate data attributes and business operations applicable
to a customer entity. Thus, if such an order processing system is developed
using the MDD paradigm, a given MDD tool will take the customer model as
input and generate application code from it, thereby establishing a close link
between the model and its system implementation.

Here is an obvious question: “What is the difference between the modeling
tools such as Together or Rational Rose and MDD tools?” After all, modeling
tools have been generating skeleton implementation code from models for
years.

Well, the difference is in how far the tool can take you with a model. Any
modeling tool these days can generate Java classes from a corresponding UML
class diagram. However, is that enough? No. Because even after the tool gen-
erates a Java class, we are still required to write code for utilizing persistence,
security, logging, transactions, and other such services of the underlying
EJB/JDO/JDBC/XYZ framework. Similarly, we still need to write code for
accessing other services, implemented as POJOs, EJB, or Web services, from
our Java class.

EJB Best Practices 387

19_785415 ch13.qxp 6/5/06 7:03 PM Page 387

On the other hand, an MDD tool will generate most of these relevant arti-
facts from a given model and also potentially adhere to the industry best prac-
tices of the underlying platform, say Java, Java EE, or .NET. Thus, MDD tools
translate the domain model to code not just based on technical specifications
but also based on best practices and design patterns. For example, application
code generated by Compuware OptimalJ or open source AndroMDA MDD
tools can implement the core Java EE design patterns, such as Command,
DAO, and so on, with discretion from the architect, of course. Thus, MDD
tools are capable of generating highly functional and high-quality code.

NOTE As of this writing these tools support the J2EE specifications. Be on the
lookout for new versions supporting the Java EE 5 specification.

Evidently tools play a crucial role in the MDD paradigm. We believe that a
natural evolution for modeling tools today would be toward supporting
MDD. Now, MDD tools can be categorized as follows:

■■ Tools that follow standards. Tools such as Compuware OptimalJ, Infer-
Data Model Component Compiler (MCC), Interactive Objects ArcStyler,
and open source tools, such as AndroMDA and OpenMDX, and so on,
support Model Driven Architecture (MDA), an OMG vendor-neutral
standard of building platform-independent models for consumption by
MDD tools. MDA makes extensive use of UML and XMI (XML Meta-
data Interchange) to achieve its goal of platform independence.

■■ Tools that do not follow standards. Tools such as IBM Rational Rapid
Developer (RRD) do not support any specific standard for MDD, but
rather follow their own paradigm. For example, RRD is based on pro-
prietary MDD methodology named Architectured Rapid Application
Development (ARAD).

Here are some suggestions for those considering MDD for EJB projects:

■■ Begin with a proof of concept. Start by developing a small application
using both traditional code-centric and MDD approaches to verify
whether MDD does in fact bring productivity gains to your team. Also,
in our opinion, it is easier to apply the MDD approach to new applica-
tion development than to existing application development or mainte-
nance. This is so because, at present, not many tools provide a sound
strategy for migrating existing applications developed using a code-
centric approach to MDD.

■■ Consider using standards-based tools. Using tools that follow stan-
dards, such as MDA, protects you from vendor lock-in. A healthy
ecosystem of tools around a given standard enables migration of
platform-independent domain models from one tool to another in future.

388 Chapter 13

19_785415 ch13.qxp 6/5/06 7:03 PM Page 388

■■ Consider MDD tool integration with an existing infrastructure. Con-
sider how well your candidate MDD tool integrates with the existing
platform infrastructure products used in your shop. For instance, if
you’re using JBoss, an obvious question should be whether MDD
would generate packaging and deployment artifacts specific to JBoss.

Similarly, not all MDD tools (for example, OpenMDX) provide model-
ing facilities. As a result, you will have to make sure that the MDD tool
you choose integrates with your existing modeling tool.

Applying Extreme Programming in EJB Projects

Extreme Programming (XP) is a software engineering discipline whose core
practices revolve around an underlying assumption: Change in requirements,
and hence software design, will inevitably occur during the course of software
development. As almost all software development methodology pundits
agree, XP’s underlying assumption is not far from reality. After all, how many
projects have you worked on where the design was frozen before writing a sin-
gle line of code so that it never had to change? None.

This pragmatic approach that XP takes makes it extremely alluring to archi-
tects and development team leaders. There are almost a dozen practices
defined by the original thinker of XP, Kent Beck. However, we do not think
that you need to understand and implement all of them in your EJB projects as
long as you follow a couple of core practices strictly.

NOTE One of the great advantages of using XP is the availability of a wide
variety of tools that can be used for functions ranging from unit testing XP code
to managing XP projects to continually integrating components developed
using XP methodology. Even better, most of these tools are highly functional,
time tested, and open source.

In our opinion, here is how the core principles of XP should be followed in
EJB projects:

■■ Iterative development. In iterative development, the development
team is given a certain target to meet per iteration. These iterations can
last one week, two weeks, or more; whatever seems reasonable to code
your requirements. Each such successful iteration will lead the system
toward its final form. You will need to divide your EJB projects into
such iterations. What has worked very well for us in the past is subdi-
viding a given iteration into three subphases.

■■ EJB subphase. This is when we develop, build, and deploy the EJB—
session beans, message-driven beans, or entities—on development
systems.

EJB Best Practices 389

19_785415 ch13.qxp 6/5/06 7:03 PM Page 389

■■ Testing subphase. This is when we build the unit test clients that fol-
low simple test cases such as checking the getters/setters, mocking
the calls to beans, checking whether the data in the database gets
added/updated/deleted properly. Various strategies for unit testing
EJB are discussed in the best practice section titled “How to Test EJB.”
It is useful to note here, though, that EJB 3.0 has greatly enhanced the
ability to unit test using standard tools, such as JUnit. Since beans and
entities are now POJOs, testing outside the container (necessary for
using JUnit) is very straightforward. We will discuss this further in the
next sections.

■■ User subphase. In this phase, we present the work we have done in the
given iteration to the actual users. These users might be people from
other business units who in turn will be using your application, or from
your customer. The clients define various acceptance tests that they
would use in this subphase to make sure that their requirements,
defined during the iteration planning, are met.

An important factor for the success of iterative development is setting
and meeting deadlines. To meet deadlines, you should refrain from
adding new functionality in the middle of the iteration. The idea is to
keep your iterations short and yet meaningful.

■■ Continuous integration. Continuous integration is about keeping vari-
ous application components in sync with each other so that the system
is fully integrated most of the time. The motivation behind this practice
is to avoid integration nightmares, which usually arise when you take a
piecemeal approach to application development and do not stop to
check that various pieces work with each other. Frequently checking
that the different parts of application fit nicely leads to fewer surprises
during the testing subphase. Continuous integration is achieved by typ-
ically building the system at least once a day; however, the exact period
between consequent builds will mostly depend on how long your itera-
tion is. But the idea is not to defer integration of application compo-
nents until last moment.

■■ Refactoring. Refactoring is a process of continuously improving the
design of existing code without affecting the code behavior. Refactoring
usually involves the restructuring of code so as to remove the redun-
dant code, reduce coupling in the code, introduce better naming con-
ventions in the code, or organize the code more cohesively and
consistently.

An example of a good refactoring candidate is an EJB application
where one EJB, say SavingsBean, has a method named

390 Chapter 13

19_785415 ch13.qxp 6/5/06 7:03 PM Page 390

calculateInterest() that accepts parameters in this order:
accountId and interestRate. While another EJB, say Mortgage-
Bean, has a method named calculateMortgage() that accepts
parameters in this order: interestRate and accountId. Here, one
of the bean methods takes the accountId parameter first; whereas
the other bean method takes interestRate first. This is a clear
example of inconsistency in code design and hence, a good candidate
for refactoring.

Thus, each cycle of refactoring transforms your code into a more
evolved structure. A good practice to follow is to keep the changes dur-
ing refactoring small and have multiple refactoring cycles. Each refactor-
ing cycle should be followed by continuous integration and then testing
to ensure that your code evolution has not introduced any new bugs.

Martin Fowler’s book Refactoring: Improving the Design of Existing Code
(ISBN: 0201485672) is a good resource in that it discusses various
techniques for code refactoring so that the underlying behavior is
retained. Also http://industriallogic.com/xp/refactoring/
catalog.html maintains a catalog of patterns to be used during code
design to achieve maximum refactoring. Most of the J2EE/EJB IDEs
these days support refactoring transformations of code. Some tools
such as Eclipse also enable you to preview the changes resulting from a
refactoring action before actually carrying them out. They also can let
you know the potential problems refactoring might lead to in the func-
tioning of your code.

■■ Test-driven development. XP focuses largely on testing and thereby
requires obtaining feedback from customers at various logical points
(end of iteration cycles) in the development life cycle. Also XP-style
test-driven development encourages doing a lot of unit testing of new
or modified code. A typical XP project will maintain a set of unit test
cases that a developer will run whenever new or modified code is
released. Quite a lot of emphasis is put on the automation of these tests
to make XP even more efficient. We talk about EJB testing best practices
in the next section.

XP development, thus, is lightweight and flexible as compared to more for-
mal development methodologies such as Rational Unified Process or even
some of the obsolete development models such as the waterfall model. We
think that applying XP to your EJB projects can provide good benefits regard-
less of the project complexity given that core principles of XP are followed
strictly.

EJB Best Practices 391

19_785415 ch13.qxp 6/5/06 7:03 PM Page 391

Testing EJB

Of the three types of testing—code testing, regression and functional testing,
and load testing—we will focus on the techniques for code testing using unit
tests because that is an area where you can automate a lot and thereby make
code testing easier and more efficient. Code testing is about ensuring that the
given code behaves the way a developer intended it to behave; a code unit test
is a piece of code that checks the behavior of the target code. Whereas code unit
testing leads to acceptance of a piece of code, functional unit testing leads to
acceptance of a subsystem of the application. The quality assurance team does
functional testing at the use-case level, and it is often composed of customers.

EJB Unit Testing
You can write code unit tests for your EJB to see if your beans are doing the
right things. For example a code unit test for an account entity can determine
whether instantiation and field population is inserting the account data in the
database properly. Similarly, a code unit test for a mortgage session bean
might check whether its calculateMortgage() method is calculating the
mortgage payment right. Thus, a code unit test is always about testing the
piece of code and its localized behavior. Another important reason to unit test
your EJB code is that it helps you catch the inconsistencies and difficulties in
using the EJB interfaces early on.

One of the major advancements of EJB 3.0 is that beans and entities can now
be tested in the same way as plain Java classes. The tricky thing, however, is to
deal with resource injection in unit tests. For entities, you can use an out-of-
container EntityManager. For the bean types, it may be necessary to per-
form mockup routines to populate variables that would be injected by the
container (we’ll cover mockups later in this chapter). With the advent of Appli-
cation Client Container (ACC), it is even easier to run standalone unit tests.
Our unit tests might encompass deployment and probably redeployment of
EJB. The good news is that we can automate deployment. However testing EJB
as a standalone component might not make much sense in certain scenarios.
For example, consider a design in which a stateless session bean is acting as a
façade to other session beans and entity beans. In that case, you should also
deploy these other beans in order to unit test the façade stateless session beans.
Similarly for entity beans that have relationships with other entity beans, you
have to ready all the relationship beans to unit test the original entity bean.

You will need to deploy and redeploy various beans during the testing
process. These days, most Java EE application servers support some form of
autodeployment, which has made deployment must less of a pain than in the
past. With Glassfish and JBoss, for instance, you can drop a properly prepared

392 Chapter 13

19_785415 ch13.qxp 6/5/06 7:03 PM Page 392

.ear file into the right folder and the server will automatically deploy (or rede-
ploy) it. Still, it is best to automate the deployment process for your beans.
Pretty much all EJB servers provide command-line tools for deploying EJB.
You can use these tools in combination with Ant scripts to automate the
deployment. You can also automate redeployment (if necessary) as a two-step
process: undeploy the existing EJB and deploy the newer version again.

Use Frameworks for EJB Unit Testing
Using a framework will greatly help reduce the effort involved in unit testing.
Let us see some of the commonly used frameworks for EJB unit testing.

The JUnit Framework

A unit test framework such as JUnit will make it easier to create unit tests by
extending unit test cases from the framework base classes. JUnit also provides
the facility to create a test suite made up of tests that you want to run. Hence,
you can combine several unit tests in a test suite to enable regression testing.
Graphical test runners based on Swing are made available by JUnit. Test run-
ners are responsible for running JUnit tests and collecting, summarizing, and
formatting their results.

JUnit also integrates with Ant so that you can run various tests as part of the
build process. For this you will have to insert the <junit>Ant task in the Ant
script. The <junit> Ant task can also create a file consisting of the status of
each test. This integration with Ant is very useful because you can bundle not
just the test cases but also the configuration needed to run them as part of your
Ant scripts. Another benefit of using JUnit and Ant together is that it enables
the generation of HTML test reports by using the <junitreport> task. This
task uses XSLT technology to transform XML test results to HTML.

JUnit is a widely adopted framework with great support tools. It integrates
with IDEs such as Eclipse, Netbeans, Oracle JDeveloper, IntelliJ IDEA, Borland
JBuilder, and so on. Also, several modeling tools such as Borland TogetherJ
support the generation of test cases based on JUnit framework.

Another test framework of interest could be Apache Cactus. Cactus is an
extension of JUnit, and it specifically caters to testing enterprise Java applica-
tions. You can unit test EJB using classic JUnit framework itself; however, you
should use Cactus if your EJB clients also run in a Java EE environment, as is
the case when servlets or JSP use your beans. This is a requirement for more
than half of the EJB applications and Cactus comes in handy for testing such
applications because it unit tests these client Java EE components as well,
apart from EJB. With Cactus you get an end-to-end framework for unit testing
EJB applications with a Web front end. Cactus allows for writing three types of

EJB Best Practices 393

19_785415 ch13.qxp 6/5/06 7:03 PM Page 393

test case classes based on the ServletTestCase, JspTestCase, and
FilterTestCase classes also known as redirectors. Hence, your test case
classes will extend any one of these, depending on which client model you use,
and get a reference to your EJB, call the method on it, and assert the test results.

Like the <junit> Ant task, the <cactus> Ant task provides Cactus inte-
gration with Ant. In fact, <cactus> extends the <junit> task to enable in-
container testing. It deploys the .war/.ear file containing Cactus classes and
related deployment information into the target container, starts the container
if it is not started, and runs the Cactus tests. It supports most of the Web and
EJB containers including Apache Tomcat, JBoss, Orion, Resin, and WebLogic.
Also if your container is not supported explicitly by Cactus, then you can use
a generic Cactus container, which lets you specify Ant targets to be executed to
start up and shut down your container.

Mock Object Frameworks

Using mock objects could be another approach to unit testing EJB. A mock is a
dummy placeholder object instead of a real object that:

■■ Acts as a false implementation of an interface or a class mimicking the
external behavior of their true implementation.

■■ Observes how other objects interact with its methods and compares this
with preset expectations. If a discrepancy occurs, the mock object inter-
rupts the test and reports about it.

Expectations, a term often used in the mock object world, consists of a set of
conditions that we want our code to meet. For example, we might expect our
code to close a database connection after using it. A mock object can be told to
expect conditions such as these so that it can let us know when our expecta-
tions are not met.

You should use mock objects when unit testing complex logic that has
dependencies on other objects and you want to test the interaction among
these objects. The mock object will show you whether the tested code calls the
right methods on the mocked object with the correct parameters. There are a
number of mock object–based unit testing frameworks such as MockObjects.
There are also quite a few mock object code generation utilities such as Mock-
Maker and XDoclet (which now incorporates the original MockDoclet tem-
plates). Both these code generation tools rely on the doclet tags embedded
within the Javadocs of the class being mocked, which are referred to as target
objects. These doclet tags are read during the preprocessing in order to gen-
erate mocks. It is a good idea to use mock object code generation utilities when
the target object has a frequently changing API. Another genre of mock object
code generation consists of utilities such as EasyMock and jMock (previously
Dynamocks). Both of them use the dynamic proxy approach to generate mock

394 Chapter 13

19_785415 ch13.qxp 6/5/06 7:03 PM Page 394

objects. Hence, you can generate mock objects only for target objects that
implement interfaces using these utilities unless you apply patches to enable
mock object code generation for target objects that do not implement inter-
faces. Of all the above-mentioned tools, XDoclet and EasyMock are most up to
date. Mocking objects is a good solution to unit testing although it cannot and
should not be used for integration tests, since during integration tests you are
supposed to test your entire application end to end.

Thus, by using such frameworks developers can test their EJB code and
make design changes, if necessary, before the code moves to QA.

Implementing Client-Side Callback
Functionality in EJB

Imagine a scenario wherein an EJB has to place a callback to the client. How
would you implement this scenario? There is no provision for implementing a
client-side callback in the EJB standard. As a result, developers find them-
selves in a tough spot when faced with this requirement. The three viable
strategies for implementing client-side callbacks in EJB are presented in the
following sections. Note that all these strategies have their own pros and cons
and should be applied under specific situations.

JMS
In this strategy, the client uses JMS temporary destinations (queue or topic,
depending on your need) to receive callback notifications from EJB server
components. The reason we want to a use temporary JMS destination for each
client is that we do not want multiple clients popping messages from the same
JMS destination; we want EJB server components to have unique ReplyTo
addresses for all our clients.

Before calling a given method on EJB, the client will create a temporary JMS
destination from which it will later receive messages. The client passes the
JNDI name of the temporary JMS destination to the bean during the method
call. The client starts listening, on a separate thread, to the temporary destina-
tion that it created earlier. On the EJB side, the bean will send a JMS message
when it needs to call back the client. The client JMS listener receives the mes-
sage and notifies the application upon receipt. Finally, the client deletes the
temporary destination and closes the JMS connection.

As far as we know, this is the simplest way to achieve client-side callback
functionality in EJB today. However, creating a temporary destination for each
client does consume resources. You should do enough load testing to ensure
that this model scales up to your needs.

EJB Best Practices 395

19_785415 ch13.qxp 6/5/06 7:03 PM Page 395

Remote Method Invocation
This strategy is particularly useful with application clients. The idea here is to
create RMI remote object on the client side that implements the java.rmi
.Remote interface and registers it with the EJB. After registering this remote
object, the client can continue doing its work, until the server calls a method on
the registered RMI Remote object.

Implementing this strategy is fairly straightforward. You will need to
provide the callback object stubs to the EJB.

Web Service
This strategy is useful in order to make callbacks happen across the firewalls or
when the client is a Java EE Web application. Here, the client implements a JAX-
RPC service endpoint to which the EJB will send a SOAP message in case of a
callback. The bean will use Dynamic Invocation Interface (DII) to keep the call-
back Web service client code generic. On the client side, you can use either a
document model or RPC model for implementing such a callback Web service.

One of the major drawbacks associated with this strategy used to be the lack
of reliability. The SOAP message sent by the bean might never reach the client-
side callback Web service, because SOAP over HTTP was inherently unreli-
able. Now that OASIS has finalized the Web services Reliable Messaging
standard (http://oasis-open.org/committees/tc_home.php?wg_
abbrev=wsrm), this is a much more viable solution.

Choosing between Servlets and Stateless
Session Beans as Service Endpoints

Java EE Web services are based on three main technologies: JAX-RPC, servlet,
and stateless session beans. As you know by now, a Java EE Web service end-
point can be implemented either as a stateless session bean or as a servlet. So
then, which component model should you use for your Web services, a servlet
or stateless session bean? Here are some guidelines that should help you in
choosing between the two.

Use a servlet as Web service endpoint if:

■■ The business logic of the service is within a Web tier, because in this
case the endpoint and Web service’s business implementation will
reside in the same tier.

■■ You need a lightweight Web service container viz. servlet container.

■■ You need to execute some logic that resides on the Web tier before
invoking Web services.

396 Chapter 13

19_785415 ch13.qxp 6/5/06 7:03 PM Page 396

■■ You do not mind writing logic for synchronizing multithreaded access
to your service. This is required, since the servlet container does not
synchronize concurrent requests to the servlet instance and, hence, in
this case, to your Web service endpoint.

Use a stateless session bean as Web service endpoint if:

■■ The business logic of the service is within an EJB tier, because in this
case both the endpoint and the Web service’s business implementation
will reside in the same tier.

■■ You need the Web service implementation to avail themselves of the
transaction- and component-level security services from the container.

■■ Before invoking Web services, you need to execute some logic that
resides on the EJB tier.

■■ You want the container to take care of synchronizing concurrent access
to your service.

Considering the Use of Aspect-Oriented
Programming Techniques in EJB Projects

There has been a lot of discussion lately about using aspect-oriented program-
ming, or AOP, with EJB. Here are some of the concepts that are worth under-
standing about AOP before we continue our discussion of when you should
use AOP in EJB projects.

Aspect-Oriented Programming
AOP techniques are not new. They have been around for close to a decade; in
fact, Microsoft Transaction Server is one of the early implementations that
employed AOP techniques followed by EJB servers.

So what is AOP? Obviously, aspect forms the core of AOP. Aspects are
reusable services that are quintessentially cross-cutting services of your appli-
cation. In the context of a business application, services that provide user
authentication, user authorization, logging of access to the system, and persis-
tence of application data are examples of cross-cutting services or concerns for
a business application developer—concerns because a developer cannot write
robust applications without taking care of them. Hence, AOP can be defined as
a programming platform that facilitates the development of aspects to mitigate
concerns so that aspects can be reused by all the living objects within a given
environment. Note the emphasis placed on reuse here.

EJB Best Practices 397

19_785415 ch13.qxp 6/5/06 7:03 PM Page 397

With this in mind, come back to the EJB world and think about whether it
uses AOP techniques or not—of course, it does. All the services that our beans
get are aspects; for example, persistence, life-cycle management, transaction
management, security, and dozens of other things are concerns that we, the
business application developers, care about. EJB containers implement these
cross-cutting concerns and provide reusable aspects so that all the beans
deployed within the container can offload these concerns on the container
aspects. So yes, it is very much an aspects-oriented implementation.

However, here is the caveat: The EJB programming model does not allow
you to develop new aspects to take care of concerns that are not supported by
the EJB container, not today at least. Therefore EJB, and Java EE for that mat-
ter, is not an AOP platform even though EJB technology uses AOP techniques.

When to Use AOP in EJB Applications
In order to use AOP in EJB, you will need to use tools such as AspectJ, Spring
AOP, or tools provided by your application server. Quite a few application
server vendors such as the JBoss Group and IBM already support or have
declared the intent to support AOP in their products. The only thing you have
to be wary of when going the AOP route is that standard Java platform does
not provide inherent support in terms of APIs and compilers for AOP, and that
you are embedding AOP in your application at the risk of losing portability.

We present some of the scenarios here to consider use of AOP with EJB.

Support Custom Concerns

The EJB container does provide implementation of some of the very common
infrastructure areas such as transaction management, security, persistence,
and so on. However, EJB designers have kept the implementation of these
aspects transparent to the EJB developers. This means that developers cannot
customize the behavior of aspects beyond what annotations and deployment
descriptor configuration parameters allow nor can they create new aspects
using EJB programming model. As a result, if you want to support a concern
that is cutting across your application components but is not provided by the
EJB container, then you need more than EJB can provide, and you should use
AOP for developing aspects to address your concerns.

Are Interceptors AOP?

The short answer to the question “Are interceptors AOP?” is that the new sup-
port for interceptors in EJB 3.0 is AOP-like. It does work in a cross-cutting way
in that the interceptor will be automatically executed whenever a business
method is called. However, with AOP the code that might trigger an aspect to
execute is generally not aware of the aspect. With EJB, the bean must “know”

398 Chapter 13

19_785415 ch13.qxp 6/5/06 7:03 PM Page 398

its interceptors by using the @Interceptor or @Interceptors annotations.
Since the interceptor method can be defined within the bean class, this makes
the bean class itself the “aspect,” which is also antithetical to AOP.

Supply Aspects to the World Outside the EJB Container

Almost all of us have worked in EJB projects where we had to use POJOs in
order to get around constraints imposed by the EJB standard—for example, to
do things like access file systems or read/write static fields. We might also end
up reusing these POJOs outside the EJB container, for example, in a Web appli-
cation or a Swing application. In this scenario, it might be better to write
reusable aspects to address concerns relevant to your POJOs. For example,
consider a POJO that reads and writes to a file. Here, you might need to log the
timestamp of the last updating of the file. In which case, you would create an
aspect to address the logging concern. This way you can use the Logging
aspect no matter whether your POJO is being used within an EJB container or
within a Web container or in a vanilla Java Swing application.

NOTE A word of caution: Do not use aspects for the sake of it. Especially, do
not replace EJB services with your aspects, unless you are sure of what you are
doing. After all, EJB vendors have prewritten these aspects to keep you out of
implementing them mainly because implementing them is a humongous task.
And finally, do not think that AOP is going to replace OOP (object-oriented
programming)!

EJB Best Practices 399

IS AOP DIFFERENT THAN OOP?

We see this question many times and the simple answer to it is—yes. One of
the common traits of both OOP and AOP platforms is their support for
reusability. However, OOP instills reusability via inheritance. This means that in
order to reuse the behavior encapsulated in an object, say A, some object B will
have to inherit A. Inheritance is the key word here. B is able to reuse A’s
behavior only if it expects to build a longlasting relationship with A, such as a
parent-child relationship. This works well if B does not mind A’s sub-imposed
behavior as a side effect of reuse and direct effect of inheritance.

However, OOP does not work when behavior needs to be reused
horizontally, owing to the behavior’s cross-cutting nature. Now why would you
need to reuse behavior horizontally? Because you do not want your business
object, for example a ShoppingCart, to inherit the behavior pertaining to
transactions, since these behaviors are unrelated; you do not want an apple to
inherit grape-like qualities; rather you want to mix apples and grapes to
prepare a margarita. This is where AOP comes into picture.

AOP and OOP are not competing but complementary technologies. Consider,
for example, an EJB server where cross-cutting aspects are provided to your
object-oriented beans. In conclusion, OOP and AOP coexist.

19_785415 ch13.qxp 6/5/06 7:03 PM Page 399

Reflection, Dynamic Proxy, and EJB

When you call an EJB, you write code that essentially takes the binding infor-
mation of the EJB object in JNDI or obtains a reference to an EJBObject via
injection, and invokes methods on an EJB object. This style of invocation is
usually referred to as static invocation, where the information about the inter-
face and methods to invoke on its object are known at the compile time.
Although there are advantages to other styles of invocation models, such as
dynamic proxy and dynamic invocation interface (DII), EJB programming
APIs support only static invocation.

In the dynamic proxy approach, a proxy class implements a list of interfaces
specified by the client at runtime. Hence, this approach provides a type-safe
invocation on interfaces wherein proxy is generated dynamically during run-
time rather than at compile time. Any method invocation on an instance of a
dynamic proxy object, for example, the java.lang.reflect.Proxy object,
is dispatched to a single method, invoke(), in the instance’s invocation han-
dler object; invoke() accepts method information via the java.lang
.reflect.Method object as well as method arguments via an object array.
Dynamic proxy invocation is slightly different from reflective invocation in
that the former provides a generic API for implementing methods of a class
manufactured at runtime, whereas the latter provides a generic API for
dynamic invocation of already implemented methods. Combining dynamic
proxies with reflective invocation leads to a powerful generic object that is
capable of intercepting methods from the clients on any server object.

Hence, you may want to use dynamic proxies for EJB method invocation in
order to:

■■ Dynamically invoke methods on EJB in scenarios where the client does
not have a priori knowledge of interfaces implemented by EJB.

■■ Write interceptors that can provide additional services during invoca-
tion such as security services, logging services, and so on.

Before making a decision to invoke your EJB using dynamic proxies, always
remember that reflective invocation is slower than direct method invocation
even with all the reflection-oriented performance enhancements in JDK 1.5.
Besides this, debugging dynamic proxy stack trace is generally trickier than
static invocation stack.

Deploying EJB Applications to Various Application
Servers

Deploying EJB applications can be trickier than you think, especially when you
are trying to package EJB applications to be deployed on multiple application

400 Chapter 13

19_785415 ch13.qxp 6/5/06 7:03 PM Page 400

servers. Multiple application server deployment is a common requirement for
commercial applications written using the EJB framework. In spite of the stan-
dardization of most of the EJB application metadata in the form of deployment
descriptors or annotations, a lot of deployment information still remains in
application server specific deployment descriptors. A good example of this is
the security role mapping information used to map roles defined in EJBs to
actual roles in the application server. This information is normally kept in a
deployment descriptor specific to the target application server.

Thus, in situations where you are required to automate deployment of your
EJB applications on multiple application servers, an obvious choice is to use
the open source XDoclet framework. XDoclet is a powerful, attribute-oriented,
open source code generation engine. Using XDoclet, a developer can generate
practically anything—XML descriptors, such as deployment descriptors,
source code and so on—by inserting attributes (metadata) within the JavaDoc
for their source. For instance, while generating code for EJB, it can generate
code for value classes, primary key classes, and a struts action form based on
entities. Finally, when the XDoclet engine parses the source file, it generates
the code necessary for supporting the semantics of attributes. Note that apart
from generating code for standard frameworks such as EJB, Servlet, JDO, and
others, XDoclet is also capable of generating code for nonstandard but popu-
lar frameworks such as Hibernate, Castor, and Struts.

XDoclet can generate server-specific deployment descriptors, apart from
standard deployment descriptors, for all major application servers, including
JBoss, IBM WebSphere, BEA WebLogic, Sun Java System Application Server
(Glassfish), Pramati, and so on, with the help of their respective attributes.
Also, integration of XDoclet with Ant through ejbdoclet tasks makes it an
even more powerful framework for deployments.

EJB Best Practices 401

ATTRIBUTE-ORIENTED PROGRAMMING

Attribute-oriented programming is a technique that revolves around the notion
of using attributes a.k.a. metadata a.k.a. annotations within the source to
instruct the underlying framework to perform a certain action upon
encountering an attribute while parsing the source. This “action” might be
about generating programming artifacts—for example, skeleton code for EJB
bean classes—or might be about providing cross-cutting functionality—for
example, security or logging—at a certain juncture in the source.

With the final release of JSR 175, which provides a metadata facility for the
Java language, XDoclet has been relegated to the task of generating server
specific deployment descriptors and other types of meta-information not
addressed by annotations. XDoclet is not generally needed to generate Java
code anymore.

19_785415 ch13.qxp 6/5/06 7:03 PM Page 401

Debugging EJB

As EJB technology is evolving quickly, the containers are evolving as well. The
containers or their tools often have small oddities. In addition, users may
introduce bugs that are difficult to debug. How do you debug with EJB?

Unfortunately, true debugging is a problem with EJB. Because your beans
run under the hood of a container, you’d have to load the container itself into
a debugger. But for some containers, this is impossible because you don’t have
access to the container’s source code or the source code has been obfuscated.
For these situations, you may need to use the tried-and-true debugging
method of logging.

An even more serious debugging problem occurs if exceptions are being
thrown from the EJB container rather than from your beans. This can happen
for a number of reasons:

■■ Your EJB container’s generated classes are incorrect, because your
interfaces, classes, or deployment descriptor haven’t fully complied
with the EJB specification. Your EJB container’s tools should ship with

402 Chapter 13

THE JAVA EE DEPLOYMENT API

The Java EE Deployment API (JSR-88) aims to address the problem of Java EE
application deployment on multiple Java EE application servers rather
interestingly. It defines an API, and the deployment of the API, which should be
implemented by all application servers so that tools can use this API to send
Java EE application deployment and undeployment requests to the application
server. The Deployment API standard is part of Java EE 5 platform. Therefore, all
Java EE 5 application servers will have to implement such a Deployment
service.

This facility provides the utmost benefit to tools vendors. Tool vendors will
not have to write proprietary plug-ins for automating deployment tasks for
application servers they support. This will increase productivity and lessen
product development cost for tools vendors. It benefits the application
developers as well. They no longer have to worry about their IDE’s integration
with their application server. They can take it for granted.

So then, does the Java EE Deployment API eliminate the need for XDoclet-
like frameworks? Not, exactly. If you are in the business of selling packaged
applications, your setup application has to be able to deploy Java EE
components to the customer’s application server naturally without using tools.
In this case you have two options: either build your own client that uses Java
EE deployment service of your customer’s application server or simply use
XDoclet. Obviously, using XDoclet and the like in such scenarios will provide an
easier solution for automated deployment than using the Java EE Deployment
API will, simply because the former comes in ready to go, whereas you will
have to write a client for the latter.

19_785415 ch13.qxp 6/5/06 7:03 PM Page 402

compliance checkers to help resolve this. But know that not everything
can be checked. Often because of user error, your deployment descrip-
tor will not match your interfaces. This type of problem is extremely
difficult to target, especially if your container tools crash!

■■ Your EJB container has a real bug. This is a definite possibility that you
must be prepared to encounter. In the future, however, this should not
happen very often because EJB containers that comply with Java EE
must test their implementations against the Sun Microsystems Java EE
Compatibility Toolkit (Java EE TCK).

■■ A user error occurs within the EJB container. Probably the most frustrat-
ing part of an application is doing the database work. Punctuation errors
or misspellings are tough to debug when performing EJB QL. This is
because your JDBC queries are not compiled—they are interpreted at
runtime, so you don’t get the nifty things like type checking that the Java
language gives you. You are basically at the mercy of the EJB QL engine
(and the underlying JDBC driver). It may or may not give you useful
error description. For example, let’s say that you’re modeling a product,
and you use the word desc rather than description to describe your prod-
ucts. Unfortunately, the keyword desc is a SQL reserved keyword. This
means that your JDBC driver will throw an exception when trying to exe-
cute any database updates that involved the word desc. These excep-
tions might be cryptic at best, depending on your JDBC driver. And
when you try to figure out why JDBC code is acting up, you will run into
a roadblock: The JDBC code won’t be available because your bean does
not perform its own data access! What do you do in this situation?

When you’re faced with grim situations like these, contacting your EJB ven-
dor is probably not going to be very helpful. If you are operating with a dead-
line, it may be too late by the time your vendor comes up with a solution. If
you could only somehow get access to the JDBC code, you could try the query
yourself using the database’s tools.

You can try several options here:

■■ Some EJB containers support IDE debugging environments, allowing
you to step through your code in real time to pinpoint problems. This is
something you should look for when choosing a container.

■■ Check your database’s log file to view a snapshot of what is really
happening.

■■ Your EJB container tools may have an option to keep generated Java
files, rather than to delete them when compiling them into classes. For
example, you can do this with BEA WebLogic with the keepgenerated
option to its EJB compiler tool. This is analogous to the way you can use
the keepgenerated option to keep generated proxies with Java RMI’s
rmic compiler.

EJB Best Practices 403

19_785415 ch13.qxp 6/5/06 7:03 PM Page 403

■■ As a last resort, you may have to decompile the offending classes to see
what’s going on. A good decompiler is Jad by Pavel Kouznetsov (see the
book’s accompanying Web site wiley.com/compbooks for a link). Of
course, decompiling may be illegal, depending on your container’s
licensing agreement.

The ability to debug EJBs has advanced greatly with EJB 3.0. EJBs can now
be tested out of container in standard ways, such as by using JUnit. This will
still require some care in that you have to handle injected resources. This can
be accomplished with an out-of-container persistence manager or through the
use of mock objects.

Most application servers that support EJB 3.0 will also have a debugging
service that will allow you to connect on a port remotely for the purposes of
debugging. Within your IDE, you will be able to set breakpoints in your bean
implementation code and, once connected to the remote debugging service,
processing will stop at these breakpoints. This can come in very handy for
debugging a server instance running on your development machine or even
for debugging a remote machine to which your EJBs have been deployed.

Inheritance and Code Reuse in EJB

Our next best practice addresses the challenge of developing reusable compo-
nents. This may be important, for example, if you’re developing beans to be
reused by other business units within your organization or if you are shipping
a product assembled as EJB components and your customers want to cus-
tomize your product. There can be many such situations.

First, let’s do a reality check—don’t believe anyone who tells you that enter-
prise beans are reusable by definition because that is not true, at least not today.
You need to design your beans correctly if you want them to be reusable. You
need to consider the different applications, domains, and users of your enter-
prise beans, and you need to develop your beans with as much flexibility as
possible. Developing a truly reusable set of beans will likely require many iter-
ations of feedback from customers using your beans in real-world situations.

Roughly speaking, bean reusability can be at three different levels:

■■ Reuse as given. The application assembler uses the acquired bean as is
to build an application. The bean functionality cannot be tailored to fit
the application. Most projects will have a difficult time reusing these
components because of their inflexibility.

■■ Reuse by customization. The application assembler configures the
acquired bean by modifying the bean properties to fit the specific needs
of the application. Bean customization typically occurs at deployment
time. To allow for a more flexible maintenance environment, some bean
providers allow runtime bean customization.

404 Chapter 13

19_785415 ch13.qxp 6/5/06 7:03 PM Page 404

■■ Reuse by extension (subclass). This is the kind of reuse that is not pos-
sible, not in a straightforward way, in EJB simply because EJB does not
support component-level inheritance. By component-level inheritance,
we mean extending EJB component A to enable its reuse by another EJB
component B. This level of reusability is generally more powerful but
not available in EJB. Hence, you will have to use a technique to enable
reuse by extension of EJB components—put all the bean logic in a POJO
and make your bean class inherit this POJO. The ability for a bean to
implement more than one business interface does improve the flexibil-
ity for reuse of the bean. For instance, you may have a bean that has
some methods that should only be used in by a particular role and oth-
ers that could be used by everyone. Aside from the security you can
place on the bean, described in Chapter 11, you might have multiple
interfaces defined. One interface would have the methods that would
be used only by the particular role, while the other interface would
include those methods intended for use by everyone. Clients could then
perform a lookup or use injection (if running within an application
client container) on one or both of the interfaces, depending on its
intended use. In the case of entities, this issue has been specifically
addressed in EJB 3.0. Inheritance (and the various approaches to inheri-
tance) is explained in detail in Chapter 9.

The more reusability levels that a bean can provide, the more useful a bean
becomes. By leveraging prebuilt beans, organizations can potentially lessen
the development time of building enterprise applications.

Many organizations have tried—and failed—to truly reuse components.
Because of this, it is a perfectly valid strategy to not attempt true reuse at all.
Rather, you can shoot for a copy-and-paste reuse strategy, which means to make
the source code for components available in a registry to other team members
or other teams. They can take your components’ code and change it as neces-
sary to fit their business problem. While this may not be true reuse, it still
offers some benefits.

Writing Singletons in EJB

A singleton is a very useful design pattern in software engineering. In a
nutshell, a singleton is a single instantiation of a class with one global point
of access. You would normally create a singleton in Java by using the static
keyword when defining a class. However, one restriction of EJB is that you
cannot use static fields in your beans. This precludes the use of the singleton
design pattern. But if you still have to use a singleton, then here are a couple of
strategies:

EJB Best Practices 405

19_785415 ch13.qxp 6/5/06 7:03 PM Page 405

■■ Limit the pool size. If your EJB product lets you finely tune the EJB bean
instance pool, then you can limit the size of the bean instances to 1, by
setting both the initial and maximum size to 1. This is not truly a single-
ton, although it simulates singleton behavior, because although the con-
tainer guarantees that at any given point in time there will only be one
instance of bean in the pool, it does not guarantee that it will always be
the same bean instance in the pool. The container might destroy the
bean instance if it remains inactive for a certain period of time.

■■ Use RMI-IIOP and JNDI. You can use JNDI to store arbitrary objects to
simulate the singleton pattern. If all your objects know of a single, well-
known place in a JNDI tree where a particular object is stored, they can
effectively treat the object as a single instance. You can perform this by
binding an RMI-IIOP stub to a JNDI tree. Any client code that accessed
the JNDI tree would get a copy of that remote stub, and each copy
would point back to the same RMI-IIOP server object. The downside to
this pattern is you are leaving the EJB sandbox and downgrading to
vanilla RMI-IIOP, and thus you lose all the services provided by EJB.

When to Use XML with EJB

XML has become the de facto standard in a number of arenas, including
descriptors and for protocol communication between potentially disparate
platforms. We should discuss the appropriateness of XML in an EJB deploy-
ment. XML is useful in the following scenarios:

■■ For data-driven integration. If you have a large number of legacy sys-
tems, or even if you have one big hairy legacy system, you’ll need a
way to view the data that you send and receive from the legacy system.
XML can help you here. Rather than sending and receiving data in pro-
prietary structures that the legacy system might understand, you can
invent an XML façade to the legacy systems. The façade takes XML
input from your EJB components and maps that XML to the proprietary
structures that the legacy system supports. When the legacy system
returns data to your EJB application, the XML façade transforms the
legacy data into XML data that your EJB application can understand.

■■ As a document persistence mechanism. If you are persisting large doc-
uments (news reports, articles, books, and so on), representing those
documents using XML may be appropriate. This will help to translate
the XML documents into various markups supported by client devices.

■■ As a Web service interface. As described in Chapter 5, EJB components
can also be accessed as a Web service, in which case XML becomes the
on-the-wire data format sent between Web services.

406 Chapter 13

19_785415 ch13.qxp 6/5/06 7:03 PM Page 406

The one important scenario that XML is not useful for is as an on-the-wire
format for communication between EJB components.

The idea is that rather than application components sending proprietary
data to each other, components could interoperate by passing XML documents
as parameters. Because the data is formatted in XML, each component could
inspect the XML document to determine what data it received.

Although several Java EE-based workflow solutions use this approach,
XML is often inappropriate for EJB-EJB communications because of perfor-
mance issues. It makes less sense now to use XML for this type of communica-
tion, since you can use resource injection and let the container handle giving
you a reference to another EJB. Parsing XML documents takes time, and send-
ing XML documents over the wire takes even longer. For high-performance
enterprise applications, using XML at runtime for routine operations is costly.
The performance barrier is slowly becoming less important, however, as XML
parsers become higher performing and as people begin to use several tech-
niques, such as XML compression, before sending XML documents over the
wire. However, it still remains the bottleneck in many systems.

Another important reason not to use XML is because it’s often simply not
needed. Assuming that a single organization writes all your EJB applications,
there is less need for data mapping between these various systems, since you
control the object model.

When to Use Messaging versus RMI-IIOP

Another hot topic when designing an EJB object model is choosing when (and
when not) to use messaging, rather than RMI-IIOP.

The following advantages of messaging provide reasons why you might
want to use it:

■■ Database performance. If you are going to perform relational database
work, such as persisting an order to a database, it may be advantageous
to use messaging. Sending a message to a secondary message queue to
be processed later relieves stress on your primary database during peak
hours. In the wee hours of the morning, when site traffic is low, you can
process messages off the message queue and insert the orders into the
database. Note that this works only if the user doesn’t need immediate
confirmation that his operation was a success. It would not work, for
example, when checking the validity of a credit card.

■■ Quick responses. A client may not want to block and wait for a
response that it knows does not exist. For methods that return void, the
only possible return values are nothing or an exception. If a client never
expects to receive an exception, why should it block for a response?
Messaging allows clients to process other items when they would oth-
erwise be blocking for the method to return.

EJB Best Practices 407

19_785415 ch13.qxp 6/5/06 7:03 PM Page 407

■■ Smoother load balancing. In Chapter 7, we discuss how message-
driven beans distribute loads more smoothly than session or entity beans
do. With session and entity beans, a load-balancing algorithm makes an
educated guess about which server is the least burdened. With messag-
ing, the server that is the least burdened will ask for a message and get
the message for processing. This also aids in upgrading your systems in
terms of capacity because all you need to do is detect when your queue
size reaches a threshold. When the queue size reaches threshold value,
it indicates that the number of consumers is not enough to meet the
messaging load and that you need to add new machines.

■■ Request prioritization. Asynchronous servers can queue, prioritize,
and process messages in a different order than that in which they arrive
into the system. Some messaging systems allow message queues to be
prioritized to order messages based upon business rules. For example,
in a military battle tank, if all requests for the system sent to a central-
ized dispatch queue are made asynchronously, disaster could result if a
fire control message was queued up behind 100 communication mes-
sages that had to be processed first. In a military system, it would be
advantageous to process any fire control and safety messages before
communication messages. A prioritized queue would allow for the
reordering of messages on the queue to account for the urgency of fire
control in a battle tank.

■■ Rapid integration of disparate systems. Many legacy systems are
based on message-oriented middleware and can easily interact with
your Java EE system through messaging. Messaging provides a rapid
development environment for systems that have distributed nodes that
perform business processing and must communicate with one another.

■■ Loosely coupled systems. Messaging enables loose coupling between
applications. Applications do not need to know about each other at
compile time. This empowers you to have dynamic consumption of
applications and services, which may be useful in a rapidly changing,
service-oriented business environment.

■■ Geographically disperse systems. Messaging is very useful when you
have applications communicating over the Internet or a wide area net-
work. The network is slow and unreliable, and RMI-IIOP is not intended
for such broad-range communications. Messaging along with guaran-
teed message delivery adds an element of safety to your transactions.

■■ Parallel processing. Messaging is a way to perform pseudo-threading
in an EJB deployment. You can launch a series of messages and con-
tinue processing, which is the distributed equivalent of launching
threads.

408 Chapter 13

19_785415 ch13.qxp 6/5/06 7:03 PM Page 408

■■ Reliability. Messaging can be used even if a server is down. System-level
problems (such as a database crashes) typically do not affect the success
of the operation, because when you’re using guaranteed message delivery
the message remains on the queue until the system-level problem is
resolved. Even if the message queue fails, message producers can spool
messages and send them when the queue comes back up (called store and
forward). If you combine guaranteed message delivery with store-and-
forward methodology, the system will not lose any requests unless a
complete system failure happens at all tiers (extremely unlikely).

■■ Many-to-many communications. If you have several parties communi-
cating together, messaging is appropriate since it enables many produc-
ers and many consumers to collaborate, whereas RMI-IIOP is a
single-source, single-sink request model.

The following are scenarios in which you might not want to use messaging:

■■ When you’re not sure if the operation will succeed. RMI-IIOP systems
can throw exceptions, whereas message-driven beans cannot.

■■ When you need a return result. RMI-IIOP systems can return a result
immediately because the request is executed immediately. Not so for
messaging. You can return results eventually with messaging, but it’s
clunky—you need to send a separate return message and have the orig-
inal client listen for it.

■■ When you need an operation to be part of a larger transaction. When
you put a message onto a destination, the receiving message-driven
bean does not act upon that message until a future transaction. This is
inappropriate when you need the operation to be part of a single,
atomic transaction that involves other operations. For example, if
you’re performing a bank account transfer, it would be a bad idea to
deposit money into one bank account using RMI-IIOP and then with-
draw money using messaging, because the deposit and withdrawal
operations will not occur as part of a single transaction, and hence, the
failure in the latter will not roll back the former.

■■ When you need to propagate the client’s security identity to the
server. Since messaging does not propagate the client’s security identity
to the receiving message-driven bean, you cannot easily secure your
business operations.

■■ When you are concerned about request performance. Messaging is
inherently slower than RMI-IIOP because there’s a middleman (the JMS
destination) sitting between the sender and the receiver.

EJB Best Practices 409

19_785415 ch13.qxp 6/5/06 7:03 PM Page 409

■■ When you want a strongly typed, OO system. You send messages
using a messaging API such as JMS. This is a flat API and is not object-
oriented. If you want to perform different operations, the server needs
to crack open the message or filter it somehow. In comparison, RMI-
IIOP allows you to call different business methods, depending on the
business operation you want to perform. This is much more intuitive.
It’s also easier to perform compile-time semantic checking.

■■ When you want a tighter, more straightforward system. Synchronous
development tends to be more straightforward than messaging is. You
have great freedom when sending data types, and the amount of code
you need to write is minimal compared to messaging. Debugging is
also much more straightforward. When using services that are com-
pletely synchronous, each client thread of control has a single execution
path that can be traced from the client to the server, and vice versa. The
effort to trace any bugs in the system is thus minimal.

Summary

We covered so many best practices in this chapter—and we aren’t even half-
done with best practices yet! We will talk about performance-related best prac-
tices and tuning tips in Chapter 14. Also, we have woven the discussion of best
practices related to integration to and from the EJB world in Chapter 15. So
there is a lot more to come.

410 Chapter 13

19_785415 ch13.qxp 6/5/06 7:03 PM Page 410

411

In this chapter, we will discuss EJB best practices—tried-and-true approaches
relevant to EJB performance optimization. By being aware of these best prac-
tices, you will be able to architect for good performance right from the begin-
ning so that you will not be required to retrofit your design and code to
achieve the performance numbers during load/performance testing.

Let’s begin now with our collection of best practices, optimizations, tips,
and techniques for performance.

NOTE This chapter does not cover low-level EJB design patterns. We started
to put those together but realized that those patterns deserved a book of their
own. That’s what gave birth to Floyd Marinescu’s book EJB Design Patterns,
published by John Wiley & Sons and a companion to this book.

It Pays to Be Proactive!

The most important requirement for building highly optimized applications is
to specify clearly performance requirements right in the design stages. Defin-
ing performance requirements basically means outlining your performance
needs from various points of views: determining user experience under vary-
ing loads, the percentage of the system resources used, the allocation of system

EJB Performance Optimizations

C H A P T E R

14

20_785415 ch14.qxp 6/5/06 7:03 PM Page 411

resources to achieve the desired performance, and so on. Many times we see
these requirements defined after the system is developed and is about to be
deployed—most often, on the night of load testing. QA calls the development
manager to discuss a JVM “out-of-memory” error with a concurrent load of 20
users! And more often than not, the crash takes place because some developer
forgot to release a Java container object, such as a collection, containing hun-
dreds of instances of data transfer objects returned from a stateful session
bean, after displaying its contents to the client.

To avoid this nightmare, we suggest the following:

■■ Be proactive in defining your performance expectations. This is the
only way you will know what you want from your application and,
hence, how you should plan, design, and develop your application
right from the start.

■■ Design applications with performance in mind. The most effective
way to do this is by making use of the right architecture and design pat-
terns, which are not anti-performance. Hire architects with sound
knowledge of these patterns and their implications on performance
(and simplicity and code maintenance). If you do not have this exper-
tise in-house then hire competent consultants for architecting and
designing your applications. The investment required to put in place a
performance-friendly skeleton of your application at the architecture
level would pay you back later.

■■ Be proactive in educating your developers to write optimized code.
Even though you might have the best software architects or consultants
in the world to design your application, if the developers implementing
the design do not understand how to write optimized code, the cost you
incurred in hiring these architects will be in vain. Therefore, we suggest
conducting regular code reviews and finding coding bottlenecks.

■■ Master the science of tuning. The first step toward mastering tuning is
to understand that tuning can and should be done at multiple levels to
achieve the highest levels of performance. In a typical Java EE enter-
prise application, you can ideally tune all the layers right from the net-
work communications and operating system level to JVM to Java EE
application server to your application code to your database to your
cluster. Thus, the scope for tuning is much wider. If your performance
requirements are extremely stringent, we suggest that you tune all the
layers of this stack. For most of the business applications, however, we
have observed that tuning Java EE application server (both Web/EJB
containers), the JVM used by the application server and Java applica-
tion (in case of a Swing client), and the database is sufficient for a tun-
ing exercise. You can actually define a tuning methodology so that
everyone becomes aware of all the steps involved in tuning all new
development your organization.

412 Chapter 14

20_785415 ch14.qxp 6/5/06 7:03 PM Page 412

With this in mind, let us see which best practices and optimizations lead us
toward better EJB performance.

The Stateful versus Stateless Debate from a
Performance Point of View

There’s been a lot of fuss over statelessness. The limitations of statelessness are
often exaggerated, as are its benefits. Many statelessness proponents blindly
declare that statelessness leads to increased scalability, while stateful backers
argue about having to rearchitect entire systems to accommodate stateless-
ness. What’s the real story?

Designed right, statelessness has two virtues:

■■ With stateless beans, the EJB container is able to easily pool and reuse
beans, allowing a few beans to service many clients. While the same
paradigm applies to stateful beans, if the server is out of memory or has
reached its bean instance limit, then the bean state may be passivated
and activated between method calls, possibly resulting in I/O bottle-
necks. So one practical virtue of statelessness is the ability to easily pool
and reuse components with little or no overhead.

■■ Because a stateful session bean caches a client conversation in memory,
a bean failure may entail losing your conversation. This can have severe
repercussions if you don’t write your beans with this in mind or if you
don’t use an EJB container that provides stateful recovery. In a stateless
model, the request could be transparently rerouted to a different com-
ponent because any component can service the client’s needs.

The largest drawback to statelessness is that you need to push client-specific
data into the stateless bean for each method invocation. Most stateless session
beans need to receive some information that is specific to a certain client, such
as a bank account number for a banking bean. This information must be resup-
plied to stateless beans each time a client request arrives because the bean can-
not hold any state on behalf of a particular client.

One way to supply the bean with client-specific data is to pass the data as
parameters into the bean’s methods. This can lead to performance degrada-
tion, however, especially if the data being passed is large. This also clogs the
network, reducing available bandwidth for other processes.

Another way to get client-specific data to a stateless bean is for the bean to
store data persistently on behalf of a client. The client then does not need to
pass the entire state in a method invocation but simply needs to supply an
identifier to retrieve the data from persistent storage. Using stateless beans in
conjunction with entities can achieve this: The entity would contain the infor-
mation about client state. In prior versions of EJB, this approach had its own
performance issues because of the general performance of entity beans. Much

EJB Performance Optimizations 413

20_785415 ch14.qxp 6/5/06 7:03 PM Page 413

of the performance concerns around entity beans have been alleviated with
EJB 3.0 persistence and entities. Early EJB 3.0 performance experiments
showed that the performance using the session façade (stateless session bean
acting as a façade to interact with an entity) was nearly double that of EJB 2.1.
We’ll cover this in more detail in the session façade section below. The trade-
off here is, again, performance; storing conversations persistently could lead to
storage I/O bottlenecks, rather than network I/O bottlenecks.

Yet another way to work around the limitations of statelessness is for a bean
to store client-specific data in a directory structure using JNDI. The client could
later pass the bean an identifier for locating the data in the directory structure.
This is quite similar to storing data in a database. The big difference is that
a JNDI implementation could be an in-memory implementation such as the
one from the SourceForge.net Tyrex project http://sourceforge.net/
projects/tyrex—an effect similar to a shared property manager, familiar to
COM+ readers. If client data is stored in memory, there is no database hit.

When choosing between the stateful and stateless approaches, you should
ask if the business process spans multiple invocations, requiring a conversa-
tion. Since most business processes are stateful anyway, you quite probably
need to retain state on behalf of clients. So the guideline to follow is if you are
short of resources on the server, choose stateless session beans and maintain
the conversation in a database or an in-memory directory. If you have enough
resources on the server system so that you do not need to passivate or activate
the stateful bean instances frequently under average to high loads, then go for
stateful session beans.

Note that if you are going to maintain state, and if you’re building a Web-
based system, you may be able to achieve what you need with a servlet’s
HttpSession object, which is the Web server equivalent to a stateful session
bean and is easier to work with because it does not require custom coding. We
have found that a stateful session bean should be used rather than an
HttpSession object in the following situations:

■■ You need a stateful object that’s transactionally aware. Your session
bean can achieve this by implementing SessionSynchronization,
described in Chapter 10.

■■ You have both Web-based and non-Web-based clients accessing your
EJB layer, and both need state.

■■ You are using a stateful session bean to temporarily store state for a
business process that occurs within a single HTTP request and involves
multiple beans. To understand this point, consider that you are going
through a big chain of beans, and a bean deep in the chain needs to
access state. You could marshal the state in the parameter list of each
bean method (ugly and could be a performance problem if you’re using
remote interfaces). The better solution is to use a stateful session bean
and just pass the object reference through the stack of bean calls.

414 Chapter 14

20_785415 ch14.qxp 6/5/06 7:03 PM Page 414

In summary, most sophisticated deployments are likely to have a complex
and interesting combination of the stateless and stateful paradigm. Use the
paradigm that’s most appropriate for your business problem. If you are on the
fence about stateful versus stateless, you may find that stateful session beans
are not your primary issue—until you test your code, you’re just shooting in
the dark. It would help to do a proof of concept for stateful session beans.
However, shooting down stateful session beans blindly is not advisable. Don’t
forget that they exist for a good reason—to take the load of managing client-
related state off your shoulders and thereby make your life easier.

How to Guarantee a Response Time with
Capacity Planning

Many types of business problems are trivial, such as basic Web sites or non-
mission-critical applications. But then there are those that must not fail and
must guarantee a certain response time. For example, a trading application
needs to guarantee a response time because stock market conditions might
change if the trade is delayed. For those serious deployments, capacity plan-
ning is essential for your deployment.

EJB Performance Optimizations 415

WHAT IF MY STATEFUL BEAN DIES?

Bean failure is an important factor to consider. Because a stateful session bean
caches a client conversation in memory, a bean failure may entail losing your
conversation. This was not a problem with statelessness—there was no
conversation to be lost. Unless you are using an EJB product that routinely
checkpoints (that is, persists) your conversations, your conversations will be
lost if an application server fails.

Losing a conversation can have a devastating impact. If you have large
conversations that span time, you’ve lost important work. And the more
stateful session beans that you use in tandem, the larger the existing network
of interconnected objects that each rely on the other’s stability. Many EJB
servers today do offer stateful recovery of Enterprise Java Beans. However, if
yours does not then your code will need to be able to handle the failover
gracefully. Here are some of the guidelines you can use while designing your
stateful beans to enable them to handle stateful recovery:

◆ Keep your conversations short.

◆ If the performance is feasible, consider checkpointing stateful conversa-
tions yourself to minimize the impacts of bean failure (such as by using
entities).

◆ Write smart client code that anticipates a bean failure and reestablishes
the conversational state with a fresh stateful session bean.

20_785415 ch14.qxp 6/5/06 7:03 PM Page 415

The specific amount of hardware that you’ll need for your deployment
varies greatly depending on the profile of your application, your anticipated
user load, your performance requirements, and the EJB server you choose.
Most of the major EJB server vendors have strategies for capacity planning
that they can share with you.

One strategy, however, works with all EJB server vendors. The idea is to
throttle, or limit, the amount of work any given EJB server instance can process
at any one time. Why would you ever want to limit the amount of work a
machine can handle? A machine can only guarantee a response time for the
clients it serves and be reliable if it isn’t using up every last bit of system
resources it has at its disposal. For example, if your EJB server runs out of
memory, it either starts swapping your beans out to disk because of passiva-
tion/activation or it uses virtual memory and uses the hard disk as swap
space. Either way, the response time and reliability of your box is jeopardized.
You want to prevent this from happening at all costs by limiting the amount of
traffic your server can handle at once.

You can throttle (or limit) the amount of traffic your machine can handle
using a variety of means. One is by limiting the thread pool of your EJB server.
By setting an upper bound on the number of threads that can execute concur-
rently, you effectively limit the number of users that can be processed at any
given time. Another possibility is to limit the bean instance pool. This lets you
control how many EJB components can be instantiated at once, which is great
for allowing more requests to execute with lightweight beans and fewer
requests to execute with heavyweight beans.

Once you’ve throttled your machine and tested it to make sure it’s throttled
correctly, you need to devise a strategy to add more machines to the deployment
in case your clusterwide capacity limit is reached. An easy way to do this is to
have a standby machine that is unused under normal circumstances. When you
detect that the limit is reached (such as by observing message queue growth,
indicating that your servers cannot consume items off the request queue fast
enough), the standby machine kicks in and takes over the excess load. A system
administrator can then be paged to purchase a new standby machine.

This algorithm guarantees a response time because each individual server
cannot exceed its limit, and there’s always an extra box waiting if traffic
increases.

Use Session Façade for Better Performance

Consider the following scenarios:

■■ A bank teller component performs the business process of banking
operations, but the data used by the teller is the bank account data.

416 Chapter 14

20_785415 ch14.qxp 6/5/06 7:03 PM Page 416

■■ An order entry component performs the business process of submitting
new orders for products, such as submitting an order for a new com-
puter to be delivered to a customer. But the data generated by the order
entry component is the order itself, which contains a number of order
line items describing each part ordered.

■■ A stock portfolio manager component performs the business process of
updating a stock portfolio, such as buying and selling shares of stock.
But the data manipulated by the portfolio manager is the portfolio itself,
which might contain other data such as account and stock information.

In each of these scenarios, business process components are manipulating
data in some underlying data storage, such as a relational database. The busi-
ness process components map very well to session beans, and the data com-
ponents map very well to entities. The session beans use entities to represent
their data, similarly to the way a bank teller uses a bank account. Thus, a great
EJB design strategy is to wrap entities with session beans. This design pattern
is generally referred to as session façade.

Another benefit of this approach is performance. In prior versions of EJB,
accessing an entity bean directly over the network was expensive, due to:

■■ The stub

■■ The skeleton

■■ Marshaling/demarshaling

■■ The network call

■■ The EJB object interceptor

With EJB 3.0, there is no such thing as a remote interface to entities. If you
have a standalone client, you must use some sort of remote object to access
your entities. A great way to do this is by using the remote interface to a ses-
sion bean which interacts with entities. The only other way would be to use an
out of container EntityManager. The session beans perform bulk create,
read, update, delete (CRUD) operations on behalf of remote clients. The ses-
sion bean also serves as a transactional façade, enforcing the fact that transac-
tions occur on the server, rather than involving a remote client. This makes
entities into an implementation detail of session beans. The entities are never
seen by the external client; rather, entities just happen to be the way that the
session bean performs persistence.

A final benefit of this approach is that your entities typically achieve a high
level of reuse. For instance, consider an order entry system, where you have an
order submission session bean that performs operations on an order entity. In
the next generation of your application, you may want an order fulfillment
session bean, an order reporting session bean, and so on. That same order
entity can be reused for each of these session beans. This approach enables you

EJB Performance Optimizations 417

20_785415 ch14.qxp 6/5/06 7:03 PM Page 417

to fine-tune and change your session bean business processes over time as user
requirements change.

Thus, in practice you can expect the reuse of entities to be high. Session
beans model a current business process, which can be tweaked and tuned with
different algorithms and approaches. Entities, on the other hand, define your
core business. Data such as purchase orders, customers, and bank accounts do
not change very much over time.

There are also a few caveats about this approach:

■■ You can also wrap entities with other entities, if you have a complex
object model with relationships (refer to Chapter 9 for more on this).

■■ The value of session beans as a network performance optimization goes
away if you do not have remote clients. This could occur, for example, if
you deploy an entire Java EE application into a single process, with
servlets and JSPs calling EJB components in-process. However, the ses-
sion façade could still be used for proper design considerations and to
isolate your deployment from any particular multi-tier configuration.
Note that what we’ve presented here are merely guidelines, not hard-
and-fast rules.

Choosing between Local Interfaces and Remote
Interfaces

Local interfaces, a feature since EJB 2.0, enable you to access your EJB compo-
nents without incurring network traffic. They also allow you to pass nonseri-
alizable parameters around, which is handy. So what is the value of a remote
interface? Well, there really isn’t a value, unless:

■■ You need to access your system remotely (say from a remote Web tier or
standalone client).

■■ You are trying to test EJB components individually and need to access
them from a standalone client to perform the testing.

■■ You need to allow your containers more choices for workload distribu-
tion and failover in a clustered server environment.

For optimal performance, we recommend that you build your system using
all local interfaces, and then have one or more session bean wrappers with
remote interfaces, exposing the system to remote clients.

In previous versions of EJB, your client code would be different depending
on how you were accessing a bean (remote or local). One of the benefits of EJB
3.0 is that your code no longer has to be different depending on the access type.
The only difference now would be the annotation used: @Remote or @Local.

418 Chapter 14

20_785415 ch14.qxp 6/5/06 7:03 PM Page 418

It is still a good idea to decide whether the clients of your beans are going to
be local or remote before you start coding. For example, if you’re building a Web-
based system, decide whether your system will be a complete Java EE appli-
cation in a single process, or whether your Web tier will be split off from your
EJB tier into a separate process. We discuss the trade-offs of these approaches
in Chapter 16.

As a final note, if you are connecting to your EJB deployment from a very
distant client (such as an applet or application that gets downloaded by
remote users), consider exposing your EJB system as an XML-based Web ser-
vice, rather than a remote interface. This will be slower than a straight
RMI/IIOP call, but is more appropriate for WAN clients. In corporate environ-
ments, which are strictly controlled by internal firewalls, it is often easier to get
HTTP traffic (such as that for a Web service) approved than to get RMI/IIOP
traffic approved.

Partitioning Your Resources

When programming with EJB, we’ve found it very handy to separate the kinds
of resources your beans use into two categories: bean-specific resources and bean-
independent resources.

■■ Bean-specific resources are resources that your bean uses that are tied to
a specific data instance in an underlying storage. For example, a socket
connection is a bean-specific resource if that socket is used only when
particular bank account data is loaded. That is, the socket is used only
when your bean instance is bound to a particular EJB object. Such a
resource should be acquired when a bean instance is created in the
@PostConstruct method or when activated in @PostActivate
method and released when the instance is removed in the @PreDestory
or @Remove methods or passivated in the @PrePassviate method.

■■ Bean-independent resources are resources that can be used over and
over again, no matter what underlying data your instance represents.
For example, a socket connection is a bean-independent resource if
your bean can reuse that socket no matter what bank account your bean
represents (that is, no matter what EJB object your bean instance is
assigned to). Global resources like these should be acquired when your
bean is first created, and they can be used across the board as your bean
is assigned to different EJB objects. They can also be acquired during
the life-cycle methods as indicated in the bean-specific resources sec-
tion. In this case, though, the resource is presumed to be available as
opposed to having to create it. In the case of a socket, for instance, you
would expect to obtain a handle to an already established socket as
opposed to having to instantiate and connect the socket.

EJB Performance Optimizations 419

20_785415 ch14.qxp 6/5/06 7:03 PM Page 419

Because acquiring and releasing resources may be costly operations, catego-
rizing your resources as outlined is a vital step. Of course, the stingiest way to
handle resources is to acquire them on a just-in-time basis and release them
directly after use. For example, you could acquire a database connection only
when you’re about to use it and release it when you’re done. Then there would
be no resources to acquire or release during activation or passivation. In this
case, the assumption is that your container pools the resource in question. If
not, just-in-time acquisition of resource might prove expensive because every
time you request to acquire a resource, its handle is actually being created and
every time you request to release the resource, the underlying object is actually
being destroyed. To get around this, you will need to write your own imple-
mentation that can pool the resource in question. You will then need to use this
pool manager abstraction to acquire or release the resource. The slight disad-
vantage to just-in-time resource acquisition or release is that you need to code
requests to acquire or release resources over and over again in your bean.

Tuning Stateless Session Beans

Taking into consideration the life cycle of stateless session beans, as discussed
in Chapter 4, these tuning techniques should be examined closely to achieve
best performance:

■■ Tune pool size. The pool size-related settings are made available by
your EJB server vendor, and hence, you will need to specify them in the
vendor-specific deployment descriptor. It controls the number of state-
less session bean instances in the pool. Some products will enable you
to specify a range for pool size. In this case, mostly, you would also be
able to specify the resize quantity of your pool. When the server runs
out of pooled bean instances to service further client requests, the resize
quantity will specify the number of new instances a server should cre-
ate at one time, until the maximum of the pool size range is reached.

For example, suppose that the range for pool size is initial=50 and
maximum=100, and the resize quantity is 10. Now, if at a given point in
time all 50 instances are busy servicing client requests, then when the
51st request comes for that stateless session bean, the EJB container will
create 10 more instances of the bean, make available one of these newly
created instances to the client, and pool the remaining 9 instances for
future requests. This resizing of the pool will continue happening until
the maximum pool size range is reached, that is 100. So then what hap-
pens when at a given point in time all 100 instances are servicing
requests? The 101st client request will have to wait for one of the previ-
ous 100 clients to release the bean so that the container can make this

420 Chapter 14

20_785415 ch14.qxp 6/5/06 7:03 PM Page 420

underlying bean instance available to our 101st client. The client
request thus will have to be queued by the container.

Also some containers will provide you with a pool idle timeout setting.
It basically specifies the maximum time that a stateless session bean is
allowed to be idle in the pool before removing it from the pool. The
pool resize quantity setting will play a role here, too. It will specify the
number of beans that the server will destroy once they have reached
idle time limit. Hence, an increase or decrease in the maximum limit of
the pool size should mean an appropriate change in the resize quantity
too to maintain a good balance.

Make sure that you set the initial and maximum values for the pool size
so that they are representative of the normal and peak loads on your
system. Setting a very large initial or maximum value is an inefficient
use of system resources for an application that does not have much con-
current load under normal and peak conditions, respectively. Also this
will cause large garbage collection pauses. At the same time, setting a
very small initial or maximum value compared to the typical loads is
going to cause a lot of object creation and object destruction.

■■ Efficient resource caching. As discussed earlier, it is a good practice to
cache bean-independent resources and release the cache in the bean life
cycle. However, if you cache a resource, such as a database, connection
in the previous methods within a stateless session bean deployment
with large pool size and heavy concurrent client access, chances are that
container will run out of free connection instances in the connection
pool very soon; the container might need to queue the request for con-
nection resource. To avoid this, it is better to obtain connection
resources from the connection pool just-in-time in such situations.

Tuning Stateful Session Beans

Taking into consideration the life cycle of stateful session beans as discussed in
Chapter 4, these tuning techniques should be examined closely to achieve best
performance:

■■ Tune pool size. Stateful session beans are not pooled in the traditional
sense. Some vendors will create a pool of instantiated, but empty and
unassigned, bean objects. The instantiation of objects is a fairly heavy-
weight process, so having this available pool is useful. When a client
performs a lookup or injects a reference, the container can take one of
these instantiated objects, initialize it, and bind it to the client. If your
vendor supports this type of pooling, there will be a way to tune the
size of this pool.

EJB Performance Optimizations 421

20_785415 ch14.qxp 6/5/06 7:03 PM Page 421

■■ Tune cache size. The stateful session bean life cycle is defined by the
EJB standard is such a way that stateful session beans are cached but
not pooled in the same way as stateless beans. Beans are cached when
the number of concurrent users requesting the services of stateful ses-
sion bean exceeds that of the maximum allowable number of stateful
session bean instances. During caching, the state of the bean is stored in
the disk (a.k.a. passivation) for later use by its client, and the bean
instance is made available for use to another client. The cache and other
stateful session bean–related tuning settings are EJB server–specific,
and so they will go in the vendor-specific deployment descriptor. Most
of the vendors allow you to specify the maximum cache size for stateful
session beans.

Some vendors will allow you to specify a cache resize quantity that
works similarly to the pool resize quantity for stateless session beans.
The container can use a variety of algorithms to select beans for passiva-
tion, and if the container is good enough, it will let you choose the algo-
rithm for passivation. These algorithms could be the least recently used
(LRU); first in, first out (FIFO); or not recently used (NRU) techniques.

The cache idle timeout setting will let you specify the time interval after
which an idle bean will be passivated. Some containers will also let you
specify the removal timeout value, which sets the time interval after
which the passivated state of the bean is removed from the disk,
thereby freeing the disk resources. A good coding practice is for your
client code to explicitly remove the bean instance by having an
@Remove method. This way the state, on behalf of your client, will not
unnecessarily be maintained on the server until the container passivates
it and finally removes it.

Again, tune the cache, taking into consideration the number of concur-
rent users that will access your stateful session bean under typical and
peak conditions. Setting a large maximum value for cache size in com-
parison to the typical loads and peak loads of concurrent users, respec-
tively, will lead to inefficient usage of memory resources, whereas
setting a small maximum value for cache size will lead to a lot of passi-
vation and activation of bean instances and, hence, serialization and
deserialization, thereby straining on the CPU cycles and disk I/O.

■■ Control serialization. Serialization consumes CPU cycles and I/O
resources. More serialization leads to more consumption of resources.
The same is the case for deserialization, which takes place during the
activation of stateful session beans. It is a good practice to keep the
amount of serialization and deserialization to a minimum. One way to
achieve this is by explicitly instructing the container to not serialize the
state that you will not need after activation. You can do so by marking
such objects as transient in your stateful session bean class.

422 Chapter 14

20_785415 ch14.qxp 6/5/06 7:03 PM Page 422

Tuning Entities

Taking into consideration the life cycle of entities as discussed in Chapter 6, the
following tuning techniques and best practices should be examined closely to
achieve best performance:

■■ Tune pool size. The entity life cycle, as defined by EJB standard, is such
that entities are pooled as well as cached. The pooling of entities is quite
similar to that of stateless session beans. Most of the EJB servers have a
provision to specify vendor-specific pool settings, such as initial pool
size (also known as steady pool size in some products), maximum pool
size, pool resize quantity, and pool idle timeout. The best practices for
tuning the entity pool are the same as those discussed previously for
stateless session beans.

■■ Tune cache size. The caching of entities is similar to the caching of
stateful session beans in that the tuning settings for stateful session
beans and entity beans for a given vendor are the same. Most of the EJB
servers will provide some common cache-tuning options such as maxi-
mum cache size, cache resize quantity, cache idle timeout, removal
timeout, and so on. Apart from the best practices for tuning the cache
that we discussed for stateful session beans, you should also:

■■ Provide a bigger cache for entities that are used a lot, and provide a
smaller cache for entities that are not used very much.

■■ Keep the maximum limit of the pool size the same as the maximum
cache size, because while associating data with the entity instance, the
container brings the entity instance from the pool. Hence, having a
pool smaller than cache can lead to a situation where clients are wait-
ing for the container to get hold of the entity, which in turn is waiting
for the entity pool queue, in its turn, to get hold of an instance.

NOTE While tuning the entity pool and cache, always keep in mind that in
most of the deployments the number of entities is mostly going to be larger
than the number of session beans, taking into consideration finder methods
that return large numbers of entity stubs. Hence, pool and cache sizes of entities
are usually much larger than those for stateless and stateful session beans.

■■ Use lazy loading. If you do not need all the data of your entity the first
time you access it, choose to lazy load the unneeded data upon request
from the client. This can be done using the @Basic annotation with the
fetch=lazy element or with the relational annotations using their
fetch element. This will optimize memory consumption on your sys-
tem as well as the use of network bandwidth.

EJB Performance Optimizations 423

20_785415 ch14.qxp 6/5/06 7:03 PM Page 423

Lazy loading helps a lot when accessing relationship data. For example,
you can load the data for an Employee:Paychecks one-to-many relation-
ship only when the client actually wants the paycheck information of
that given employee and not when a client is just interested in getting
the basic employee information. You do have to depend on the con-
tainer to enable lazy loading of relationship data.

Remember though that there is always a trade-off when using lazy
loading for core entity data—your entity can end up accessing the data-
base quite a number of times if the client requests data chosen for lazy
loading often. To get around this issue, you need to closely observe the
way client applications use your entity and then select the less fre-
quently requested data for lazy loading.

NOTE As per the EJB 3.0 specification, using the fetch=lazy element is
only a hint to the container to use lazy loading. The implementation, at its
discretion, can load eagerly even if you have specified lazy loading. Since the
specification clearly leaves the implementation of lazy loading to the vendor,
you must find out how your particular vendor handles it.

■■ Choose the right semantics for transactions. Be sure that the transac-
tions that run on the server are as short as possible, and encapsulate all
the entity operations you’d like to have participating in that transac-
tion. This is important because the synchronization with underlying
database occurs at the beginning and end of transactions. If you have a
transaction occurring for each entity get/set operation, you are per-
forming database hits on each method call. The best way to perform
transactions with entities is to wrap all your entity calls within a session
bean method and mark that session bean method as transactional. Here
you will also have to mark the entity methods with the transaction
attribute of REQUIRED. This creates a transaction in the session bean
that encapsulates all entities in the same transaction.

■■ Choose the right transaction isolation level. Isolation levels are
explained with a lot of detail in Chapter 10. In short, isolation levels
help maintain integrity of concurrently accessed data. You should
choose an optimum isolation level for your application. Isolation levels
are typically set at the database connection (or connection pool) level
using vendor-specific APIs or descriptors (and not in your deployment
descriptors or persistence.xml file). Hence, the chosen isolation
level will apply for all database access—from a single bean, multiple
beans, one Java EE application, or multiple Java EE applications—via
that connection pool. Some of the best practices for selecting the right
isolation level are:

424 Chapter 14

20_785415 ch14.qxp 6/5/06 7:03 PM Page 424

■■ Use the lowest possible isolation level, for example READ_
UNCOMMITTED for beans that represent operations on data that is
not critical from a data integrity standpoint. If you do not care about
reading uncommitted data or others updating the rows that you are
reading or inserting new data into the data set you are accessing, go
for this isolation level.

■■ Use READ_COMMITTED for applications that intend to always read the
data that is committed. However, your applications still have to be
prepared to live with unrepeatable read and phantom read problems.

■■ Use REPEATABLE_READ for applications that intend to always read
and reread the same data. However, your applications still can get
newly created rows when they try to reread the same data. Under-
stand that your database achieves this behavior by locking the rows
you are reading so that nobody else can update these rows. How-
ever, other users can still read your data.

■■ Use SERIALIZABLE for applications that want to hold exclusive
access to data. The cost of using this isolation mode is that all
requests to read and modify this data will be serialized by your
database. Hence, others will have to wait to read/update the data
that you are accessing. You should only use this isolation level in
cases that warrant for single user data access.

■■ Finally set transaction isolation levels only when you are fully aware
of your application’s semantics. Also note that not all databases sup-
port all the transaction isolation levels.

■■ Use JDBC access when retrieving very large amounts of data. Entities
work very well when working with small to medium-sized data sets.
When working with larger data sets, for example, working in use cases
where a single SELECT statement is going to retrieve thousands of
records, it may turn out better not to use entities. Code such data access
by using JDBC from session beans. You can use a Data Access Object
(DAO) abstraction in between to place all the JDBC code. Again, using
JDBC has another benefit. If you were to use JDBC 3.0, you could make
use of a CachedRowSet implementation to get disconnected rowset
functionality. This boosts performance by not maintaining a connection
to the database while you are traversing the large set of data.

■■ Choose the optimal database driver—Entity Manger—for accessing
data. This applies also when working directly with data from session
beans or other Java EE components. Know the differences between the
four types of JDBC drivers. Most importantly, avoid using type 1 JDBC
drivers a.k.a. JDBC-ODBC drivers. They tend to give the least perfor-
mance because of the fact that all the JDBC calls are translated twice—
JDBC to ODBC and ODBC to database-specific calls. Use type 1 drivers

EJB Performance Optimizations 425

20_785415 ch14.qxp 6/5/06 7:03 PM Page 425

only when your database does not support a JDBC driver, which is an
unlikely situation. Today, you can find various types of JDBC drivers
for almost all major databases. Another criterion for selecting JDBC dri-
ver is to get a driver that supports the latest JDBC standard. This is
because with each version of the JDBC standard, the sophistication of
its SPI keeps increasing, thereby providing better performing data
access to the database. For example, all JDBC 2.0 and above drivers
provide connection pooling support. Hence, if you are using a driver
earlier than 2.0 you will not gain the performance enhancement due
to connection pooling. Another example—JDBC 3.0 driver supports
PreparedStatement object pooling. Anybody who has worked with
JDBC would know that prepared statements are precompiled SQL
statements, so they boost performance dramatically, especially when
the same precompiled SQL is used multiple times. However, creating
the PreparedStatement object imposes some overhead. To avoid
incurring this overhead each time you use the prepared statement, you
can pool it using a JDBC 3.0 driver.

■■ Choose the right Statement interface. JDBC provides three main types
of statement abstractions: Statement, PreparedStatement, and
CallableStatement. Statement is to execute SQL statements with
no input and output parameters. PreparedStatement should be
used when you want precompilation of SQL statement that accept
input parameters. CallableStatement should be used when you
need precompilation of SQL statements that support both input and
output parameters. You should use CallableStatement for most of
your stored procedures.

Tuning Message-Driven Beans

Now let us examine some best practices and techniques to boost message-
driven bean performance:

■■ Tune pool size. MDB is essentially a stateless session bean whose
onMessage() method is invoked by the container upon arrival of a
message. Hence, to reduce the overhead of creation (and the release) of
MDB bean instances upon each message arrival, the container pools
them. The pool tuning settings are pretty much the same as stateless ses-
sion bean. A container can let you specify one or all of the initial pool
size, maximum pool size, resize quantity, and pool idle timeout settings.

Use these settings to match the message-processing loads under typical
and peak conditions. For better throughput under high-traffic conditions,

426 Chapter 14

20_785415 ch14.qxp 6/5/06 7:03 PM Page 426

maintain a large pool of MDB bean instances. Needless to say, these set-
tings go into the vendor-specific deployment descriptor.

■■ JMS-specific tuning. If your MDB consumes JMS messages, one impor-
tant type of performance tuning you can do is to select the right
acknowledgment mode. You can set the acknowledgment mode using
annotation or in the deployment descriptor. Chapter 7 discusses the
various acknowledgment modes in detail. Use Auto_acknowledge
mode when you do not want to receive duplicates and thereby avoid
inefficient use of network bandwidth. Note that here the JMS engine
makes sending the acknowledgment a top priority. Hence, throughput
might suffer in scenarios where a lot of JMS messages arrive and need
to be processed by the MDB. On the other hand, if you want your JMS
engine to leave everything in order to send acknowledgment, you
should consider Dups_ok_acknowledge mode.

Tuning Java Virtual Machine

Don’t ignore the impact of a nicely tuned JVM on which your EJB server is run-
ning. Each application server comes with a different JVM and hence, different
tuning parameters. However, some of the settings remain common across
most of the JVMs. In our experience, 95 percent of the JVM tuning exercise
involves tuning the garbage collector. The garbage collector is a piece of code
within the JVM that releases the memory claimed by objects whose references
have gone out of scope or for objects whose references are explicitly set to null.
Understand that you have no control over when the garbage collector runs—
it will run when the JVM thinks it should and when your underlying OS
schedules the GC thread to run. There are two things you should do to work
well with the JVM: Make your code JVM friendly, and use JVM proprietary
switches to further tune the garbage collector and set the heap space–related
settings. Let us examine both of these:

■■ Write JVM friendly code. This entails writing Java code that releases
objects in a timely manner by setting their references to null. By setting
the references to null, you are declaring to the JVM that you no longer
need the object and so the garbage collector should reclaim its memory
allocated in the JVM heap space. Also, you should refrain from imple-
menting final() methods on your Java objects, because finalizers
might not be called before the object reference goes out of scope and
hence, the object might never get garbage collected (because the final-
izer hasn’t been executed).

Also, do not use System.gc() if you can avoid it, because it does not
guarantee that the garbage collector would be executed upon your

EJB Performance Optimizations 427

20_785415 ch14.qxp 6/5/06 7:03 PM Page 427

request. If you understand the semantics of System.gc(), you know
that it is basically meant to request the JVM to run the garbage collector
and thereby reclaim the memory; at the end of the call, however, your
request may or may not have been granted; it all depends on whether
JVM thinks that it is time to run the garbage collector. We are amazed to
see developers with many years of Java experience putting
System.gc() calls all over in their code.

Yet another example of writing JVM-friendly code is the use of weak
references when writing implementations for caching or similar func-
tionality. Weak references allow your code to maintain references to an
object in a way that does not prevent the object from being garbage col-
lected if need be. You can also receive notifications when an object to
which you hold a weak reference is about to be garbage collected. Thus,
if the JVM is running very low on memory, your weak reference to the
live object will not stop the JVM from garbage collecting the object.

These are just a few examples of writing JVM-friendly code. If you read
some of the classic Java performance books, you can find many more
techniques.

■■ Tune the JVM via switches. Each JVM implementation, and there are
about a dozen of them, provides vendor-specific switches to further
tune the virtual machine. To effectively use these switches though, you
will need to understand the implementation of the JVM. For example,
all recent Sun JVMs support a technology, called HotSpot, which
employs a concept termed generational garbage collection to effectively
garbage collect the memory without introducing huge garbage collector
caused pauses in the application. Ultimately, the goal of garbage collec-
tion is to reduce those inevitable system pauses during the period when
the garbage collector is running. So in order to efficiently work with a
Sun JVM, you should understand how generational garbage collection
works, various algorithms for garbage collection supported by the Sun
JVM, when to use which algorithm for garbage collection, and so on.
The same holds true for most of the other JVMs. For example, BEA
WebLogic products use the BEA JRockit JVM. Thus, if you are a BEA
shop, you should understand how JRockit works in order to be able to
tune it properly.

Most of the JVM implementations also allow setting the heap memory
size available to the virtual machine. The heap requirements for server
applications obviously would be more than that of client applications.
You should tune the heap size so that it is not too small or too large for
your application. A small JVM heap would cause the JVM to run
garbage collection more frequently thereby introducing unexpected

428 Chapter 14

20_785415 ch14.qxp 6/5/06 7:03 PM Page 428

pauses, albeit short, in your application. On the other hand, a large JVM
heap will not cause frequent garbage collection but whenever garbage
collection happens it takes a good while for it to scour through the large
heap space and reclaim the memory, thereby introducing a longer
pause.

Bottom line—thou must know thy JVM!

Miscellaneous Tuning Tips

Now let us see some other miscellaneous tips to further help your optimiza-
tion exercises:

■■ Send output to a good logging/tracing system, such as a logging
message-driven bean. This enables you to understand the methods that
are causing bottlenecks, such as repeated loads or stores.

■■ Use a performance-profiling tool, OptimizeIt or JProbe, to identify bot-
tlenecks. If your program is hanging on the JDBC driver, chances are
the database is your bottleneck.

■■ Tune the JDBC connection pool using various options provided by
your persistence provider. Most persistence providers will let you spec-
ify initial pool size, maximum pool size, pool resize quantity, maximum
wait time the caller will have to wait before getting a connection time-
out, idle timeout period, transaction isolation level, and so on. A larger
connection pool will provide more connections to fulfill requests
although it would consume more resources in the persistence provider
and also on the database server. On the other hand, a smaller connec-
tion pool will provide a fewer number of connections to fulfill requests,
but it also consumes fewer resources on database and EJB servers. Also
some EJB servers can enable you to specify a connection validation
option, which, if set to true, essentially checks whether the connection
instance is a valid instance, at the time of the request. Remember that
setting this option to true will add some latency during the initial con-
nection establishment.

■■ Avoid putting unnecessary directories in the CLASSPATH. This will
improve the class-loading time.

■■ Utilize the RMI-IIOP protocol specific–tuning settings. Also, many
servers provide a means to tune the thread pool of server. You can use
these settings to have better control on the overall number of threads in
your EJB server.

EJB Performance Optimizations 429

20_785415 ch14.qxp 6/5/06 7:03 PM Page 429

Choosing the Right EJB Server

Finally, you need to choose an EJB server that offers the best performance
numbers and optimization techniques. The following list details the criteria
through which you should evaluate the performance and tuning support pro-
vided by your EJB server:

■■ Persistence Management. Make sure that persistence optimizations,
such as lazy loading, entity failover recovery, various pooling and
caching strategies, and so on are supported by your EJB server.

430 Chapter 14

DON’T FORGET TO TUNE THE WEB SERVER

Most of the time, EJBs sits behind Web applications. Hence, it is important to
tune the Web applications accessing your EJB application, since an under-
performing Web application can lead to bad user experience as well. Although
Web application–tuning entails a lot more details, following are some of the
common and useful tips that you should use to boost performance:

◆ Explicitly turn HTTP session support off for stateless Web applications.
Session management does add to overhead, so you should turn it off
when not using it. Use the JSP directive <%page session=”false”%> to
turn session off. Also don’t store very large objects in HTTP session. Also
release sessions when you are done using them by calling HTTPSession
.invalidate().

◆ Set optimal values for various HTTP keep-alive settings. The HTTP 1.1
protocol refers to the keep-alive connections as persistent connections.
Keep-alive connections are essentially long-lived connections that allow
multiple requests to be sent over the same TCP connection. In some
cases, enabling keep-alive connections has produced a good reduction in
latency.

◆ Turn off JSP recompilation, especially if your JSPs are not changing fre-
quently.

◆ Use JSP and servlet caching techniques made available by your Web
server. Also cache servlet instance independent resources in
Servlet.init() method for efficient utilization of resources.

◆ Don’t use the single-thread model for servlets, because they have been
deprecated. This means that all servlets are designed to be multi-
threaded. Hence, you should carefully avoid using class-level shared vari-
ables. If you do have to, synchronize the access to these class-level
object references for ascertaining integrity.

20_785415 ch14.qxp 6/5/06 7:03 PM Page 430

■■ Load balancing and clustering. Most of the EJB servers provide cluster-
ing support for session beans and entity beans, whereas only some
servers provide clustering and stateful recovery for stateful beans and
entity beans. Also, not every application server provides load balanc-
ing, especially for message-driven beans. This could be an important
consideration for high-throughput message consumption as well as
failover support for message-driven beans.

■■ Throttling of resources. Throttling capabilities can help a great deal
during capacity planning. Most of the high-traffic deployments do
throttle resources. If you are one of such deployments, check with the
vendors about whether their product provides throttling support. The
more types of resources you throttle, the better tuning you will have.

■■ Various types of tuning facilities. Tuning options for various types of
beans are not the only thing you should seek. You should make sure
that your vendor provides comprehensive tuning options for your Web
server (if you are using a Web server from the same vendor), thread
management, CPUs, resources such as connection pools, JMS connec-
tions, topics/queues, IIOP tuning, JVM tuning, and so on.

Summary

In this chapter, we reviewed a series of performance optimizations and best
practices for working on an EJB project. We hope that you refer back to these
strategies while working with EJB—after all, an ounce of prevention is worth
a pound of cure.

EJB Performance Optimizations 431

20_785415 ch14.qxp 6/5/06 7:03 PM Page 431

20_785415 ch14.qxp 6/5/06 7:03 PM Page 432

433

In this chapter, we will begin our journey into the world of EJB integration. If
you are faced with a situation where you are required to integrate EJB applica-
tions with those running on other platforms or legacy applications, this chap-
ter will provide you with a lot of helpful information. Specifically, you’ll learn
about the following:

■■ Introduction to integration, including an overview of various styles of
integration

■■ Various approaches to integrate EJB with non-EJB applications

■■ Java EE connector architecture by example

■■ Best practices for integrating EJB applications

Why Does Integration Matter?

Integrating applications, services, and data is absolutely critical for streamlin-
ing and automating business processes. These processes might run throughout
your company or be used by your business partners, suppliers, and customers.
Companies with integrated business processes are quick to respond to fluctu-
ating business conditions as compared to those lacking integrated business
processes. Also, if the industry you are in is hit by a consolidation wave, it is

EJB Integration

C H A P T E R

15

21_785415 ch15.qxp 6/5/06 7:04 PM Page 433

quite possible for your company to participate in mergers and acquisitions.
With every merger or acquisition comes the huge challenge of integrating
enterprise applications as part of business processes, mostly electronic, of the
two companies. Although, this integration is gradual, it provides a definite
value to your company.

Apart from the business imperatives, there are many technical reasons why
businesses should take integration seriously. A typical enterprise IT today
comprises anywhere from dozens to hundreds of applications. These applica-
tions might have been acquired from outside or built in-house. Many times
these applications would be developed using legacy technologies or deployed
on legacy platforms. It is not uncommon to find an enterprise with silos of
applications mostly written using different architectures and potentially main-
taining their own instances of domain data. Some of the clear-cut benefits of
integrating these isolated silos of applications across your IT are:

■■ Integration eliminates the need to build new applications and services
every time a new business requirement has to be met. Thereby, it maxi-
mizes the use of current IT assets and provides a better return on IT
investments.

■■ Integration makes it possible to optimize resources in terms of storage
and processing by taking redundancy out of data and business functions.

■■ Integration brings together the entire enterprise from back-end transac-
tion processing to front-end customer service. This ultimately increases
the value of IT to a business.

These benefits are the core reasons why integration does matter to a CIO
and, hence, to us.

Integration Styles
Depending on whether it is being done within or across the enterprise
boundary, integration solutions can be categorized as intra-enterprise or inter-
enterprise. Integration solutions can be further classified into the following
two groups:

■■ Application integration focuses on establishing connectivity between
applications. This style forms the basis for enterprise application inte-
gration (EAI) solutions. This connectivity can be established through
messaging systems such as message-oriented middleware (MOM) or
RPC communications such as IIOP, sockets, SOAP RPC, and so on.

■■ Business process integration automates business processes by coordi-
nating and controlling activities that span multiple systems. Process
integration middleware can reuse various applications, which in
turn implement process activities and can also support long-running

434 Chapter 15

21_785415 ch15.qxp 6/5/06 7:04 PM Page 434

transactions. Traditionally, this style of integration has been achieved
using business process management systems (BPMS) from vendors
such as Vitria, SeeBeyond (now Sun Microsystems), Intalio, TIBCO, IBM,
Microsoft, BEA, Oracle, and so on. Also some BPM vendors provide
BPM products that focus exclusively on the target industries. Recently,
this area has seen a lot of standardization in terms of how the processes
are described and how their activities are executed/coordinated. OMG
BPML, W3C WS-Choreography, OASIS WS-BPEL, and OASIS ebXML
BPSS (ebBP) are just a few examples of such standards.

Thus, process integration can be viewed as a business logic layer that deter-
mines what needs to be done at a given point in a process, while application
integration can be viewed as a technology layer that determines how it gets
done. Usually, business process integration is done with the help of business
analysts, as opposed to application integration that is done by software archi-
tects. As technologists we are best served by focusing on the how part of inte-
gration, that is application integration.

EJB and Integration

Presently, EJB applications have three technology choices for application
integration:

■■ JMS and JMS-based message-driven beans are a foremost technology
choice for communicating with message-oriented middleware systems
from EJB platform.

■■ Java Web services is another approach of integrating EJB applications,
especially with a target platform such as Microsoft .NET, which is also
Web services–aware.

■■ Java EE Connector Architecture is a full-fledged enterprise integration
framework for building adapters or connectors that can integrate EJB
applications with the outside non-Java world.

We already discussed JMS-based message-driven beans and Java Web ser-
vices in Chapters 7 and 5, respectively. In this chapter, we will focus on learn-
ing Java EE Connector Architecture and see how it addresses the integration
problem.

NOTE We have seen many people use JCA to refer to Java EE Connector
Architecture. We will not do so, however, and for a very good reason—doing so
creates confusion with another critical Java technology, Java Cryptography
Architecture. Many Java developers refer to latter as JCA. Due to the fact that Java
Cryptography Architecture was developed before Java EE Connector Architecture,
we will allow the cryptography crowd the benefit of using the JCA acronym.

EJB Integration 435

21_785415 ch15.qxp 6/5/06 7:04 PM Page 435

Java EE Connector Architecture

Java EE Connector Architecture is a standard framework for supporting enter-
prise application integration for Java platform. Connector architecture defines
the notion of a resource adapter (RA) that can be plugged into any Java EE-
compliant application server to enable Java EE applications to communicate
with the enterprise information system (EIS). The connector specification thus
defines a component model for developing and deploying resource adapters.

Why Java EE Connectors?
Even before Java EE Connector Architecture existed, it was possible to commu-
nicate with native applications via Java Native Interfaces (JNI). Socket commu-
nication presented yet another alternative of integrating with non-Java
applications. And don’t forget IIOP—using RMI-IIOP it is possible to communi-
cate with any CORBA-IIOP application. So why do we need Java EE connectors?

To understand this, let us first understand various problems of integration
in a connectorless world.

NOTE An EIS encompasses all those systems that provide information
infrastructure for an enterprise. These EISs provide a well-defined set of
information services to their clients through various interfaces. Examples of
EISs include ERP systems, transaction-processing systems, and database
systems. More recently, the term EIS is also used to refer to custom IT
applications.

Integrating Java EE Platform with Non-IIOP World

The two most common ways to integrate with non-IIOP applications from the
Java platform are to use JNI or sockets. However, if you want to integrate a
Java EE application with non-IIOP application you cannot use either of these
mechanisms, since using both JNI and sockets (server sockets, more specifi-
cally) is tabooed in Java EE for security reasons. A safe, robust framework that
provides integration with the non-IIOP world of applications is needed. Java
EE Connector Architecture is an answer to this need.

The M x N Integration Problem

Prior to Java EE connectors no standard mechanism of integrating Java EE
applications with heterogeneous non-Java EE, non-IIOP EIS existed. To inte-
grate Java EE applications with an EIS, most EIS vendors and application

436 Chapter 15

21_785415 ch15.qxp 6/5/06 7:04 PM Page 436

server vendors had to provide nonstandard proprietary solutions. For exam-
ple, if you had to integrate your Java EE order management application with a
SAP inventory management application you had to use proprietary integra-
tion adapters to make your application server communicate with SAP. These
nonstandard adapters could have been provided by your application server
vendor or by your EIS vendor, which was SAP in this case. Similarly, if you
wanted your Java EE applications to integrate with any other EISs, you needed
specific adapters that allowed your application server to talk to your EIS.

This presented a big challenge for the vendors of application servers and
EISs—they were required to support and maintain M x N number of propri-
etary integration solutions to make M number of application servers commu-
nicate with N number of EISs. This M x N problem, described in Figure 15.1,
was the main motivation for these vendors to create Java EE connector tech-
nology that enables building standard adapters (a.k.a. resource adapters/con-
nectors) for specific EISs so that these adapters can plug into any Java EE
complaint application server and communicate with the EIS.

Hence, the M x N problem is now reduced to 1 x N problem, where N
adapters are needed to integrate with N number of EISs from any Java EE envi-
ronment, as shown in Figure 15.2.

Figure 15.1 The M x N integration problem.

M × N

Application serverM
EISN
Non-standard adapters for each combination of application server and EIS

M1
Application

Server

M2
Application

Server

M3
Application

Server

N1 EIS

N2 EIS

N3 EIS

M1 × N1

M2 × N1

M2 × N2

M1 × N3

M3 × N3

M3 × N1
M3 × N2

M2 × N3

M1 × N2

EJB Integration 437

21_785415 ch15.qxp 6/5/06 7:04 PM Page 437

Figure 15.2 Reduction of M x N integration problem to 1 x N.

The Infrastructure Services Problem

Another challenge when building integration solutions is to enable support for
infrastructure services—such as resource pooling (for threads, connections,
and so on), transaction management, security, life cyclemanagement, and so
on—required for transactional, robust, and secure integration. Without a stan-
dard framework that provides these services, an integration solution devel-
oper is responsible for writing logic for these services. It usually takes experts
to write these services, plus it requires a longer cycle of solution development,
debugging, deployment, and testing. This makes high-quality integration
with underlying EIS very difficult to achieve.

Java EE Connector Architecture solves this problem too—it extends the
infrastructure services provided by the container to the resource adapters. This
means that the Java EE container will provide connection pooling, transaction
management, security, and so on to the deployed RA. It provides these ser-
vices through well-defined system contracts. The RA will need to implement
these contracts in order for the container to provide the system services.

Thus, the application server and resource adapter keep the system-level
details related to the interaction with the underlying EIS transparent from the
application component. This is one of the main reasons for using resource

M × N

Application serverM
EISN
Standard resource adapters for a given EIS

M1
Application

Server

M2
Application

Server

M3
Application

Server

N1 EIS

N2 EIS

N3 EIS

RA for N2

RA for N2

RA for N2

438 Chapter 15

21_785415 ch15.qxp 6/5/06 7:04 PM Page 438

adapters—it keeps the components free from the complexity of having to deal
with transactions, security, connections, multithreading, and other such infra-
structure details, while communicating with the EIS. This is what we call
“integration made simple”!

Resource Adapter Interaction with Java EE Components
When deployed in a managed environment by way of an application server,
the RA accepts requests from various Java EE components, such as servlets,
JSPs, and EJBs; translates those requests into EIS-specific calls; and sends those
requests to the EIS. The response that it receives from the EIS is forwarded to
the client Java EE components. Application components thus interact with the
RA through its client contracts. The RA can support client contracts in one of
the following ways:

■■ Common Client Interfaces (CCI) is a standard set of APIs for interact-
ing with any EIS through its respective RA. CCI provides a mechanism
for accessing a heterogeneous EIS using the same interface. CCI support
is optional although recommended for the RA provider. In particular,
providers that expect their RA to be used by third-party tools should
support CCI to enable tools to communicate with them through the
standard CCI.

■■ EIS-specific client interfaces can be supported by the RA provider to
make it easier for application components to work with the underlying
EIS by using APIs attuned to the EIS’s inner workings. Most of the EISs
have EIS-specific client APIs. For example, the JDBC API is the client
API for communicating with an RDBMS EIS.

Figure 15.3 shows this interaction between various Java EE components, the
RA, and the EIS.

EJB Integration 439

JAVA EE CONNECTORS AND NONMANAGED ENVIRONMENTS

Standalone Java applications run in a nonmanaged environment, since there is
no container to provide them with managed services such as transactions,
security, life cycle management, resource pooling, and so on.

Java EE Connector Architecture supports nonmanaged environments. This
enables Java applications to access the underlying EIS through an RA. In a
nonmanaged scenario, the application client directly uses the RA library. RAs
that support nonmanaged access should expose the low-level APIs for
transaction, security, and connection management. The application client will
interact with the RA and use its low-level APIs. This model is similar to using a
resource adapter such as a JDBC driver in a nonmanaged environment.

Since this chapter is on EJB integration, we will discuss connectors only in
the context of managed environment.

21_785415 ch15.qxp 6/5/06 7:04 PM Page 439

Figure 15.3 Interaction between the Java EE connector, RA, and EIS.

Resource Adapter Interaction with Application Server
To interact with the application server and avail various container services, the
RA provider can choose to implement the following system contracts:

■■ The connection management contract enables application components
to connect to the EIS so that the application server can pool these con-
nections. Essentially, by implementing this contract your components
can connect to the resource adapter, which in turn will establish the
connection to the underlying EIS.

■■ The transaction management contract allows transactional access to
the EIS from your application components. It enables the application
server to leverage the transaction manager for managing global transac-
tions across multiple resource managers, including the EIS resource
manager. Also, the RA can support local transactions, which do not
require coordination from a transaction manager through this contract.

■■ The security contract enables secure access to the EIS from the applica-
tion component.

Common Client Interfaces
OR adapter specific API

Enterprise
Java Beans

Enterprise
Information

System

Application Server

Resource
Adapter

Servlets / JSP

EIS-specific APIs

Application server
provides system
services

440 Chapter 15

21_785415 ch15.qxp 6/5/06 7:04 PM Page 440

■■ The life cyclemanagement contract was introduced in Java EE Connec-
tor Architecture 1.5. It allows the application server to manage life cycle
functions, such as bootstrapping the RA upon application server
startup or RA deployment, and shutting down the RA upon application
server shutdown or undeployment, on behalf of a resource adapter. The
application server will notify the RA instance of these
bootstrapping/shutdown events.

■■ The work management contract was introduced in Java EE Connector
Architecture 1.5. By implementing this contract, the RA can submit the
work it needs to perform to the application server, which in turn will
spawn a new thread or retrieve a worker thread from its thread pool to
execute RA-delegated work. This contract thus enables the RA to
increase throughput of handling requests from application components
without having to spawn or manage threads directly.

■■ The transaction inflow contract, also introduced in Java EE Connector
Architecture 1.5, allows the RA to propagate the transaction context
imported from the EIS to the application server. This contract supple-
ments the transaction management contract, which allowed the RA to
propagate the transaction context from application server to the under-
lying EIS. Through this contract, the RA can notify the application
server of transaction completion and crash recovery calls initiated by
the EIS thereby helping the application server coordinate transactions at
its end.

■■ The message inflow contract, introduced in Java EE Connector Archi-
tecture 1.5, allows the RA to asynchronously deliver messages to mes-
sage endpoints residing in the application server independent of the
messaging semantics, style, and infrastructure used to deliver mes-
sages. This contract also serves as a standard message provider plugga-
bility contract that allows a wide range of messaging providers to be
plugged into any compatible Java EE application server via a resource
adapter.

EJB Integration 441

THE IMPORTANCE OF CONNECTORS IN JAVA EE

J2EE 1.4 onwards, the application of RA had been extended further in that the
RA could now be used to provide connectivity for all kinds of EIS applications.
Regardless of whether a standard connectivity solution to the EIS from the Java
platform exists, vendors are encouraged to provide connectivity to their EIS
through the RA. Hence, we will eventually see vendors providing an RA for
connecting to all kinds of EISs—RDBMS, MOM systems, and enterprise
applications such as SAP, Siebel, PeopleSoft, and so on.

(continued)

21_785415 ch15.qxp 6/5/06 7:04 PM Page 441

The Java EE Connector API

The Connector API consists of six packages—javax.resource, javax
.resource.cci, javax.resource.spi, javax.resource.spi.endpoint,
javax.resource.spi.security, and javax.resource.spi.work. We
will take a look at each of these packages and their main interfaces and classes.
This overview of connector APIs followed by the description of how RAs
should implement various system contracts should help you understand the
connector architecture.

The javax.resource Package
Table 15.1 discusses the main members of this top-level connector API package.

442 Chapter 15

THE IMPORTANCE OF CONNECTORS IN JAVA EE (continued)

This is a step in a good direction because:

◆ The whole industry can now unify around a single architecture for con-
nectivity regardless of the type of underlying EIS. This will enable tool
vendors and system integrators to provide out-of-the-box integration so-
lutions, which in turn will reduce the cost of building integration solu-
tions on Java EE platform.

◆ The industry will not have to spend time defining connectivity per EIS.
Connector architecture eliminates the need to define Service Provider In-
terfaces (SPI) for different EIS connectivity providers. As a result, the Java
community is not required anymore to create standard SPIs for writing
JMS message providers or JDBC providers in the future. Rather, the ven-
dors will leverage SPIs defined by Java EE connector architecture to inter-
act with the Java EE application server and its container services.

The fact that vendors are building and shipping RAs for connecting to all
kinds of EISs—including databases, messaging systems, and enterprise
applications—establishes connector architecture as the predominant framework
in the Java EE integration space.

21_785415 ch15.qxp 6/5/06 7:04 PM Page 442

Table 15.1 The javax.resource Package Members

PACKAGE MEMBERS DESCRIPTION

javax.resource.Referenceable The implementation class of
the RA’s connection factory is
required to implement
Referenceable interface to
enable its registration in the
JNDI namespace.

javax.resource.ResourceException This is the root interface of the
connector exception hierarchy.

javax.resource.NotSupportedException This class extends
ResourceException and is
thrown to indicate that the RA
did not support a particular
operation.

The javax.resource.cci Package
This package comprises the APIs that should be implemented by an RA that
supports CCI. Table 15.2 discusses the main members of this package.

The javax.resource.spi Package
This package consists of APIs corresponding to various system contracts. An
RA should implement APIs for system contracts that it chooses to support
with the help of the application server. Table 15.3 discusses the main members
of this package.

Note once again that the RA should implement only system contracts that
are needed. For instance, if the RA does not need help for managing outgoing
connections to the EIS, it does not have to implement the various javax
.resource.spi APIs for connection management. Similarly, if the RA does
not need help managing its life cycle, it does not need to implement the
javax.resource.ResourceAdapter interface.

EJB Integration 443

21_785415 ch15.qxp 6/5/06 7:04 PM Page 443

Ta
b

le
 1

5.
2

Th
e

ja
va

x.
re

so
ur

ce
.c

ci
 P

ac
ka

ge
 M

em
be

rs

P
A

C
K

A
G

E
M

E
M

B
E

R
S

D
ES

C
R

IP
TI

O
N

j
a
v
a
x
.
r
e
s
o
u
r
c
e
.
c
c
i
.
C
o
n
n
e
c
t
i
o
n

Th
is

 in
te

rf
ac

e
re

pr
es

en
ts

 a
 h

an
dl

e
th

at
 is

 u
se

d
by

 th
e

cl
ie

nt
 to

 a
cc

es
s

th
e

un
de

rly
in

g
ph

ys
ic

al
 c

on
ne

ct
io

n
re

pr
es

en
te

d
by

 a
 M
a
n
a
g
e
d
C
o
n
n
e
c
t
i
o
n

in
st

an
ce

.

j
a
v
a
x
.
r
e
s
o
u
r
c
e
.
c
c
i
.
C
o
n
n
e
c
t
i
o
n
F
a
c
t
o
r
y

Re
pr

es
en

ts
 a

 fa
ct

or
y

in
te

rf
ac

e
th

at
 is

 u
se

d
to

 o
bt

ai
n

th
e
C
o
n
n
e
c
t
i
o
n

ha
nd

le
vi

a
g
e
t
C
o
n
n
e
c
t
i
o
n
(
)

m
et

ho
d.

 T
he

 c
lie

nt
 lo

ok
s

up
 a

n
in

st
an

ce
 o

f
C
o
n
n
e
c
t
i
o
n
F
a
c
t
o
r
y

re
gi

st
er

ed
 w

ith
 J

N
D

I d
ur

in
g

de
pl

oy
m

en
t.

Th
e

C
o
n
n
e
c
t
i
o
n
F
a
c
t
o
r
y

im
pl

em
en

ta
tio

n
cl

as
s

is
 r

eq
ui

re
d

to
 im

pl
em

en
t

R
e
f
e
r
e
n
c
e
a
b
l
e

so
 th

at
 it

 c
an

 s
up

po
rt

 r
eg

is
tr

at
io

n
to

 J
N

D
I.

j
a
v
a
x
.
r
e
s
o
u
r
c
e
.
c
c
i
.
C
o
n
n
e
c
t
i
o
n
M
e
t
a
D
a
t
a

Th
e

cl
ie

nt
 c

an
 u

se
 th

is
 in

te
rf

ac
e

to
 g

et
 s

pe
ci

fic
 in

fo
rm

at
io

n,
 s

uc
h

as
 p

ro
du

ct
na

m
e

an
d

ve
rs

io
n,

 a
bo

ut
 th

e
un

de
rly

in
g

EI
S.

 A
ls

o,
 C
o
n
n
e
c
t
i
o
n
M
e
t
a
D
a
t
a

pr
ov

id
es

 a
 u

se
r

na
m

e
co

rr
es

po
nd

in
g

to
 th

e
re

so
ur

ce
 p

rin
ci

pa
l u

nd
er

 w
ho

se

se
cu

rit
y

co
nt

ex
t t

he
 g

iv
en

 c
on

ne
ct

io
n

to
 th

e
EI

S
ha

s
be

en
 e

st
ab

lis
he

d.
 A

n
in

st
an

ce
 o

f C
o
n
n
e
c
t
i
o
n
M
e
t
a
D
a
t
a

co
ul

d
be

 o
bt

ai
ne

d
th

ro
ug

h
th

e
g
e
t
M
e
t
a
D
a
t
a
(
)

m
et

ho
d

on
 th

e
C
o
n
n
e
c
t
i
o
n

in
te

rf
ac

e.

j
a
v
a
x
.
r
e
s
o
u
r
c
e
.
c
c
i
.
C
o
n
n
e
c
t
i
o
n
S
p
e
c

If
su

pp
or

te
d

by
 th

e
R

A,
 th

e
cl

ie
nt

 c
an

 u
se

 th
is

 in
te

rf
ac

e
to

 p
as

s
th

e
co

nn
ec

tio
n

re
qu

es
t–

sp
ec

ifi
c

pr
op

er
tie

s
to

 C
o
n
n
e
c
t
i
o
n
F
a
c
t
o
r
y

.
C
o
n
n
e
c
t
i
o
n
S
p
e
c

is
 a

 m
ar

ke
r

in
te

rf
ac

e,
 a

nd
 th

e
R

A
sh

ou
ld

 im
pl

em
en

t t
hi

s
in

te
rf

ac
e

as
 a

 J
av

aB
ea

n
w

ith
 g

et
te

rs
/s

et
te

rs
 fo

r
ea

ch
 c

on
ne

ct
io

n
pr

op
er

ty
. T

he
sp

ec
ifi

ca
tio

n
de

fin
es

 s
ta

nd
ar

d
co

nn
ec

tio
n

pr
op

er
tie

s,
 s

uc
h

as
 U
s
e
r
N
a
m
e

an
d

P
a
s
s
w
o
r
d

. H
ow

ev
er

, t
he

 R
A

is
 n

ot
 r

eq
ui

re
d

to
 im

pl
em

en
t g

et
te

rs
/s

et
te

rs
 fo

r
th

es
e

st
an

da
rd

 p
ro

pe
rt

ie
s

if
it

is
 n

ot
 r

el
ev

an
t t

o
th

e
un

de
rly

in
g

EI
S.

21_785415 ch15.qxp 6/5/06 7:04 PM Page 444

Ta
b

le
 1

5.
2

(c
on

tin
ue

d)

P
A

C
K

A
G

E
M

E
M

B
E

R
S

D
ES

C
R

IP
TI

O
N

@
TX

:j
a
v
a
x
.
r
e
s
o
u
r
c
e
.
c
c
i
.
I
n
t
e
r
a
c
t
i
o
n

I
n
t
e
r
a
c
t
i
o
n

is
 a

 r
ep

re
se

nt
at

io
n

of
 th

e
cl

ie
nt

’s
 in

te
ra

ct
io

n
w

ith
 th

e
EI

S
in

te
rm

s
of

 e
xe

cu
tin

g
va

rio
us

 fu
nc

tio
ns

 o
r

pr
oc

ed
ur

es
 o

n
th

e
EI

S.
 T

he
 c

lie
nt

ob
ta

in
s

th
e
I
n
t
e
r
a
c
t
i
o
n

in
st

an
ce

 th
ro

ug
h

th
e
c
r
e
a
t
e
I
n
t
e
r
a
c
t
i
o
n
(
)

m
et

ho
d

on
 C
o
n
n
e
c
t
i
o
n

. T
he

re
 a

re
 tw

o
m

et
ho

ds
 th

e
cl

ie
nt

 c
an

 u
se

 to
in

te
ra

ct
 w

ith
 th

e
EI

S:
e
x
e
c
u
t
e
(
I
n
t
e
r
a
c
t
i
o
n
S
p
e
c
i
s
p
e
c
,
R
e
c
o
r
d
i
n
p
u
t
)

ex
ec

ut
es

 th
e

EI
S

fu
nc

tio
n

as
 s

pe
ci

fie
d

by
 th

e
I
n
t
e
r
a
c
t
i
o
n
S
p
e
c

in
st

an
ce

 a
nd

 p
ro

du
ce

s
th

e
ou

tp
ut

 R
e
c
o
r
d

, w
hi

ch
 c

ar
rie

s
th

e
re

su
lti

ng
 r

et
ur

n
va

lu
e.

e
x
e
c
u
t
e
(
I
n
t
e
r
a
c
t
i
o
n
S
p
e
c
i
s
p
e
c
,
R
e
c
o
r
d
i
n
p
u
t
,
R
e
c
o
r
d
o
u
t
p
u
t
)

ex
ec

ut
es

 th
e

EI
S

fu
nc

tio
n

as
 s

pe
ci

fie
d

by
 th

e
I
n
t
e
r
a
c
t
i
o
n
S
p
e
c

in
st

an
ce

an
d

up
da

te
s

th
e

ou
tp

ut
 R
e
c
o
r
d

w
ith

 th
e

re
su

lti
ng

 r
et

ur
n

va
lu

e.

j
a
v
a
x
.
r
e
s
o
u
r
c
e
.
c
c
i
.
I
n
t
e
r
a
c
t
i
o
n
S
p
e
c

Th
is

 in
te

rf
ac

e
re

pr
es

en
ts

 p
ro

pe
rt

ie
s

re
qu

ire
d

fo
r

dr
iv

in
g

in
te

ra
ct

io
n

w
ith

 th
e

EI
S.

 R
A

is
 r

eq
ui

re
d

to
 im

pl
em

en
t I

n
t
e
r
a
c
t
i
o
n
S
p
e
c

as
 a

 J
av

aB
ea

n
w

ith
ge

tt
er

s/
se

tt
er

s
fo

r
ea

ch
 o

f t
he

 p
ro

pe
rt

ie
s.

 C
on

ne
ct

or
 s

pe
ci

fic
at

io
n

de
fin

es
 th

e
fo

llo
w

in
g

th
re

e
st

an
da

rd
 in

te
ra

ct
io

n
pr

op
er

tie
s:

F
u
n
c
t
i
o
n
N
a
m
e

co
rr

es
po

nd
s

to
 th

e
na

m
e

of
 th

e
EI

S
fu

nc
tio

n
th

at
 th

e
gi

ve
n

in
te

ra
ct

io
n

w
ill

 e
xe

cu
te

.I
n
t
e
r
a
c
t
i
o
n
V
e
r
b

sp
ec

ifi
es

 th
e

m
od

e
of

 in
te

ra
ct

io
n

w
ith

 E
IS

. T
he

 s
ta

nd
ar

d
in

te
ra

ct
io

n
ve

rb
s

ar
e
S
Y
N
C
_
S
E
N
D

, S
Y
N
C
_
S
E
N
D
_

R
E
C
E
I
V
E

, a
nd

 S
Y
N
C
_
R
E
C
E
I
V
E
.
S
Y
N
C
_
S
E
N
D

sp
ec

ifi
es

 th
at

 th
e

ex
ec

ut
io

n
of

an
 I
n
t
e
r
a
c
t
i
o
n

w
ill

 p
er

fo
rm

 o
nl

y
se

nd
 o

pe
ra

tio
n

an
d

no
t t

he
 r

ec
ei

ve
op

er
at

io
n.

 S
Y
N
C
_
S
E
N
D
_
R
E
C
E
I
V
E

sp
ec

ifi
es

 th
at

 th
e

ex
ec

ut
io

n
w

ill
 p

er
fo

rm
bo

th
 s

yn
ch

ro
no

us
 s

en
d

an
d

re
ce

iv
e

op
er

at
io

ns
. S
Y
N
C
_
R
E
C
E
I
V
E

sp
ec

ifi
es

 th
at

th
e

ex
ec

ut
io

n
w

ill
 p

er
fo

rm
 o

nl
y

sy
nc

hr
on

ou
s

re
ce

iv
e

op
er

at
io

ns
. T

he
 la

st
m

od
e

is
 u

se
d

by
 a

n
ap

pl
ic

at
io

n
co

m
po

ne
nt

 to
 p

er
fo

rm
 a

 s
yn

ch
ro

no
us

ca
llb

ac
k

to
 E

IS
. N

ot
e

th
at

 C
C

I d
oe

s
no

t s
up

po
rt

 a
sy

nc
hr

on
ou

s
de

liv
er

y
of

m
es

sa
ge

s
to

 th
e

ap
pl

ic
at

io
n

co
m

po
ne

nt
s.

 T
he

 m
es

sa
ge

 in
flo

w
 s

ys
te

m
co

nt
ra

ct
 s

ho
ul

d
be

 u
se

d
fo

r
th

e
sa

m
e,

 a
s

w
e

w
ill

 s
ee

 la
te

r
in

 th
is

 c
ha

pt
er

.
E
x
e
c
u
t
i
o
n
T
i
m
e
o
u
t

sp
ec

ifi
es

 th
e

nu
m

be
r

of
 m

ill
is

ec
on

ds
 a

n
I
n
t
e
r
a
c
t
i
o
n

w
ill

 w
ai

t f
or

 a
n

EI
S

to
 e

xe
cu

te
 th

e
sp

ec
ifi

ed
 fu

nc
tio

n.
R

A
is

 n
ot

 r
eq

ui
re

d
to

 s
up

po
rt

 a
 s

ta
nd

ar
d

pr
op

er
ty

 if
 th

at
 p

ro
pe

rt
y

do
es

 n
ot

ap
pl

y
to

 th
e

un
de

rly
in

g
EI

S.
 A

ls
o,

 th
e

R
A

ca
n

su
pp

or
t a

dd
iti

on
al

I
n
t
e
r
a
c
t
i
o
n
S
p
e
c

pr
op

er
tie

s
if

th
ey

 a
re

 r
el

ev
an

t t
o

th
e

EI
S.

(c
on

tin
ue

d)

21_785415 ch15.qxp 6/5/06 7:04 PM Page 445

Ta
b

le
 1

5.
2

(c
on

tin
ue

d)

P
A

C
K

A
G

E
M

E
M

B
E

R
S

D
ES

C
R

IP
TI

O
N

j
a
v
a
x
.
r
e
s
o
u
r
c
e
.
c
c
i
.
R
e
c
o
r
d

Th
is

 in
te

rf
ac

e
re

pr
es

en
ts

 in
pu

t o
r

ou
tp

ut
 to

 th
e
e
x
e
c
u
t
e
(
)

m
et

ho
ds

 o
n

I
n
t
e
r
a
c
t
i
o
n

ob
je

ct
. T

hi
s

is
 th

e
ba

se
 in

te
rf

ac
e

fo
r

j
a
v
a
x
.
r
e
s
o
u
r
c
e
.
c
c
i
.
M
a
p
p
e
d
R
e
c
o
r
d

,
j
a
v
a
x
.
r
e
s
o
u
r
c
e
.
c
c
i
.
I
n
d
e
x
e
d
R
e
c
o
r
d

, a
nd

j
a
v
a
x
.
r
e
s
o
u
r
c
e
.
c
c
i
.
R
e
s
u
l
t
s
e
t

ty
pe

s
of

 r
ec

or
ds

.

j
a
v
a
x
.
r
e
s
o
u
r
c
e
.
c
c
i
.
M
a
p
p
e
d
R
e
c
o
r
d

M
a
p
p
e
d
R
e
c
o
r
d

re
pr

es
en

ts
 in

pu
t o

r
ou

tp
ut

 in
 th

e
fo

rm
 o

f a
 k

ey
-v

al
ue

-p
ai

r-
ba

se
d

co
lle

ct
io

n.
 N

at
ur

al
ly

, i
t e

xt
en

ds
 j
a
v
a
.
u
t
i
l
.
M
a
p

, a
pa

rt
 fr

om
j
a
v
a
x
.
r
e
s
o
u
r
c
e
.
c
c
i
.
R
e
c
o
r
d

in
te

rf
ac

e,
 to

 p
ro

vi
de

 th
is

 fu
nc

tio
na

lit
y.

j
a
v
a
x
.
r
e
s
o
u
r
c
e
.
c
c
i
.
I
n
d
e
x
e
d
R
e
c
o
r
d

I
n
d
e
x
e
d
R
e
c
o
r
d

re
pr

es
en

ts
 in

pu
t o

r
ou

tp
ut

 in
 th

e
fo

rm
 o

f a
n

or
de

re
d

an
d

in
de

xe
d

co
lle

ct
io

n.
 It

 e
xt

en
ds

 th
e
j
a
v
a
.
u
t
i
l
.
L
i
s
t

in
te

rf
ac

e,
 a

pa
rt

 fr
om

j
a
v
a
x
.
r
e
s
o
u
r
c
e
.
c
c
i
.
R
e
c
o
r
d

, t
o

en
ab

le
 th

is
 s

ea
rc

ha
bl

e
an

d
in

de
xe

d
co

lle
ct

io
n

of
 r

ec
or

d
el

em
en

ts
.

j
a
v
a
x
.
r
e
s
o
u
r
c
e
.
c
c
i
.
R
e
s
u
l
t
S
e
t

Th
is

 in
te

rf
ac

e
re

pr
es

en
ts

 ta
bu

la
r

da
ta

 th
at

 is
 r

et
rie

ve
d

fr
om

 E
IS

 a
s

a
re

su
lt

of
ex

ec
ut

in
g

a
fu

nc
tio

n
on

 E
IS

. I
t e

xt
en

ds
 j
a
v
a
.
s
q
l
.
R
e
s
u
l
t
S
e
t

, a
pa

rt
 fr

om
th

e
j
a
v
a
x
.
r
e
s
o
u
r
c
e
.
c
c
i
.
R
e
c
o
r
d

in
te

rf
ac

e,
 to

 p
ro

vi
de

 th
is

 fu
nc

tio
na

lit
y.

Th
us

, a
 C

C
I R
e
s
u
l
t
s
e
t

ha
s

ca
pa

bi
lit

ie
s

si
m

ila
r

to
 J

D
B

C
 R
e
s
u
l
t
S
e
t

in
 th

at
 it

ca
n

be
 s

cr
ol

la
bl

e
an

d
up

da
ta

bl
e,

 c
an

 s
up

po
rt

 v
ar

io
us

 J
av

a
ty

pe
s

an
d

co
nc

ur
re

nc
y

m
od

es
, a

nd
 s

o
on

.

j
a
v
a
x
.
r
e
s
o
u
r
c
e
.
c
c
i
.
R
e
s
u
l
t
S
e
t
I
n
f
o

Th
e

cl
ie

nt
 a

pp
lic

at
io

n
co

m
po

ne
nt

 c
an

 g
et

 in
fo

rm
at

io
n

ab
ou

t t
he

 v
ar

io
us

fa
ci

lit
ie

s
pr

ov
id

ed
 fo

r
R
e
s
u
l
t
S
e
t

by
 th

e
EI

S
th

ro
ug

h
th

is
 in

te
rf

ac
e.

R
e
s
u
l
t
S
e
t
I
n
f
o

su
pp

or
ts

 m
et

ho
ds

 s
uc

h
as

 s
u
p
p
o
r
t
s
R
e
s
u
l
t
S
e
t
T
y
p
e
(
)

,
s
u
p
p
o
r
t
s
R
e
s
u
l
t
T
y
p
e
C
o
n
c
u
r
r
e
n
c
y
(
)

, a
nd

 s
o

on
, t

o
pr

ov
id

e
th

is
in

fo
rm

at
io

n.
 T

he
 c

lie
nt

 c
an

 g
et

 h
ol

d
of

 th
e
R
e
s
u
l
t
S
e
t
I
n
f
o

in
st

an
ce

 th
ro

ug
h

th
e
g
e
t
R
e
s
u
l
t
S
e
t
I
n
f
o
(
)

m
et

ho
d

on
 C
o
n
n
e
c
t
i
o
n

.

21_785415 ch15.qxp 6/5/06 7:04 PM Page 446

Ta
b

le
 1

5.
2

(c
on

tin
ue

d)

P
A

C
K

A
G

E
M

E
M

B
E

R
S

D
ES

C
R

IP
TI

O
N

j
a
v
a
x
.
r
e
s
o
u
r
c
e
.
c
c
i
.
R
e
c
o
r
d
F
a
c
t
o
r
y

Th
is

 fa
ct

or
y

in
te

rf
ac

e
al

lo
w

s
th

e
cl

ie
nt

s
to

 c
re

at
e

in
st

an
ce

s
of

 M
a
p
p
e
d
R
e
c
o
r
d

an
d
I
n
d
e
x
e
d
R
e
c
o
r
d

. N
ot

e
th

at
 it

 is
 n

ot
 u

se
d

fo
r

cr
ea

tin
g
R
e
s
u
l
t
S
e
t

re
co

rd
s.

 T
he

 c
lie

nt
 c

om
po

ne
nt

 g
et

s
a

ho
ld

 o
f t

he
 R
e
c
o
r
d
F
a
c
t
o
r
y

in
st

an
ce

th
ro

ug
h
g
e
t
R
e
c
o
r
d
F
a
c
t
o
r
y
(
)

m
et

ho
d

on
 C
o
n
n
e
c
t
i
o
n
F
a
c
t
o
r
y

.

j
a
v
a
x
.
r
e
s
o
u
r
c
e
.
c
c
i
.
L
o
c
a
l
T
r
a
n
s
a
c
t
i
o
n

Th
is

 r
ep

re
se

nt
s

th
e

tr
an

sa
ct

io
n

de
m

ar
ca

tio
n

in
te

rf
ac

e
to

 b
e

us
ed

 b
y

cl
ie

nt
ap

pl
ic

at
io

n
co

m
po

ne
nt

s
fo

r
m

an
ag

in
g

lo
ca

l t
ra

ns
ac

tio
ns

 a
t t

he
 E

IS
 le

ve
l.

If
th

e
R

A
su

pp
or

ts
 lo

ca
l t

ra
ns

ac
tio

ns
, i

t s
ho

ul
d

im
pl

em
en

t t
hi

s
in

te
rf

ac
e.

 T
he

 c
lie

nt
ca

n
ge

t h
ol

d
of

 th
e
L
o
c
a
l
T
r
a
n
s
a
c
t
i
o
n

in
st

an
ce

 th
ro

ug
h

th
e

g
e
t
L
o
c
a
l
T
r
a
n
s
a
c
t
i
o
n
(
)

m
et

ho
d

on
 th

e
C
o
n
n
e
c
t
i
o
n

ob
je

ct
. I

f t
he

 R
A’

s
C

C
I i

m
pl

em
en

ta
tio

n
do

es
 n

ot
 s

up
po

rt
 lo

ca
l t

ra
ns

ac
tio

ns
,

g
e
t
L
o
c
a
l
T
r
a
n
s
a
c
t
i
o
n
(
)

sh
ou

ld
 th

ro
w

j
a
v
a
x
.
r
e
s
o
u
r
c
e
.
N
o
t
S
u
p
p
o
r
t
e
d
E
x
c
e
p
t
i
o
n

.

j
a
v
a
x
.
r
e
s
o
u
r
c
e
.
c
c
i
.
M
e
s
s
a
g
e
L
i
s
t
e
n
e
r

Th
is

 C
C

I i
nt

er
fa

ce
 r

ep
re

se
nt

s
a

re
qu

es
t/

re
sp

on
se

 m
es

sa
ge

 li
st

en
er

 th
at

 s
ho

ul
d

be
 im

pl
em

en
te

d
by

 m
es

sa
ge

 e
nd

po
in

ts
 (

su
ch

 a
s

m
es

sa
ge

-d
riv

en
 b

ea
ns

)
to

en
ab

le
 th

e
EI

S
to

 c
om

m
un

ic
at

e
w

ith
 th

em
 th

ro
ug

h
th

e
o
n
M
e
s
s
a
g
e
(
)

m
et

ho
d.

j
a
v
a
x
.
r
e
s
o
u
r
c
e
.
c
c
i

Th
is

 in
te

rf
ac

e
pr

ov
id

es
 in

fo
rm

at
io

n
ab

ou
t t

he
 c

ap
ab

ili
tie

s
of

 th
e

R
A.

 T
he

 c
lie

nt

.
R
e
s
o
u
r
c
e
A
d
a
p
t
e
r
M
e
t
a
D
a
t
a

ge
ts

 h
ol

d
of

 it
s

in
st

an
ce

 th
ro

ug
h

th
e
g
e
t
M
e
t
a
D
a
t
a
(
)

m
et

ho
d

on
C
o
n
n
e
c
t
i
o
n
F
a
c
t
o
r
y

.

N
ot

e
th

at
 th

e
R

A
is

 o
nl

y
su

pp
os

ed
 to

 im
pl

em
en

t t
he

 ty
pe

 o
f r

ec
or

d
th

at
 it

 d
ee

m
s

fit
 fo

r
th

e
un

de
rly

in
g

EI
S.

21_785415 ch15.qxp 6/5/06 7:04 PM Page 447

Ta
b

le
 1

5.
3

Th
e

ja
va

x.
re

so
ur

ce
.s

pi
 P

ac
ka

ge
 M

em
be

rs

P
A

C
K

A
G

E
M

E
M

B
E

R
S

D
ES

C
R

IP
TI

O
N

j
a
v
a
x
.
r
e
s
o
u
r
c
e
.
s
p
i
.
C
o
n
n
e
c
t
i
o
n
M
a
n
a
g
e
r

Th
e
a
l
l
o
c
a
t
e
C
o
n
n
e
c
t
i
o
n
(
)

m
et

ho
d

on
 C
o
n
n
e
c
t
i
o
n
M
a
n
a
g
e
r

pr
ov

id
es

 a
 h

oo
k

to
 th

e
ap

pl
ic

at
io

n
se

rv
er

 s
o

th
at

 it
 c

an
 p

ro
vi

de
ge

ne
ri

c
qu

al
ity

 o
f s

er
vi

ce
s

su
ch

 a
s

se
cu

rit
y,

 c
on

ne
ct

io
n

po
ol

in
g,

tr
an

sa
ct

io
n

m
an

ag
em

en
t,

lo
gg

in
g,

 a
nd

 s
o

on
, w

hi
le

 e
st

ab
lis

hi
ng

 a
co

nn
ec

tio
n

to
 th

e
EI

S.

j
a
v
a
x
.
r
e
s
o
u
r
c
e
.
s
p
i
.
M
a
n
a
g
e
d
C
o
n
n
e
c
t
i
o
n

Th
is

 in
te

rf
ac

e
re

pr
es

en
ts

 a
 p

hy
si

ca
l c

on
ne

ct
io

n
to

 th
e

un
de

rly
in

g
EI

S.

j
a
v
a
x
.
r
e
s
o
u
r
c
e
.
s
p
i
.
M
a
n
a
g
e
d
C
o
n
n
e
c
t
i
o
n
F
a
c
t
o
r
y

Th
is

 a
ct

s
as

 a
 fa

ct
or

y
fo

r
M
a
n
a
g
e
d
C
o
n
n
e
c
t
i
o
n

. I
t a

ls
o

pr
ov

id
es

m
et

ho
ds

 fo
r

m
at

ch
in

g
an

d
cr

ea
tin

g
M
a
n
a
g
e
d
C
o
n
n
e
c
t
i
o
n

in
st

an
ce

s,
th

er
eb

y
su

pp
or

tin
g

co
nn

ec
tio

n
po

ol
in

g.
 T

he
M
a
n
a
g
e
d
C
o
n
n
e
c
t
i
o
n
F
a
c
t
o
r
y

in
st

an
ce

 c
an

 s
up

po
rt

 v
ar

io
us

st
an

da
rd

 a
nd

 n
on

st
an

da
rd

 c
on

ne
ct

io
n

pr
op

er
tie

s.
 H

ow
ev

er
, i

t m
us

t
su

pp
or

t t
he

se
 c

on
ne

ct
io

n
pr

op
er

tie
s

th
ro

ug
h

Ja
va

B
ea

n-
st

yl
e

ge
tt

er
s/

se
tt

er
s.

j
a
v
a
x
.
r
e
s
o
u
r
c
e
.
s
p
i
.
M
a
n
a
g
e
d
C
o
n
n
e
c
t
i
o
n
M
e
t
a
D
a
t
a

Th
is

 in
te

rf
ac

e
pr

ov
id

es
 in

fo
rm

at
io

n
ab

ou
t t

he
 u

nd
er

ly
in

g
EI

S
in

st
an

ce
. A

n
ap

pl
ic

at
io

n
se

rv
er

 u
se

s
M
a
n
a
g
e
d
C
o
n
n
e
c
t
i
o
n
M
e
t
a
D
a
t
a

to
 g

et
 r

un
tim

e
in

fo
rm

at
io

n
ab

ou
t

th
e

co
nn

ec
te

d
EI

S
in

st
an

ce
 s

uc
h

as
 th

e
us

er
 a

ss
oc

ia
te

d
w

ith
 th

e
M
a
n
a
g
e
d
C
o
n
n
e
c
t
i
o
n

in
st

an
ce

, t
he

 m
ax

im
um

 li
m

it
of

 a
ct

iv
e

co
nn

ec
tio

ns
 th

at
 a

n
EI

S
ca

n
su

pp
or

t,
an

d
th

e
EI

S’
s

pr
od

uc
t n

am
e

an
d

ve
rs

io
n.

 T
he

 a
pp

lic
at

io
n

se
rv

er
 g

et
s

th
is

 m
et

ad
at

a
in

st
an

ce
th

ro
ug

h
th

e
g
e
t
M
e
t
a
D
a
t
a
(
)

m
et

ho
d

on
 M
a
n
a
g
e
d
C
o
n
n
e
c
t
i
o
n

.

j
a
v
a
x
.
r
e
s
o
u
r
c
e
.
s
p
i
.
C
o
n
n
e
c
t
i
o
n
E
v
e
n
t
L
i
s
t
e
n
e
r

Th
is

 in
te

rf
ac

e,
 im

pl
em

en
te

d
by

 th
e

ap
pl

ic
at

io
n

se
rv

er
, i

s
us

ed
 b

y
th

e
M
a
n
a
g
e
d
C
o
n
n
e
c
t
i
o
n

im
pl

em
en

ta
tio

n
to

 s
en

d
co

nn
ec

tio
n

ev
en

ts
to

 th
e

ap
pl

ic
at

io
n

se
rv

er
. T

he
 a

pp
lic

at
io

n
se

rv
er

 r
eg

is
te

rs
 a

n
in

st
an

ce
of

 C
o
n
n
e
c
t
i
o
n
E
v
e
n
t
L
i
s
t
e
n
e
r

w
ith

 M
a
n
a
g
e
d
C
o
n
n
e
c
t
i
o
n

th
ro

ug
h

th
e
a
d
d
C
o
n
n
e
c
t
i
o
n
E
v
e
n
t
L
i
s
t
e
n
e
r
(
)

m
et

ho
d

on
M
a
n
a
g
e
d
C
o
n
n
e
c
t
i
o
n

. T
he

 a
pp

lic
at

io
n

se
rv

er
 u

se
s

th
es

e
ev

en
t

no
tif

ic
at

io
ns

 to
 m

an
ag

e
co

nn
ec

tio
n

po
ol

s,
 lo

ca
l t

ra
ns

ac
tio

ns
, a

nd
pe

rf
or

m
 c

le
an

-u
p,

 a
nd

 s
o

on
.

21_785415 ch15.qxp 6/5/06 7:04 PM Page 448

Ta
b

le
 1

5.
3

(c
on

tin
ue

d)

P
A

C
K

A
G

E
M

E
M

B
E

R
S

D
ES

C
R

IP
TI

O
N

j
a
v
a
x
.
r
e
s
o
u
r
c
e
.
s
p
i
.
C
o
n
n
e
c
t
i
o
n
R
e
q
u
e
s
t
I
n
f
o

R
A

im
pl

em
en

ts
 th

is
 in

te
rf

ac
e

to
 s

up
po

rt
 it

s
ow

n
co

nn
ec

tio
n

re
qu

es
t–

sp
ec

ifi
c

pr
op

er
tie

s.
 T

he
 a

pp
lic

at
io

n
se

rv
er

 p
as

se
s

th
es

e
pr

op
er

tie
s

to
 a

 r
es

ou
rc

e
ad

ap
te

r
vi

a
th

e
c
r
e
a
t
e
M
a
n
a
g
e
d
C
o
n
n
e
c
t
i
o
n
(
)

an
d

m
a
t
c
h
M
a
n
a
g
e
d
C
o
n
n
e
c
t
i
o
n
(
)

m
et

ho
ds

 o
n

M
a
n
a
g
e
d
C
o
n
n
e
c
t
i
o
n
F
a
c
t
o
r
y

so
 th

at
 R

A
ca

n
us

e
th

is
 a

dd
iti

on
al

pe
r-

re
qu

es
t i

nf
or

m
at

io
n

to
 d

o
co

nn
ec

tio
n

cr
ea

tio
n

an
d

m
at

ch
in

g.

j
a
v
a
x
.
r
e
s
o
u
r
c
e
.
s
p
i
.
R
e
s
o
u
r
c
e
A
d
a
p
t
e
r

Th
is

 in
te

rf
ac

e
re

pr
es

en
ts

 a
n

R
A

in
st

an
ce

. I
t c

on
ta

in
s

va
rio

us
op

er
at

io
ns

 fo
r

lif
e-

cy
cl

e
m

an
ag

em
en

t a
nd

 m
es

sa
ge

 e
nd

po
in

t s
et

up
,

pr
ov

id
ed

 th
at

 th
e

R
A

su
pp

or
ts

 li
fe

-c
yc

le
 m

an
ag

em
en

t a
nd

 th
e

m
es

sa
ge

 in
flo

w
 s

ys
te

m
 c

on
tr

ac
t.

If
th

e
R

A
do

es
 n

ot
 s

up
po

rt
 th

es
e

co
nt

ra
ct

s,
 it

 d
oe

s
no

t h
av

e
to

 im
pl

em
en

t t
hi

s
in

te
rf

ac
e.

j
a
v
a
x
.
r
e
s
o
u
r
c
e
.
s
p
i
.
B
o
o
t
s
t
r
a
p
C
o
n
t
e
x
t

Th
e
B
o
o
t
s
t
r
a
p
C
o
n
t
e
x
t

in
st

an
ce

 is
 p

as
se

d
by

 th
e

ap
pl

ic
at

io
n

se
rv

er
 to

 th
e

R
A

th
at

 im
pl

em
en

ts
 th

e
lif

e-
cy

cl
e

sy
st

em
 c

on
tr

ac
t

th
ro

ug
h

th
e
s
t
a
r
t
(
)

m
et

ho
d

on
 R
e
s
o
u
r
c
e
A
d
a
p
t
e
r

. I
t a

llo
w

s
th

e
R

A
to

 u
se

 v
ar

io
us

 a
pp

lic
at

io
n

se
rv

er
–p

ro
vi

de
d

fa
ci

lit
ie

s
su

ch
 a

s
th

e
tim

er
 s

er
vi

ce
 a

nd
 w

or
k

m
an

ag
er

. A
ls

o,
 it

 p
ro

vi
de

s
an

 in
st

an
ce

 o
f

X
A
T
e
r
m
i
n
a
t
o
r

th
ro

ug
h

th
e
g
e
t
X
A
T
e
r
m
i
n
a
t
o
r
(
)

m
et

ho
d.

j
a
v
a
x
.
r
e
s
o
u
r
c
e
.
s
p
i
.
X
A
T
e
r
m
i
n
a
t
o
r

Th
e

ap
pl

ic
at

io
n

se
rv

er
 im

pl
em

en
ts

 th
is

 in
te

rf
ac

e
as

 p
ar

t o
f t

he
tr

an
sa

ct
io

n
in

flo
w

 s
ys

te
m

 c
on

tr
ac

t.
Th

e
R

A
us

es
 th

e
X
A
T
e
r
m
i
n
a
t
o
r

in
st

an
ce

 to
 fl

ow
 in

 tr
an

sa
ct

io
n

co
m

pl
et

io
n

an
d

cr
as

h
re

co
ve

ry
 c

al
ls

fr
om

 a
n

EI
S.

 X
A
T
e
r
m
i
n
a
t
o
r

pr
ov

id
es

 m
et

ho
ds

 s
uc

h
as

 c
o
m
m
i
t
(
)

,
p
r
e
p
a
r
e
(
)

, f
o
r
g
e
t
(
)

, r
e
c
o
v
e
r
(
)

, a
nd

 r
o
l
l
b
a
c
k
(
)

to
co

m
m

un
ic

at
e

w
ith

 th
e

ap
pl

ic
at

io
n

se
rv

er
’s

 tr
an

sa
ct

io
n

m
an

ag
er

ab
ou

t t
he

 s
ta

te
 o

f t
he

 in
co

m
in

g
gl

ob
al

 tr
an

sa
ct

io
n.

(c
on

tin
ue

d)

21_785415 ch15.qxp 6/5/06 7:04 PM Page 449

Ta
b

le
 1

5.
3

(c
on

tin
ue

d)

P
A

C
K

A
G

E
M

E
M

B
E

R
S

D
ES

C
R

IP
TI

O
N

j
a
v
a
x
.
r
e
s
o
u
r
c
e
.
s
p
i
.
L
o
c
a
l
T
r
a
n
s
a
c
t
i
o
n

Th
e

R
A

im
pl

em
en

ts
 th

e
L
o
c
a
l
T
r
a
n
s
a
c
t
i
o
n

in
te

rf
ac

e
to

 s
up

po
rt

tr
an

sa
ct

io
ns

 lo
ca

l t
o

EI
S.

 T
he

 R
A

pr
ov

id
es

 a
cc

es
s

to
 it

s
L
o
c
a
l
T
r
a
n
s
a
c
t
i
o
n

in
st

an
ce

 th
ro

ug
h

th
e

g
e
t
L
o
c
a
l
T
r
a
n
s
a
c
t
i
o
n
(
)

m
et

ho
d

on
 M
a
n
a
g
e
d
C
o
n
n
e
c
t
i
o
n

. T
h
e

g
e
t
L
o
c
a
l
T
r
a
n
s
a
c
t
i
o
n
(
)

m
et

ho
d

on
 th

e
C
o
n
n
e
c
t
i
o
n

in
te

rf
ac

e
im

pl
em

en
ta

tio
n

w
ill

 c
al

l t
he

 g
e
t
L
o
c
a
l
T
r
a
n
s
a
c
t
i
o
n
(
)

m
et

ho
d

on
M
a
n
a
g
e
d
C
o
n
n
e
c
t
i
o
n

to
 u

lti
m

at
el

y
pr

ov
id

e
an

 in
st

an
ce

 o
f

j
a
v
a
x
.
r
e
s
o
u
r
c
e
.
c
c
i
.
L
o
c
a
l
T
r
a
n
s
a
c
t
i
o
n

to
 th

e
cl

ie
nt

ap
pl

ic
at

io
n

co
m

po
ne

nt
.

j
a
v
a
x
.
r
e
s
o
u
r
c
e
.
s
p
i
.
R
e
s
o
u
r
c
e
A
d
a
p
t
e
r
A
s
s
o
c
i
a
t
i
o
n

Th
e

R
A

im
pl

em
en

ts
 th

is
 in

te
rf

ac
e

to
 a

ss
oc

ia
te

 th
e

R
e
s
o
u
r
c
e
A
d
a
p
t
e
r

ob
je

ct
 w

ith
 o

th
er

 o
bj

ec
ts

 s
uc

h
as

M
a
n
a
g
e
d
C
o
n
n
e
c
t
i
o
n
F
a
c
t
o
r
y

an
d
A
c
t
i
v
a
t
i
o
n
S
p
e
c

. I
t h

as
g
e
t
R
e
s
o
u
r
c
e
A
d
a
p
t
e
r
(
)

an
d
s
e
t
R
e
s
o
u
r
c
e
A
d
a
p
t
e
r
(
)

m
et

ho
ds

th
at

 c
an

 b
e

us
ed

 fo
r

th
is

 p
ur

po
se

.

j
a
v
a
x
.
r
e
s
o
u
r
c
e
.
s
p
i
.
A
c
t
i
v
a
t
i
o
n
S
p
e
c

Th
e

R
A

th
at

 s
up

po
rt

s
m

es
sa

ge
 in

flo
w

 c
on

tr
ac

t s
ho

ul
d

im
pl

em
en

t t
hi

s
in

te
rf

ac
e

as
 a

 J
av

aB
ea

n.
 T

he
 A
c
t
i
v
a
t
i
o
n
S
p
e
c

in
st

an
ce

 c
an

 p
ro

vi
de

co
nn

ec
tiv

ity
 in

fo
rm

at
io

n
to

 e
na

bl
e

in
bo

un
d

m
es

sa
gi

ng
.

21_785415 ch15.qxp 6/5/06 7:04 PM Page 450

The javax.resource.spi.endpoint Package
This package consists of APIs pertaining to message inflow system contract.
Table 15.4 discusses the main members of this package.

The javax.resource.spi.security Package
This package contains APIs for security system contract. Table 15.5 discusses
members of this package.

Table 15.4 The javax.resource.spi.endpoint Package Members

PACKAGE MEMBERS DESCRIPTION

javax.resource.spi The application server implements this
.endpoint.MessageEndpoint interface. The RA calls various methods on

this interface to notify the application
server that it is about to deliver a message
or that it just delivered a message. The
application server uses these notifications
to start or stop transactions, provided that
message delivery is transactional, that is,
the onMessage() method on the
message listener interface implemented by
MDB is marked as transactional (container
managed).

javax.resource.spi When the RA supports message inflow
.MessageEndpointFactory contract it uses an instance of

MessageEndpointFactory to obtain
message endpoint instances for delivering
messages. Also, the RA can use this
interface to find out if message deliveries
to a target method on message listener
interface implemented by a given message
endpoint is transactional or not. Like
MessageEndpoint, the application server
also implements
MessageEndpointFactory.

Table 15.5 The javax.resource.spi.security Package Members

PACKAGE MEMBERS DESCRIPTION

javax.resource.spi. This class acts as a holder of the user name
security.PasswordCredential and password security token. This class

enables the application server to pass
user’s security credentials to the RA.

EJB Integration 451

21_785415 ch15.qxp 6/5/06 7:04 PM Page 451

The RA uses other interfaces and classes as well for implementing security
system contract. These are discussed later in this chapter.

The javax.resource.spi.work Package
This package contains APIs for work management system contract. Table 15.6
discusses main members of this package.

Table 15.6 The javax.resource.spi.work Package Members

PACKAGE MEMBERS DESCRIPTION

javax.resource.spi The application server implements this top-
.work.WorkManager level interface for the work management

contract. The RA gets a hold of
WorkManager by calling
getWorkManager() on
BootstrapContext. It provides methods
used by the RA for submitting Work
instances for processing.

javax.resource.spi The Work interface is implemented by the
.work.Work RA and it represents the logic, such as

delivering incoming messages to message
endpoints in the application server that the
RA wants the application server to execute
on a different thread.

javax.resource.spi The RA can implement this interface if it
.work.WorkListener wants to be notified by the application server

of various stages, such as work accepted,
work completed, work rejected, and so on, in
the work-processing life cycle. The RA
supplies the WorkListener instance to the
application server via various work
submission methods such as
scheduleWork(), startWork(), or
doWork() on WorkManager.

javax.resource.spi The RA can implement this interface if it
.work.WorkListener wants to be notified by the application server

of various stages, such as work accepted,
work completed, work rejected, and so on, in
the work-processing life cycle. The RA
supplies the WorkListener instance to the
application server via various work
submission methods such as
scheduleWork(), startWork(), or
doWork() on WorkManager.

452 Chapter 15

21_785415 ch15.qxp 6/5/06 7:04 PM Page 452

Table 15.6 (continued)

PACKAGE MEMBERS DESCRIPTION

javax.resource.spi This class models an execution context
.work.ExecutionContext associated with a given Work instance such

as transactions, security, and so on. The RA
can extend this class and override methods
of interest to further tune the execution
context to the EIS.

javax.resource.spi This class represents the various events that
.work.WorkEvent occur during Work processing. The

application server constructs the WorkEvent
instance and passes it to the RA via
WorkListener.

System Contracts

Now that you know connector APIs, let’s look at how the RA implements sys-
tem contracts so as to enable the application server to provide it with various
services. This understanding will prove instrumental when developing an RA
for your own EIS.

Life Cycle Management
By implementing life cycle management contract, the RA enables the applica-
tion server to manage its life cycle in terms of:

■■ Bootstrapping an RA instance during RA deployment or application
server startup. During bootstrapping, the application server makes facil-
ities such as the timer service and work manager available to the RA.

■■ Notifying the RA instance during its deployment, application server
startup, undeployment, and application server shutdown events.

Figure 15.4 shows the object diagram for life cyclemanagement.

EJB Integration 453

21_785415 ch15.qxp 6/5/06 7:04 PM Page 453

Figure 15.4 Life cycle management object diagram.

Some of the important implementation details for this contract are:

■■ The RA implements the ResourceAdapter interface to receive its life
cycle related notifications from application server.

■■ If the RA supports inbound communication from the EIS in the form of
message or transaction inflow, this occurs within the context of a
ResourceAdapter thread.

■■ The application server calls the start() method on
ResourceAdapter during, which it passes BootstrapContext
instance. The RA saves this BootstrapContext instance for later use.
The RA can also perform other initialization routines in start(), such
as setting up Work instances to be executed on multiple threads or
preparing to listen incoming messages from the EIS.

■■ The application server calls the stop() method on
ResourceAdapter in which the RA should release its resources.

Connection Management
By implementing a connection management contract, the RA enables the
application server to manage connections and provide quality of service on its

MessageEndpointFactory

Application Server

ResourceAdapter

ResourceAdapter

Resource Adapter

Bootstrap Context

getXATerminator()

getWorkManager()

endpointDeactivation
(MessageEndpointFactory,
ActivationSpec)

endpointActivation
(MessageEndpointFactory,
ActivationSpec)

start(BootstrapContext) / stop()

WorkManager

XATerminator

454 Chapter 15

21_785415 ch15.qxp 6/5/06 7:04 PM Page 454

behalf. The RA provides connection and connection factory interfaces. A con-
nection factory acts as a factory for EIS instances. For example, java.sql
.DataSource and java.sql.Connection act as connection factory and
connection interfaces for JDBC databases. If an EIS does not have an EIS-
specific API, then it can provide implementations of javax.resource.cci
.ConnectionFactory and javax.resource.cci.Connection.

The various steps involved during connection management are:

1. When the RA is deployed or the application server is started, an
instance of ManagedConnectionFactory is created. The application
server calls various setters on ManagedConnectionFactory instance
to set the RA-specific connection properties, if they were provided
during RA deployment. For example, if your RA needs to know
the EIS URL in order to connect to it, you can provide an
Eis_Url connection property during RA deployment and
implement the respective getter/setter methods for this property in
ManagedConnectionFactory implementation.

2. The deployer then creates a connection pool for the given RA, using the
vendor-provided administration tools.

3. When a client application component attempts to create a connection
to the EIS for the first time after pool creation or after the
application server has been started, the application server creates
ManagedConnection instances by calling createManaged
Connection() on the ManagedConnectionFactory object. The
deployer can specify the number of managed connection instances
required in the connection pool during the pool creation.

4. The application component then looks up the EIS connection factory in
the JNDI namespace. The application server either returns an instance
of an EIS-specific connection factory (such as javax.sql
.DataSource) or CCI connection factory (javax.resource
.cci.ConnectionFactory). The application server does this by
calling the createConnectionFactory() method on the
ManagedConnectionFactory instance.

5. Once the client gets the connection factory instance, it calls an appropri-
ate method to get a hold of the connection instance. In case of an RA
supporting CCI, this would mean calling the getConnection()
method on the ConnectionFactory instance.

EJB Integration 455

21_785415 ch15.qxp 6/5/06 7:04 PM Page 455

6. The connection factory implementation delegates the request for a con-
nection to the javax.resource.spi.ConnectionManager instance
by calling its allocateConnection() method. As already noted,
allocateConnection() provides a hook to the application server
for it to provide services such as connection pooling, security, transac-
tions, logging, and so on.

7. Upon receiving the request for a connection from the
connection factory, the ConnectionManager instance calls
matchManagedConnection() on the ManagedConnectionFactory
instance, passing it a set of all the unused ManagedConnection
instances in the pool.

8. If the matchManagedConnection() method determines that a Man-
agedConnection could be used, it returns it to the application server.
This determination is done by matching the connection request proper-
ties provided by the client application component, through the
javax.resource.cci.ConnectionRequestInfo object, with that
of the ManagedConnection instance.

9. If the matchManagedConnection() method does not find a usable
instance of ManagedConnection, the application server creates a new
instance of ManagedConnection.

10. The application server calls getConnection() on the
ManagedConnection instance and returns the connection handle
corresponding to ManagedConnection (javax.resource.cci
.Connection in case of CCI) to the client.

11. Once the application component gets a connection handle, it starts
interacting with the EIS using the appropriate client-side APIs. An
application component working with a CCI-enabled RA uses the
javax.resource.cci.Interaction object to do this. It gets hold
of the Interaction object by calling the createInteraction()
method on the Connection instance.

12. The client application component uses one of the execute() methods
on Interaction to execute an EIS function. The semantics of the
EIS function call such as function name, execution timeout, and
so on, are provided through the InteractionSpec instance. The
input and output to the EIS function is provided in terms of javax
.resource.cci.Record instances.

13. Once the EIS function is executed and the application component
receives the resultant output, it can close the connection to the EIS by
calling close() on Connection instance.

456 Chapter 15

21_785415 ch15.qxp 6/5/06 7:04 PM Page 456

14. By calling the close() method, the application server is notified that
the managed connection corresponding to the given connection handle
is finished servicing the client and that it can be placed back into the
pool. At this time, the application server can also call destroy() on
ManagedConnection if it created a new instance of ManagedCon-
nection just to satisfy this specific client request. This happens when
the application server has had to create a new ManagedConnection
instance in spite of reaching the maximum limit of connections in the
pool to satisfy a client request.

15. Finally, when the application server is about to shut down or when the
connection pool is undeployed (using the vendor-provided administra-
tion tools), the application server will call destroy() on each instance
of ManagedConnection in the pool.

Figure 15.5 shows the interaction between various objects upon receiving
connection request from the client application component.

Figure 15.5 Connection management object diagram.

add/removeConnectionEventListener

getConnection

Architected interface

Create new instance

createManagedConnection
matchManagedConnection
createConnectionFactory

allocateConnection()

Create
new

instance

Create
new instance

Create
new instance

ManagedConnectionFactory

ManagedConnection

EIS
Specific

EIS
Application Server

Resource
Adapter

RA
specific

Connection event notifications

Security services

Connection pooling

Transaction
management

Application server
specific

Instantiation
Implementation specific

Application
component

Application server
specific

Client-side
Connection factory

Client-side
Connection

EJB Integration 457

21_785415 ch15.qxp 6/5/06 7:04 PM Page 457

Security Management
The security management contract is an extension of the connection manage-
ment contract, meaning that the RA will have to implement the connection
management contract to provide security connectivity to and from the EIS.
Connector security architecture extends the security model for Java EE appli-
cations, specifically authentication and authorization, to EIS sign-on. The con-
nector architecture specification does not mandate that application servers
support specific authentication mechanisms. The Java EE reference implemen-
tation, however, supports Kerberos v5 and basic password authentication
mechanisms.

EIS sign-on can be done programmatically or declaratively. The former is
known as component-managed sign-on and the latter is known as container-
managed sign-on.

Container-Managed Sign-On

In container-managed sign-on, the application server is configured to manage
EIS sign-on. When the client application component calls getConnection()
on javax.resource.cci.ConnectionFactory or an equivalent method
of the RA client API, it is not required to pass any security information. When
the getConnection() method invokes the allocateConnection()
method on ConnectionManager, it gives the application server a chance to
provide security services. This is when the application server creates the JAAS
Subject corresponding to the authenticated user. It passes this Subject
instance to the RA when calling the createManagedConnection() method
on the ManagedConnectionFactory instance. Note that an application
server might map the caller principal (principal associated with the applica-
tion component’s security context) to the resource principal (principal under
whose security context a connection to EIS is established) or might provide
other specific security services before passing the Subject to the RA.

The RA uses the security credential(s) information presented within
Subject to establish a connection to the EIS. Depending on authentication
mechanism used by the application server and RA, the credentials can be of
type javax.resource.spi.security.PasswordCredential or org.
ietf.jgss.GSSCredential. Thus, in container-managed sign-on, the RA
is driven by the application server in that it acts based on the security infor-
mation passed down by the container.

The sequence diagram in Figure 15.6 demonstrates container-managed EIS
sign-on.

Refer to Chapter 11 for more on EJB security and JAAS.

458 Chapter 15

21_785415 ch15.qxp 6/5/06 7:04 PM Page 458

Figure 15.6 Container-managed EIS sign-on.

Component-Managed Sign-On

This type of sign-on requires the client application component to provide secu-
rity information explicitly through ConnectionSpec in getConnection()
or an equivalent method of the RA client API. The getConnection()
method on the connection factory instance invokes the allocateConnec-
tion() method on the ConnectionManager instance and passes this
security information via the ConnectionRequestInfo object. The secu-
rity information passed this way is opaque to the application server. Hence,
when the application server calls createManagedConnection() on the
ManagedConnectionFactory instance, it passes it a null Subject instance.
However, the security information passed by the client application component
is maintained intact in the ConnectionRequestInfo object passed to cre-
ateManagedConnection(). The RA uses the security information pre-
sented within the ConnectionRequestInfo JavaBean to establish a
connection to the EIS. Thus in component-managed sign-on, the RA is driven
by the client application component in that it acts based on the security infor-
mation provided by the component.

The sequence diagram in Figure 15.7 demonstrates container-managed EIS
sign-on.

RA‘s Client-side
connection factory

: EnterpriseBean

Get connection

Return
connection
handle

ConnectionManager.allocateConnection()

createManagedConnection(Subject,
ConnectionRequestInfo)

Return
ManagedConnection

Uses security
information
presented by
container as
Subject to
authenticate
with EIS

Return connection handle
a la javax.resource.cci.Connection

Application
Server EIS

: Managed
ConnectionFactory

Application server provides QoS as part of
which it initialize JAAS Subject
corresponding to the authenticated caller

EJB Integration 459

21_785415 ch15.qxp 6/5/06 7:04 PM Page 459

Figure 15.7 Component-managed EIS sign-on.

Transaction Management
The transaction management contract is layered on top of connection manage-
ment. To support outbound transaction propagation, the RA has to support
outbound connections to the EIS. The RA can support either local transactions
or global transactions through the transaction management system contracts.
A local transaction is managed internally in the EIS and RA, without any help
from external transaction managers such as the one provided by the Transac-
tion Service. Global transactions, on the other hand, are controlled and coordi-
nated by an external transaction manager.

Local Transaction Management Contract

A local transaction management contract requires the RA to implement the
javax.resource.spi.LocalTransaction interface. The LocalTrans-
action implementation will work with the low-level EIS APIs to signal its
resource manager about the transaction begin, commit, and rollback events.

The application server uses the instance of LocalTransaction to transpar-
ently manage local transactions in case of container-demarcated transactions.
The application server gets a hold of the LocalTransaction instance by call-
ing getLocalTransaction() on ManagedConnection. Figure 15.8 shows
how local transaction management is done for a container-managed transaction.

RA‘s Client-side
connection factory

: EnterpriseBean

Get connection

Return
connection
handle

ConnectionManager.allocateConnection()

createManagedConnection(null,
ConnectionRequestInfo)

Return
ManagedConnection

Uses security
information
presented within
ConnectionRequestInfo
to authenticate to EIS

Return connection handle
a la javax.resource.cci.Connection

Application
Server EIS

: Managed
ConnectionFactory

Application server provides QoS. However, it
is not responsible for passing down security
credentials of principal caller in the form of
JAAS Subject.

460 Chapter 15

21_785415 ch15.qxp 6/5/06 7:04 PM Page 460

Figure 15.8 Local transaction management for a container-managed transaction.

If the client application component chooses to demarcate transactions using an
RA-supported client transaction demarcation API (such as javax.resource
.cci.LocalTransaction), then the RA will be responsible for notifying the
application server of the transaction events such as begin, commit, and roll-
back. The RA does this by calling the localTransactionStarted(),
localTransactionCommitted(), and localTransactionRolledback()
methods on javax.resource.spi.ConnectionEventListener. Figure
15.9 shows how local transaction management is done for a client-demarcated
transaction.

Global Transaction Management Contract

A global transaction management contract requires the RA to provide an
implementation for the javax.transaction.xa.XAResource interface.
The XAResource implementation will use low-level libraries to communicate
with the EIS resource manager. Implementing XAResource will enable the
EIS resource manager to participate in transactions that are controlled and
coordinated by the application server’s transaction manager. The transaction
manager communicates transaction association, completion, and recovery sig-
nals to the EIS resource manager via XAResource.

RA‘s Client-side
connection factory

: EnterpriseBean

Get connection
to EIS from a
container-
managed
transactional
bean method

Return connection
handle

Return connection
handle

Application
Server

: Managed
ConnectionFactory

: Managed
Connection

: Local
Transaction

Application server gets ManagedConnection instance
from connection pool or creates a new instance

ConnectionManager.allocateConnection()

getLocalTransaction()

begin()

getConnection(Subject, ConnectionRequest)

EJB Integration 461

21_785415 ch15.qxp 6/5/06 7:04 PM Page 461

Figure 15.9 Local transaction management for client-demarcated transaction.

The application server gets the XAResource instance by calling the
getXAResource() method on ManagedConnection. The application server
gets the XAResource instance when it has to enlist the EIS resource manager in
a global transaction. Subsequently, when the client application component
closes the connection, the application server performs transactional clean-up by
de-listing the XAResource corresponding to ManagedConnection from the
transaction manager.

The object interaction diagrams of enlisting and delisting XAResource are
shown in Figures 15.10 and 15.11.

Work Management
Sometimes, you need your RA to multithread. However, in a managed envi-
ronment creating and executing threads is not encouraged, mainly because the
application server will not have control over such threads and, therefore, will
not be able to manage them. To prevent the RA from creating and managing
threads directly, the connector architecture provides a mechanism through
which the RA can delegate thread management to the application server and
consequently get its work done on multiple threads.

: Managed
Connection

Factory

RA‘s Client-side
connection factory

Client-side
connection

: Enterprise
Bean

Get connection
to EIS from a
bean-managed
transactional
bean method

getLocalTransaction()

getConnection(Subject, ConnectionRequest)

Communicates to ManagedConnection
the client transaction begin / commit / rollback

Signals application server of transaction events

Calls the corresponding
begin / commit / rollback
method

begin() / commit() / rollback()

Return
connection

handle

Return
connection

handle

Client-side local
transaction
interface

Application
Server

: Managed
Connection

: Local
Transaction

Application server gets ManagedConnection instance from connection pool or creates a new
instance. ManagedConnection creates LocalTransaction instance in its constructor.

ConnectionManager.allocateConnection()

462 Chapter 15

21_785415 ch15.qxp 6/5/06 7:04 PM Page 462

Figure 15.10 Enlisting EIS resource manager with transaction manager.

Figure 15.11 Delisting EIS resource manager with transaction manager.

: Enterprise
Bean

: Managed
Connection

Factory

RA‘s Client-side
connection factory

Transaction
Manager

Close connection

Transaction.delistResource(XAResource, flag)

XAResource.end(XID, flag)

Application
Server

: Managed
Connection : XAResource

Communicates to ManagedConnection about the client closing connection

connectionClosed(ConnectionEvent:CONNECTION_CLOSED)

Notify all registered
ConnectionEventListener

ManagedConnection.cleanup()

: Enterprise
Bean

: Managed
Connection

Factory

RA‘s Client-side
connection factory

Transaction
Manager

Get connection

getXAResource()

getConnection(Subject, ConnectionRequest)

Transaction.enlistResource(XAResource)

XAResource.start(XID, flag)

Return
connection

handle

Return
connection

handle

Application
Server

: Managed
Connection : XAResource

Application server gets ManagedConnection instance
from connection pool or creates a new instance.

ConnectionManager.allocateConnection()

EJB Integration 463

21_785415 ch15.qxp 6/5/06 7:04 PM Page 463

Under the work management contract, the RA creates Work instances, rep-
resenting units of work that the RA wants to execute on different threads, and
submits them to the application server. The application server uses the threads
from its pool to execute these submitted Work instances. Work instances can be
executed on separately executing threads, since they implement Runnable.

Figure 15.12 shows the interaction among various objects during work
management.

Note the following in Figure 15.12:

■■ The RA gets the WorkManager instance by calling the getWorkMan-
ager() method on the BootstrapContext object.

■■ The RA implements units of work as instances of Runnable and sub-
mits them for execution on different threads to the application server
through the doWork(), startWork(), or scheduleWork() methods.
The doWork() method blocks the current thread until the Work
instance completes execution; the startWork() method blocks until
the Work instance starts execution, and the scheduleWork() method
accepts the Work instance for processing and returns immediately.

■■ After accepting Work for processing, the WorkManager dispatches a
thread that calls the run() method to begin execution of Work. The
Work execution completes when run() returns. The WorkManager
can call release() to request Work instance to complete execution as
soon as it can.

■■ Additionally, the RA can provide ExecutionContext within which
the Work instance will be executed, when submitting work.

■■ Also, the RA can provide a WorkListener object to the work submis-
sion methods so that the application server can call the RA to notify it
of various work execution relatedevents such as work acceptance, work
rejection, and so on.

Message Inflow
The message inflow contract allows the RA to asynchronously deliver mes-
sages to message endpoints, such as message-drivenbeans, residing within the
application server independent of messaging semantics. This contract supple-
ments the connection management contract in that, just like the connection
management contract, it is implemented for outbound communication from
the RA to the EIS; the message inflow contract is implemented for receiving
inbound messages sent from the EIS to the application server endpoints.

464 Chapter 15

21_785415 ch15.qxp 6/5/06 7:04 PM Page 464

Figure 15.12 Work management object diagram.

Considering message-oriented middleware (MOM) systems as a category of
EIS, inbound communication from such MOM systems to the application
server endpoints can be facilitated by implementing the message inflow con-
tract. Hence, from J2EE 1.4 onwards, all JMS and non-JMS messaging
providers were implemented as RAs, which in turn implemented the message
inflow contract.

Some of the important implementation details for this contract are:

■■ The RA implements the javax.resource.spi.ActivationSpec
JavaBean and supplies its class to the application server during its
deployment. ActivationSpec is opaque to the application server and
is used by the RA to establish subscriptions to the requested data from
the EIS.

■■ The RA provides a message listener interface, akin to javax
.jms.MessageListener, and a message interface, akin to
javax.jms.Message. The message listener interface will be imple-
mented by message endpoints similar to the way that JMS MDB imple-
ments javax.jms.MessageListener. Also, the message listener

BootstrapContext

Application Server Resource Adapter

getWorkManager()

WorkManager

Work

doWork(), startWork()

scheduleWork()

WorkEvent
getType(), getWork()

getStartTime(), getException()

WorkRejectedException
getErrorCode()

run(), release()

ExecutionContext
getXid(), getTransactionTimeout()

set Xid(), set TransactionTimeout()

WorkListener

WorkException

WorkCompletedException

workAccepted(), workStarted()

workRejected(), workCompleted()

EJB Integration 465

21_785415 ch15.qxp 6/5/06 7:04 PM Page 465

interface should have a public method, akin to onMessage() of the
javax.jms.MessageListener interface, that can be invoked by the
RA to deliver messages to the endpoint. The deployer will specify the
message listener interface class associated with the RA during its
deployment.

■■ The RA also implements the javax.resource.spi
.ResourceAdapter interface to facilitate message inflow by implement-
ing the endpointActivation() and endpointDeactivation()
methods.

■■ The application server calls the endpointActivation() method on
ResourceAdapter to notify the RA when the message endpoint inter-
ested in consuming messages from the RA is deployed or when the
application server with such a deployed message endpoint is started.
The application server passes javax.resource.spi.endpoint
.MessageEndpointFactory and ActivationSpec instances when
calling endpointActivation(). The MessageEndpointFactory
instance is used by the RA to create a MessageEndpoint instance later
when it has to deliver a message to the endpoint by invoking its
onMessage() method. ActivationSpec represents the deployment
properties of the message endpoint. The deployer provides these prop-
erties during message endpoint deployment. The application server
creates the ActivationSpec JavaBean instance and instantiates its
properties with values supplied by the deployer. The RA uses the infor-
mation in the ActivationSpec JavaBean to establish subscription to
the requested data from the EIS.

■■ The application server calls the endpointDeactivation() method on
ResourceAdapter to notify the RA when the message endpoint inter-
ested in consuming messages from the RA is undeployed or when the
application server with such a deployed message endpoint is being shut
down. The application server passes MessageEndpointFactory and
ActivationSpec instances when calling endpointDeactivation().
The RA uses MessageEndpointFactory to retrieve the underly-
ing endpoint consumer and remove it from its list of active message
endpoints.

Figure 15.13 shows the object diagram of message inflow contract.

466 Chapter 15

21_785415 ch15.qxp 6/5/06 7:04 PM Page 466

Figure 15.13 Message inflow object diagram.

Connector Example: OutboundLoanRA

Okay! So we are halfway through our journey of learning about the Java EE
Connector Architecture. The remaining half will be more exciting than the pre-
vious half because we will now deep dive into developing and deploying our
own connector, OutboundLoanRA. As is obvious from the name, our RA sup-
ports outbound communication from the application server to the EIS. RA
development tends to be more complex than that of other Java EE compo-
nents, since the RA developer is responsible for implementing not just client
contracts but also system contracts. To keep the complexity manageable, we
will implement only the connection management system contract in Out-
boundLoanRA. Even then, you should find this example helpful given that
most of the connectors support outbound communication to the EIS, and
hence, connection management. Connection management is the most com-
monly implemented contract.
OutboundLoanRA supports client contracts in the form of CCI.

MessageEndpointFactory

Application Server

ResourceAdapter

XAResource

NotSupportedException

ActivationSpec

Message object

Resource Adapter

MessageEndpoint

Message delivery calls

UnavailableException

createEndpoint(XAResource)

isDeliveryTransacted()

createEndpoint(XAResource)

isDeliveryTransacted()

Transactional notifications

EJB Integration 467

21_785415 ch15.qxp 6/5/06 7:04 PM Page 467

Example Architecture
OutboundLoanRA provides an elegant way of integrating our EJB appli-
cation, LoanApplication, with our legacy application LoanApp.dll.
LoanApp.dll is a Windows DLL written in Visual C++. LoanApp.dll is a
backend application that provides typical loan-processing functionality.
LoanApplication leverages LoanApp.dll for loan processing. A stand-
alone Java application is a client to our LoanApplication EJB application,
consisting of LoanRatesEJB. A real-world loan-processing application pro-
vides way more functionality, however, for our example we will assume that the
loan-processing application, LoanApp.dll, implements just one function:
getHomeEquityLoanRate(). It basically returns the rate of interest on home
equity loans as a float. Internally, OutboundLoanRA uses the JavaLoanApp
class, which in turn uses JNI to communicate with the native C++ DLL.

Figure 15.14 shows architecture for our example.
We will examine each of these architectural components in detail in the sub-

sequent sections.

Figure 15.14 Example architecture.

LoanRatesClient

(Standalone Java
Client to LoanRatesEJB)

EJB client contracts

CCI client contracts

LoanRatesEJB

(Client application component to
OutboundLoanRA)

OutboundLoanRA

(J2EE connector that communicates
with LoanApp.dll using JNI)

LoanApp.dll

(Legacy Visual C++ application)

Java Native
Interfaces

Private
contracts

JavaLoanApp

(This standalone Java class uses JNI
to communicate with LoanApp.dll)

468 Chapter 15

21_785415 ch15.qxp 6/5/06 7:04 PM Page 468

NOTE All the source files and setup details for this example are available on
the book’s accompanying Web site: wiley.com/go/sriganesh.

JavaLoanApp.java
This is a POJO that uses JNI to communicate with LoanApp.dll. Here,
getHomeEquityLoanRate() is declared as a native function. Source 15.1
shows JavaLoanApp.java code.

package examples.jni;

public class JavaLoanApp

{

public JavaLoanApp(String libPath) {

System.load(libPath);

}

// Native method declaration

public native float getHomeEquityLoanRate();

}

Source 15.1 The examples.jni.JavaLoanApp class.

Once we compile the source using a conventional javac compiler, we will
need to generate a header file containing the JNI function definition so that it
can be included by the C++ LoanApp.dll application. We can use the javah
utility that ships with JDK for this. Source 15.2 shows the generated exam-
ples_jni_JavaLoanApp.h containing the JNI exported function
Java_examples_jni_JavaLoanApp_getHomeEquityLoanRate().

/* DO NOT EDIT THIS FILE - it is machine generated */

#include <jni.h>

/* Header for class examples_jni_JavaLoanApp */

#ifndef _Included_examples_jni_JavaLoanApp

#define _Included_examples_jni_JavaLoanApp

#ifdef __cplusplus

extern “C” {

#endif

/*

* Class: examples_jni_JavaLoanApp

* Method: getHomeEquityLoanRate

* Signature: ()F

Source 15.2 The examples_jni_JavaLoanApp.h header file. (continued)

EJB Integration 469

21_785415 ch15.qxp 6/5/06 7:04 PM Page 469

*/

/* JNI export function definition (generated by javah utility)

*/

JNIEXPORT jfloat JNICALL

Java_examples_jni_JavaLoanApp_getHomeEquityLoanRate

(JNIEnv *, jobject);

#ifdef __cplusplus

}

#endif

#endif

Source 15.2 (continued)

LoanApp.dll
The source code of interest in LoanApp.dll is LoanApp.h. It imple-
ments the JNI exported function, Java_examples_jni_JavaLoanApp_
getHomeEquityLoanRate(). We have kept the JNI function definition
very simple—it always returns 5.64 percent as the home equity loan rate.
Source 15.3 shows LoanApp.h. Note how we included the javah generated
examples_jni_JavaLoanApp.h header file.

// LoanApp.h : main header file for the LoanApp DLL

#pragma once

#ifndef __AFXWIN_H__

#error include ‘stdafx.h’ before including this file for PCH

#endif

#include “resource.h” // main symbols

// CLoanAppApp

#include “examples_jni_JavaLoanApp.h”

class CLoanAppApp : public CWinApp

{

public:

CLoanAppApp();

// Overrides

public:

Source 15.3 The LoanApp.h header file.

470 Chapter 15

21_785415 ch15.qxp 6/5/06 7:04 PM Page 470

virtual BOOL InitInstance();

DECLARE_MESSAGE_MAP()

};

/* A very simplistic implementation of JNI exported function

*/

JNIEXPORT jfloat JNICALL

Java_examples_jni_JavaLoanApp_getHomeEquityLoanRate(JNIEnv *, jobject) {

return 5.64;

};

Source 15.3 (continued)

OutboundLoanRA
Now that we have skimmed through the implementations of JavaLoanApp
and LoanApp.dll, let us examine the source code for OutboundLoanRA. We
will examine the client contracts first, followed by the system contracts.

OutboundLoanRA Client Contracts

As noted earlier, OutboundLoanRA supports client contracts through CCI. We
have implemented javax.resource.cci.ConnectionFactory, javax
.resource.cci.Connection, javax.resource.cci.ConnectionMeta
Data, javax.resource.cci.ConnectionSpec, javax.resource.cci
.Interaction, javax.resource.cci.MappedRecord, javax.resource
.cci.RecordFactory, and javax.resource.cci.ResourceAdapter
MetaData client contracts for this example.

ConnectionFactoryImpl.java

Source 15.4 shows ConnectionFactoryImpl.java, which implements the
javax.resource.cci.ConnectionFactory client contract.

package examples.integration.out_loan_ra;

import java.io.*;

import javax.resource.Referenceable;

import javax.resource.*;

import javax.resource.spi.*;

import javax.naming.Reference;

Source 15.4 The ConnectionFactoryImpl class. (continued)

EJB Integration 471

21_785415 ch15.qxp 6/5/06 7:04 PM Page 471

import javax.resource.cci.*;

public class ConnectionFactoryImpl implements ConnectionFactory,

Serializable, Referenceable {

private ManagedConnectionFactory manConnFactory;

private ConnectionManager connManager;

private Reference ref;

// ManagedConnectionFactory implementation creates

// ConnectionFactory instance by calling this constructor. During

// construction it also passes an instance of ConnectionManager

// which ConnectionFactoryImpl will use to call

// allocateConnection() method on ConnectionManager later when

// client component invokes getConnection() on ConnectionFactory.

public ConnectionFactoryImpl(ManagedConnectionFactory

manConnFactory, ConnectionManager connManager) {

System.out.println(“ConnectionFactoryImpl

(ManagedConnectionFactory manConnFactory, ConnectionManager

connManager) called”);

this.manConnFactory = manConnFactory;

this.connManager = connManager;

}

// Client component calls this definition of getConnection() when

// container manages EIS sign-on.

public javax.resource.cci.Connection getConnection() throws

ResourceException {

System.out.println(“ConnectionFactoryImpl.getConnection()

called”);

javax.resource.cci.Connection conn = null;

conn = (javax.resource.cci.Connection)

connManager.allocateConnection(manConnFactory, null);

return conn;

}

// Client component can call this method to pass ConnectionSpec

// containing RA specific security and connection information.

public javax.resource.cci.Connection getConnection

(ConnectionSpec cSpec) throws ResourceException {

System.out.println(“ConnectionFactoryImpl.getConnection

(ConnectionSpec cSpec) called”);

javax.resource.cci.Connection conn = null;

ConnectionRequestInfo connRequestInfo =

new ConnectionRequestInfoImpl();

conn = (javax.resource.cci.Connection)

Source 15.4 (continued)

472 Chapter 15

21_785415 ch15.qxp 6/5/06 7:04 PM Page 472

connManager.allocateConnection(manConnFactory,

connRequestInfo);

return conn;

}

public ResourceAdapterMetaData getMetaData() throws

ResourceException {

return new ResourceAdapterMetaDataImpl();

}

public RecordFactory getRecordFactory() throws ResourceException {

return new RecordFactoryImpl();

}

public void setReference(Reference ref) {

this.ref = ref;

}

public Reference getReference() {

return ref;

}

}

Source 15.4 (continued)

Note the following about ConnectionFactoryImpl:

■■ Our class implements Referenceable so that the connection factory
can be registered with JNDI.

■■ The application server creates an instance of ConnectionFactory
using a constructor, during which it passes an instance of Managed
ConnectionFactory for creating physical connections to the EIS.

■■ One implementation of the getConnection() method does not take
any arguments and calls allocateConnection() on Connection
Manager, passing it a reference to ManagedConnectionFactory and
a null ConnectionRequestInfo object.

■■ The other implementation of the getConnection() method takes a
single argument, a ConnectionSpec instance. ConnectionSpec is
used by an application component to pass connection request–specific
properties. However, since we do not have any connection request–
specific properties our ConnectionSpec is practically empty. If we had
connection request–specific properties (such as user name, password,
port number, and so on), the getConnection() implementation
would be required to populate ConnectionRequestInfo with these

EJB Integration 473

21_785415 ch15.qxp 6/5/06 7:04 PM Page 473

ConnectionSpec properties. Since we do not have any connection
request properties, we simply create the ConnectionRequestInfo
object and pass it as an argument to allocateConnection() on
ConnectionManager.

■■ The getMetaData() method returns an instance of the
ResourceAdapterMetaData, and getRecordFactory() method
returns an instance of RecordFactory.

ConnectionImpl.java

Source 15.5 shows ConnectionImpl.java, which implements the javax
.resource.cci.Connection client contract.

package examples.integration.out_loan_ra;

import java.util.*;

import javax.resource.cci.*;

import javax.resource.ResourceException;

import javax.resource.spi.ConnectionEvent;

import javax.resource.spi.IllegalStateException;

import javax.resource.spi.*;

import javax.resource.NotSupportedException;

public class ConnectionImpl implements javax.resource.cci.Connection {

private ManagedConnectionImpl manConn;

// RA creates an instance of Connection using this constructor from

// getConnection() method of ManagedConnection.

ConnectionImpl(ManagedConnectionImpl manConn) {

System.out.println(“ConnectionImpl(ManagedConnectionImpl)

called”);

this.manConn = manConn;

}

public Interaction createInteraction() throws ResourceException {

return new InteractionImpl(this);

}

public javax.resource.cci.LocalTransaction getLocalTransaction()

throws ResourceException {

throw new NotSupportedException(“Local transactions are not

supported.”);

Source 15.5 The ConnectionImpl class.

474 Chapter 15

21_785415 ch15.qxp 6/5/06 7:04 PM Page 474

}

public ResultSetInfo getResultSetInfo() throws ResourceException {

throw new NotSupportedException(“ResultSet records are not

supported.”);

}

// This method called by client component should be used to signal

// to the underlying physical connection of client’s intent to

// close the connection. How client-side connection handle signals

// these (and other events such as transaction begin, commit, and

// rollback in case of client-demarcated local

// transactions), is left up to RA to decide. In our implementation

// we make our ManagedConnection implementation provide a private

// contract method named sendEvent() that our ConnectionImpl will

// call to signal it of various connection-

// related events. Since this is a Connection.close() method imple-

// mentation, we will signal a CONNECTION_CLOSED event.

public void close() throws ResourceException {

System.out.println(“ConnectionImpl.close() called”);

if (manConn == null)

return;

manConn.sendEvent(ConnectionEvent.CONNECTION_CLOSED, null,

this);

manConn = null;

}

public ConnectionMetaData getMetaData() throws ResourceException {

return new ConnectionMetaDataImpl(manConn);

}

}

Source 15.5 (continued)

Note the following about our implementation:

■■ It throws javax.resource.NotSupportedException if someone
tries to call the getLocalTransaction() and getResultSetInfo()
methods. It does so because it does not implement the transaction man-
agement system contract and it does not support ResultSet type of
Record.

■■ In the implementation for close(), it sends a CONNECTION_
CLOSED event notification to ManagedConnection. The application
server uses this event notification to either destroy the underlying
ManagedConnection or to put the ManagedConnection instance
back into the pool.

EJB Integration 475

21_785415 ch15.qxp 6/5/06 7:04 PM Page 475

476 Chapter 15

ConnectionMetaDataImpl.java

Source 15.6 shows ConnectionMetaDataImpl.java, which imple-
ments the javax.resource.cci.ConnectionMetaData client contract.
ConnectionMetaDataImpl simply provides information about the under-
lying EIS connected through the given Connection handle.

package examples.integration.out_loan_ra;

import javax.resource.ResourceException;

import javax.resource.cci.*;

import javax.resource.spi.*;

public class ConnectionMetaDataImpl implements ConnectionMetaData {

private ManagedConnectionImpl manConn;

public ConnectionMetaDataImpl (ManagedConnectionImpl manConn) {

this.manConn = manConn;

}

public String getEISProductName() throws ResourceException {

return “Loan Application DLL”;

}

public String getEISProductVersion() throws ResourceException {

return “1.0”;

}

public String getUserName() throws ResourceException {

return null;

}

}

Source 15.6 The ConnectionMetaDataImpl class.

ConnectionSpecImpl.java

Source 15.7 shows ConnectionSpecImpl.java, which implements the
javax.resource.cci.ConnectionSpec client contract. This is the mini-
mal implementation of ConnectionSpec, given that we do not support any
connection request–specific properties. If we did support connection request–
specific properties, then we would have to provide getters and setters for those
properties.

21_785415 ch15.qxp 6/5/06 7:04 PM Page 476

package examples.integration.out_loan_ra;

import javax.resource.cci.*;

public class ConnectionSpecImpl implements ConnectionSpec {

public ConnectionSpecImpl() {

}

}

Source 15.7 The ConnectionSpecImpl class.

InteractionImpl.java

Source 15.8 shows InteractionImpl.java, which implements the
javax.resource.cci.Interaction client contract.

package examples.integration.out_loan_ra;

import examples.jni.JavaLoanApp;

import java.util.*;

import javax.resource.ResourceException;

import javax.resource.spi.ConnectionEvent;

import javax.resource.spi.IllegalStateException;

import javax.resource.cci.*;

import java.lang.reflect.*;

import java.lang.*;

public class InteractionImpl implements Interaction {

Connection conn = null;

public InteractionImpl(Connection conn) {

System.out.println(“InteractionImpl(Connection conn) called”);

this.conn = conn;

}

public javax.resource.cci.Connection getConnection() {

return conn;

}

public void close() throws ResourceException {

conn = null;

}

public boolean execute (InteractionSpec iSpec, Record in, Record out)

Source 15.8 The InteractionImpl class. (continued)

EJB Integration 477

21_785415 ch15.qxp 6/5/06 7:04 PM Page 477

throws ResourceException {

System.out.println (“InteractionImpl.execute(InteractionSpec iSpec,

Record in, Record out) called”);

out = exec((MappedRecord)in,(MappedRecord)out);

if (out != null) {

return true;

} else {

return false;

}

}

public Record execute (InteractionSpec iSpec, Record in) throws

ResourceException

{

System.out.println (“InteractionImpl.execute(InteractionSpec iSpec,

Record in) called”);

MappedRecord out = new MappedRecordImpl();

return exec((MappedRecord)in, out);

}

Record exec(MappedRecord in, MappedRecord out) throws ResourceException {

try {

System.out.println(“InteractionImpl.exec(MappedRecord in,

MappedRecord out) called”);

Set keys = in.keySet();

Iterator iterator = keys.iterator();

while (iterator.hasNext()) {

String key = (String)iterator.next();

if (key.equalsIgnoreCase(“HomeEquityRate”)) {

JavaLoanApp jlaObj = new

JavaLoanApp(“C:\\LoanApp.dll”);

float equityRate = jlaObj.getHomeEquityLoanRate();

System.out.println (“JNI Call Returned: “ +

equityRate);

out.put(key, new Float(equityRate));

}

}

return out;

}

catch(Exception e) {

throw new ResourceException(e.getMessage());

}

}

public ResourceWarning getWarnings() throws ResourceException {

return null;

Source 15.8 (continued)

478 Chapter 15

21_785415 ch15.qxp 6/5/06 7:04 PM Page 478

}

public void clearWarnings() throws ResourceException {

}

}

Source 15.8 (continued)

This is the crux of OutboundLoanRA. InteractionImpl contains the
logic required for communicating with the EIS. It is InteractionImpl that
creates an instance of JavaLoanApp and calls its native method. Note the fol-
lowing about our implementation:

■■ We support both the execute() methods; the one that takes input and
output records as well as the one which takes only input and returns
output record.

■■ Both the execute() methods call the exec() method, which in
turn takes the input Record, gets the name of the EIS function to
execute, instantiates JavaLoanApp, and finally calls the get
HomeEquityLoanRate() native method on JavaLoanApp. The
result of this invocation is put into the output Record and returned to
the client application component, which is LoanRatesEJB in this case.

MappedRecordImpl.java

Source 15.9 shows MappedRecordImpl.java, which implements the javax
.resource.cci.MappedRecord client contract. MappedRecordImpl
implements both the java.util.Map and javax.resource.cci.Record
interfaces. Evidently implementing MappedRecord is fairly simple.

package examples.integration.out_loan_ra;

import java.util.*;

public class MappedRecordImpl implements javax.resource.cci.MappedRecord

{

private String recordName;

private String recordDescription;

private HashMap mappedRecord;

public MappedRecordImpl() {

mappedRecord = new HashMap();

Source 15.9 The MappedRecordImpl class. (continued)

EJB Integration 479

21_785415 ch15.qxp 6/5/06 7:04 PM Page 479

}

public MappedRecordImpl (String recordName) {

mappedRecord = new HashMap();

this.recordName = recordName;

}

public String getRecordName() {

return this.recordName;

}

public void setRecordName(String recordName) {

this.recordName = recordName;

}

public String getRecordShortDescription() {

return recordDescription;

}

public void setRecordShortDescription(String recordDescription) {

this.recordDescription = recordDescription;

}

public boolean equals(Object object) {

if(!(object instanceof MappedRecordImpl))

return false;

MappedRecordImpl mappedRecordObject =

(MappedRecordImpl)object;

return (recordName == mappedRecordObject.recordName) &&

mappedRecord.equals(mappedRecordObject.mappedRecord);

}

public int hashCode() {

return (new String(“MappedRecordImpl”)).hashCode();

}

public Object clone() throws CloneNotSupportedException {

return this.clone();

}

public void clear() {

mappedRecord.clear();

}

public boolean containsKey(Object key) {

Source 15.9 (continued)

480 Chapter 15

21_785415 ch15.qxp 6/5/06 7:04 PM Page 480

return mappedRecord.containsKey(key);

}

public boolean containsValue(Object value) {

return mappedRecord.containsValue(value);

}

public Set entrySet() {

return mappedRecord.entrySet();

}

public Object get(Object object) {

return mappedRecord.get(object);

}

public boolean isEmpty(){

return mappedRecord.isEmpty();

}

public Set keySet(){

return mappedRecord.keySet();

}

public Object put(Object key, Object value) {

return mappedRecord.put(key, value);

}

public void putAll(Map map) {

mappedRecord.putAll (map);

}

public Object remove(Object object) {

return mappedRecord.remove(object);

}

public int size() {

return mappedRecord.size();

}

public Collection values() {

return mappedRecord.values();

}

}

Source 15.9 (continued)

EJB Integration 481

21_785415 ch15.qxp 6/5/06 7:04 PM Page 481

RecordFactoryImpl.java

Source 15.10 shows RecordFactoryImpl.java, which implements the javax
.resource.cci.RecordFactory client contract. Since OutboundLoanRA
supports only the MappedRecord client contract, we throw NotSupported
Exception if somebody tries to create an indexed record.

package examples.integration.out_loan_ra;

import javax.resource.cci.*;

import java.util.Map;

import java.util.Collection;

import javax.resource.ResourceException;

import javax.resource.NotSupportedException;

public class RecordFactoryImpl implements

javax.resource.cci.RecordFactory{

public MappedRecord createMappedRecord(String recordName) throws

ResourceException {

return new MappedRecordImpl(recordName);

}

public IndexedRecord createIndexedRecord(String recordName) throws

ResourceException {

throw new NotSupportedException(“IndexedRecords are not

supported.”);

}

}

Source 15.10 The RecordFactoryImpl class.

ResourceAdapterMetaDataImpl.java

Source 15.11 shows ResourceAdapterMetaDataImpl.java. In our imple-
mentation of the javax.resource.cci.ResourceAdapterMetaData
client contract, we provide not only general information about the RA but also
information about specific capabilities of the RA such as the system contracts
it supports.

package examples.integration.out_loan_ra;

import java.io.*;

import javax.resource.Referenceable;

import javax.resource.*;

Source 15.11 The ResourceAdapterMetaData class. (continued)

482 Chapter 15

21_785415 ch15.qxp 6/5/06 7:04 PM Page 482

import javax.resource.spi.*;

import javax.naming.Reference;

import javax.resource.cci.*;

public class ResourceAdapterMetaDataImpl implements

ResourceAdapterMetaData {

private String adapterName;

private String adapterShortDescription;

private String adapterVendorName;

private String adapterVersion;

private String[] interactionSpecsSupported;

private String specVersion;

private boolean supportsExecuteWithInputAndOutputRecord;

private boolean supportsExecuteWithInputRecordOnly;

private boolean supportsLocalTransactionDemarcation;

// Additional properties

private boolean supportsGlobalTransactions;

private boolean supportsLifecycleManagement;

private boolean supportsMessageInflow;

private boolean supportsTransactionInflow;

private boolean supportsConnectionManagement;

private boolean supportsSecurityManagement;

public ResourceAdapterMetaDataImpl() {

adapterName = “Loan Application Resource Adapter”;

adapterShortDescription = “Loan Application Resource Adapter

provides connectivity to Loan Application DLL”;

adapterVendorName = “Connectors Inc.”;

adapterVersion = “1.0”;

interactionSpecsSupported[0] = “InteractionImpl”;

specVersion = “1.5”;

supportsExecuteWithInputAndOutputRecord = true;

supportsExecuteWithInputRecordOnly = true;

supportsLocalTransactionDemarcation = false;

supportsGlobalTransactions = false;

supportsLifecycleManagement = false;

supportsMessageInflow = false;

supportsTransactionInflow = false;

supportsConnectionManagement = true;

supportsSecurityManagement = false;

}

public String getAdapterName() {

return adapterName;

}

public String getAdapterShortDescription() {

Source 15.11 (continued)

EJB Integration 483

21_785415 ch15.qxp 6/5/06 7:04 PM Page 483

return adapterShortDescription;

}

public String getAdapterVendorName() {

return adapterVendorName;

}

public String getAdapterVersion() {

return adapterVersion;

}

public String[] getInteractionSpecsSupported() {

return interactionSpecsSupported;

}

public String getSpecVersion() {

return specVersion;

}

public boolean supportsExecuteWithInputAndOutputRecord() {

return supportsExecuteWithInputAndOutputRecord;

}

public boolean supportsExecuteWithInputRecordOnly() {

return supportsExecuteWithInputRecordOnly;

}

public boolean supportsLocalTransactionDemarcation() {

return supportsLocalTransactionDemarcation;

}

public boolean supportsGlobalTransactions() {

return supportsGlobalTransactions;

}

public boolean supportsLifecycleManagement() {

return supportsLifecycleManagement;

}

public boolean supportsMessageInflow() {

return supportsMessageInflow;

}

public boolean supportsTransactionInflow() {

return supportsTransactionInflow;

}

public boolean supportsConnectionManagement() {

return supportsConnectionManagement;

Source 15.11 (continued)

484 Chapter 15

21_785415 ch15.qxp 6/5/06 7:04 PM Page 484

}

public boolean supportsSecurityManagement() {

return supportsSecurityManagement;

}

}

Source 15.11 (continued)

OutboundLoanRA System Contracts

Now let’s examine the connection management–related system contracts for
OutboundLoanRA. We implemented javax.resource.spi.Managed
ConnectionFactory, javax.resource.spi.ManagedConnection, javax
.resource.spi.ConnectionRequestInfo, and javax.resource.spi
.ManagedConnectionMetaData system contracts for this example.

ManagedConnectionFactoryImpl.java

Source 15.12 shows ManagedConnectionFactoryImpl.java, which imple-
ments the javax.resource.spi.ManagedConnectionFactory system
contract.

package examples.integration.out_loan_ra;

import java.io.*;

import java.util.*;

import javax.resource.*;

import javax.resource.spi.*;

import javax.resource.spi.security.PasswordCredential;

import javax.resource.spi.SecurityException;

import javax.security.auth.Subject;

import javax.naming.Context;

import javax.naming.InitialContext;

public class ManagedConnectionFactoryImpl implements ManagedConnectionFactory,

Serializable {

private PrintWriter manConnLogWriter;

public ManagedConnectionFactoryImpl() {

System.out.println(“ManagedConnectionFactoryImpl() called”);

}

// This method is called by application server and is a hook for RA to

Source 15.12 The ManagedConnectionFactoryImpl class. (continued)

EJB Integration 485

21_785415 ch15.qxp 6/5/06 7:04 PM Page 485

// to create the client-side connection factory interface instance.

// Application server passes an instance of ConnectionManager to this

// method, which is passed forward to the client-side connection factory

// instance. The connection factory instance on the client-side will use

// ConnectionManager to call allocateConnection().

public Object createConnectionFactory(ConnectionManager connManager) throws

ResourceException {

System.out.println

(“ManagedConnectionFactoryImpl.createConnectionFactory

(ConnectionManager) called”);

return new ConnectionFactoryImpl(this, connManager);

}

// This method will never be called in a managed environment because

// in a managed environment application server is required to provide

// an implementation of ConnectionManager such that its

// allocateConnection() method provides all the QoS necessary. Hence,

// application server will never call this version of

// createConnectionFactory(). This method is part of

// ManagedConnectionFactory interface only to accommodate non-managed

// environments.

public Object createConnectionFactory() throws ResourceException {

throw new ResourceException (“How can you call this method in a

managed environment?”);

}

// This method is called by application server to create an instance of

// ManagedConnection. It passes an instance of Subject representing

// authenticated user’s principal in case of container-managed EIS sign-on.

// In case of component-managed EIS sign-on, application component can pass

// connection request properties including username/password (or other form

// of security credential information) through ConnectionSpec JavaBean

// when it calls getConnection() on ConnectionFactory. ConnectionFactory

// implementation will take ConnectionSpec property information and

// populate ConnectionRequestInfo JavaBean, and pass it down to application

// server as an argument to allocateConnection() on ConnectionManager. When

// application server calls createManagedConnection(), it passes this very

// instance of ConnectionRequestInfo so that ManagedConnectionFactory can

// get access to connection request properties, including security

// information.

public ManagedConnection createManagedConnection (Subject subject,

ConnectionRequestInfo connRequestInfo) {

System.out.println

(“ManagedConnectionFactoryImpl.createManagedConnection

(Subject, ConnectionRequestInfo) called”);

return new ManagedConnectionImpl (this);

Source 15.12 (continued)

486 Chapter 15

21_785415 ch15.qxp 6/5/06 7:04 PM Page 486

}

// This method is called by application server and is a hook for RA to

// implement the connection matching logic. If the EIS connection have

// connection properties, then the match logic should also compare the

// property values of ConnectionRequestInfo structure with those of

// the available connections to determine the correct match.

public ManagedConnection matchManagedConnections(Set connSet, Subject

subject, ConnectionRequestInfo connRequestInfo) throws ResourceException {

System.out.println

(“ManagedConnectionFactoryImpl.matchManagedConnections

(Set, Subject, ConnectionRequestInfo) called”);

Iterator iterator = connSet.iterator();

while (iterator.hasNext()) {

Object object = iterator.next();

if (object instanceof ManagedConnectionImpl) {

ManagedConnectionImpl manConn = (ManagedConnectionImpl)

object;

ManagedConnectionFactory manConnFactory =

manConn.getManagedConnectionFactory();

if (manConnFactory.equals(this)) {

System.out.println(“From ManagedConnectionFactoryImpl.

matchManagedConnections() -> Connection matched”);

return manConn;

}

}

}

System.out.println(“From ManagedConnectionFactoryImpl.

matchManagedConnections() -> Connection did not match”);

return null;

}

public void setLogWriter(PrintWriter manConnLogWriter) {

this.manConnLogWriter = manConnLogWriter;

}

public PrintWriter getLogWriter() {

return manConnLogWriter;

}

public boolean equals(Object object) {

if (object == null) return false;

if (object instanceof ManagedConnectionFactoryImpl) {

return true;

} else {

return false;

}

Source 15.12 (continued)

EJB Integration 487

21_785415 ch15.qxp 6/5/06 7:04 PM Page 487

}

public int hashCode() {

return (new String(“ManagedConnectionFactoryImpl”)).hashCode();

}

}

Source 15.12 (continued)

Note the following about our implementation:

■■ In the createManagedConnection() method, had we implemented
the security system contract, we would have been required to get the
caller principal credentials from the Subject, in case of container-
managed EIS sign-on, or from the ConnectionRequestInfo
JavaBean, in case of component-managed EIS sign-on.

■■ Had we used connection request–specific properties, in
matchManagedConnection() method, we would have been
required to match the properties as well as determine the matching
connection from the pool.

ManagedConnectionImpl.java

Source 15.13 shows ManagedConnectionImpl.java, which implements
the javax.resource.spi.ManagedConnection system contract.

package examples.integration.out_loan_ra;

import java.io.*;

import java.util.*;

import javax.resource.*;

import javax.resource.spi.*;

import javax.resource.spi.security.PasswordCredential;

import javax.resource.spi.IllegalStateException;

import javax.resource.spi.SecurityException;

import javax.resource.NotSupportedException;

import javax.security.auth.Subject;

import javax.transaction.xa.XAResource;

public class ManagedConnectionImpl implements ManagedConnection {

private ConnectionEventListener connEventListener;

private ManagedConnectionFactory manConnFactory;

private boolean isDestroyed;

Source 15.13 The ManagedConnectionImpl class. (continued)

488 Chapter 15

21_785415 ch15.qxp 6/5/06 7:04 PM Page 488

private PrintWriter manConnLogWriter;

// This method is called by createManagedConnection() of

// ManagedConnectionFactory.

ManagedConnectionImpl (ManagedConnectionFactory manConnFactory) {

System.out.println(“ManagedConnectionImpl(ManagedConnectionFactory)

called”);

this.manConnFactory = manConnFactory;

}

// This method is called by application server to obtain the client-side

// connection handle for this physical connection. If you want to share

// a physical connection to the EIS among various clients, you can use

// caller security information represented in Subject or

// ConnectionRequestInfoobjects to authenticate each client that shares

// this physical connection to the backend EIS.

public Object getConnection(Subject subject, ConnectionRequestInfo

connectionRequestInfo) throws ResourceException {

System.out.println(“ManagedConnectionImpl.getConnection(Subject,

ConnectionRequestInfo) called”);

ConnectionImpl conn = new ConnectionImpl(this);

return conn;

}

// This method is called by application server to explicitly destroy the

// physical connection to the EIS.

public void destroy() throws ResourceException {

System.out.println(“ManagedConnectionImpl.destroy() called”);

isDestroyed=true;

cleanup();

}

// The cleanup method is called by application server when it has to

// put the ManagedConnection instance back in pool. In this method’s

// implementation you should release all the client-specific associated

// with ManagedConnection instance.

public void cleanup() throws ResourceException {

System.out.println(“ManagedConnectionImpl.cleanup() called”);

}

// RA should implement this method if it supports physical connection

// sharing such that it can associate a different client-side connection

// handle with the Managedconnection instance. Application server will

// call this method based on its criteria of connection sharing.

public void associateConnection(Object connection) throws

ResourceException {

throw new NotSupportedException

(“ManagedConnectionImpl.associateConnection() not supported.”);

Source 15.13 (continued)

EJB Integration 489

21_785415 ch15.qxp 6/5/06 7:04 PM Page 489

}

// Application server calls this method to associate

// ConnectionEventListener object with this managed connection.

public void addConnectionEventListener(ConnectionEventListener

connEventListener){

System.out.println(“ManagedConnectionImpl.addConnectionEventListener

(ConnectionEventListener) called”);

this.connEventListener = connEventListener;

}

public void removeConnectionEventListener (ConnectionEventListener

connEventListener) {}

public XAResource getXAResource() throws ResourceException {

throw new NotSupportedException(“Global transactions are not

supported”);

}

public LocalTransaction getLocalTransaction() throws ResourceException {

throw new NotSupportedException(“Local transactions are not

supported”);

}

public ManagedConnectionMetaData getMetaData() throws ResourceException {

if (isDestroyed)

throw new ResourceException (“Managed connection has already

been closed.”);

return new ManagedConnectionMetaDataImpl (this);

}

public void setLogWriter(PrintWriter manConnLogWriter) {

this.manConnLogWriter = manConnLogWriter;

}

public PrintWriter getLogWriter() {

return manConnLogWriter;

}

// This method is implemented as part of private contract between RA and

// the client-side connection API, so that client-side connection can

// communicate with ManagedConnection instance various connection related

// events such as connection close, transaction begin / commit / rollback,

// and so on. Once we determine the type of client-side connection event,

// we call the appropriate method on ConnectionEventListener object to

// provide a hook to application server to add its own container services.

void sendEvent(int eventType, Exception e, Object connHandle) {

System.out.println(“ManagedConnectionImpl.sendEvent(int, e,

Source 15.13 (continued)

490 Chapter 15

21_785415 ch15.qxp 6/5/06 7:04 PM Page 490

connHandle) called”);

ConnectionEvent connEvent = null;

if (e == null)

connEvent = new ConnectionEvent(this, eventType);

else

connEvent = new ConnectionEvent(this, eventType, e);

connEvent.setConnectionHandle(connHandle);

switch (connEvent.getId()) {

case ConnectionEvent.CONNECTION_CLOSED:

this.connEventListener.connectionClosed(connEvent);

break;

case ConnectionEvent.LOCAL_TRANSACTION_STARTED:

this.connEventListener.localTransactionStarted(connEvent);

break;

case ConnectionEvent.LOCAL_TRANSACTION_COMMITTED:

this.connEventListener.localTransactionCommitted(connEvent);

break;

case ConnectionEvent.LOCAL_TRANSACTION_ROLLEDBACK:

this.connEventListener.localTransactionRolledback

(connEvent);

break;

case ConnectionEvent.CONNECTION_ERROR_OCCURRED:

this.connEventListener.connectionErrorOccurred(connEvent);

break;

default:

throw new IllegalArgumentException(“Unsupported event: “ +

connEvent.getId());

}

}

ManagedConnectionFactory getManagedConnectionFactory() {

return manConnFactory;

}

}

Source 15.13 (continued)

Note the following about our implementation of ManagedConnection:

■■ The application server registers a ConnectionEventListener
with the ManagedConnection instance. We maintain this
ConnectionEventListener for later use.

■■ We implement a sendEvent() method so that the client contract’s
connection implementation, ConnectionImpl, can notify the
underlying managed connection instance when it is about to close
the connection, and other such events. The sendEvent() method, in

EJB Integration 491

21_785415 ch15.qxp 6/5/06 7:04 PM Page 491

turn, calls the appropriate event notification method such as
connectionClosed(), connectionErrorOccured(), and so
on, on the ConnectionEventListener object.

■■ Since we do not support transaction management system contract, calls
to the getXAResource() or getLocalTransaction() methods
throw NotSupportedException.

■■ We do not support the sharing of ManagedConnection instances among
connection handles and, therefore, the associateConnection()
implementation throws NotSupportedException.

ConnectionRequestInfoImpl.java

Source 15.14 shows ConnectionRequestInfoImpl.java, which imple-
ments the javax.resource.spi.ConnectionRequestInfo system con-
tract. As can be seen, ConnectionRequestInfoImpl is a very simple
implementation of ConnectionRequestInfo, since the RA does not have
any connection request–specific properties.

package examples.integration.out_loan_ra;

import javax.resource.spi.ConnectionRequestInfo;

public class ConnectionRequestInfoImpl implements ConnectionRequestInfo

{

public ConnectionRequestInfoImpl() {}

public boolean equals(Object object) {

if (object == null) return false;

if (object instanceof ConnectionRequestInfoImpl) {

return true;

} else {

return false;

}

}

public int hashCode() {

return (new String(“ConnectionRequestInfoImpl”)).hashCode();

}

}

Source 15.14 The ConnectionRequestInfoImpl class.

ManagedConnectionMetaDataImpl.java

ManagedConnectionMetaDataImpl implements the javax.resource.spi
.ManagedConnectionMetaData system contract. Since its implementation is

492 Chapter 15

21_785415 ch15.qxp 6/5/06 7:04 PM Page 492

quite similar to that of ConnectionMetaData, we will skip listing its source
code.

Deploying OutboundLoanRA

During RA deployment, the deployer will specify the interface and implemen-
tation classes for various client and system contracts supported by the RA.

■■ If the RA supports the connection management system contract, then
the deployer will have to provide interface and implementation classes
for connection factory and connection. In our case, these will be
javax.resource.cci.ConnectionFactory/example.out_
loan_ra.ConnectionFactoryImpl and javax.resource.cci
.Connection/example_out_loan_ra.ConnectionImpl,
respectively. Also, the deployer will have to provide the implementation
class for ManagedConnectionFactory, which is Managed
ConnectionFactoryImpl in our case.

If RA supports configuration properties for connection factories, that
will be specified during deployment. In our case, we do not have any
connection factory configuration properties.

■■ If RA supports transaction management system contract, the deployer
will have to specify whether it supports local or global transactions.

■■ If RA supports security management system contract, you can also
specify the authentication mechanism used during deployment.

■■ If RA supports the message inflow contract, the deployer will need to
provide the message listener interface class and activation specification
JavaBean class.

■■ If RA supports message inflow or life cycle contract, the deployer will
need to specify the ResourceAdapter implementation class.

Apart from bundling the system and client contract classes, the deployer
will also bundle the libraries that the RA uses to handle communication with
EIS. For our example, this would be the JavaLoanApp Java class. Hence, we
also bundle the JavaLoanApp class with OutboundLoanRA.

Also, if your RA loads native libraries or does socket communication, or any
such activity that warrants explicit permissions, you must set the right runtime
permissions for the application server’s JVM instance. Since OutboundLoanRA
uses a Java class that loads the system library, we will have to explicitly per-
mit the underlying JVM instance to do so. One of the ways to achieve this is
by directly modifying the java.policy file in <JDK_HOME>/jre/lib/
security folder to grant runtime permission to load native libraries.

EJB Integration 493

21_785415 ch15.qxp 6/5/06 7:04 PM Page 493

Once the RA is deployed, the deployer will create a connection pool and
associate it with the RA’s connection factory. The deployer will use vendor-
provided administration tools for creating a connection pool. Finally, the
deployer will bind the connection pool to JNDI so that client application com-
ponents can retrieve the underlying connection factory instance from JNDI
and create the connection to the EIS.

OutboundLoanRA Deployment Descriptor

Source 15.15 shows the standard deployment descriptor for OutboundLoanRA.

<?xml version=’1.0’ encoding=’UTF-8’?> <connector

xmlns=”http://java.sun.com/xml/ns/j2ee” version=”1.5”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/connector_1_5.xsd”>

<display-name>OutboundLoanRA</display-name>

<vendor-name>Vendor Name</vendor-name>

<eis-type>EIS Type</eis-type>

<resourceadapter-version>1.5</resourceadapter-version>

<license><license-required>false</license-required></license>

<resourceadapter>

<outbound-resourceadapter>

<connection-definition>

<managedconnectionfactory-class>

examples.integration.out_loan_ra.ManagedConnectionFactoryImpl

</managedconnectionfactory-class>

<connectionfactory-interface>

javax.resource.cci.ConnectionFactory

</connectionfactory-interface>

<connectionfactory-impl-class>

examples.integration.out_loan_ra.ConnectionFactoryImpl

</connectionfactory-impl-class>

<connection-interface>

javax.resource.cci.Connection

</connection-interface>

<connection-impl-class>

examples.integration.out_loan_ra.ConnectionImpl

</connection-impl-class>

</connection-definition>

<transaction-support>LocalTransaction</transaction-support>

<reauthentication-support>false</reauthentication-support>

</outbound-resourceadapter>

</resourceadapter>

</connector>

Source 15.15 The ra.xml file.

494 Chapter 15

21_785415 ch15.qxp 6/5/06 7:04 PM Page 494

Now that we have developed and deployed the RA as well as the RA con-
nection pool and the JNDI resources associated with it, the RA is all set to
receive requests from client application components, such as LoanRatesEJB.

LoanRatesEJB
LoanRatesEJB is a stateless session bean that uses OutboundLoanRA to
communicate with the back-end loan processing application, LoanApp.dll.

Developing LoanRatesEJB

LoanRatesEJB’s business interface has a single method, getHomeEquity
Rate(). The getHomeEquityRate() method implementation uses the CCI
client contracts supported by OutboundLoanRA. Source 15.16 is a listing of the
LoanRatesEJB bean class, LoanRatesBean.java.

package examples.integration.loanratesejb;

import javax.resource.cci.*;

import javax.ejb.Stateless;

import javax.ejb.Remote;

import javax.ejb.TransactionManagement;

import javax.ejb.TransactionManagementType;

import javax.annotation.*;

@Stateless

@Remote(LoanRates.class)

@TransactionManagement(TransactionManagementType.BEAN)

public class LoanRatesBean implements LoanRates{

@Resource (name=”OutboundLoanJNDIName”)

public javax.resource.cci.ConnectionFactory connFactory;

public float getHomeEquityRate() {

float retVal=0;

System.out.println(“LoanRatesBean.getHomeEquityRate()

called”);

try {

javax.resource.cci.Connection myCon =

connFactory.getConnection();

javax.resource.cci.Interaction interaction =

myCon.createInteraction();

javax.resource.cci.MappedRecord recordIn =

Source 15.16 The LoanRatesBean class. (continued)

EJB Integration 495

21_785415 ch15.qxp 6/5/06 7:04 PM Page 495

connFactory.getRecordFactory().createMappedRecord(“”);

recordIn.put(“HomeEquityRate”,””);

javax.resource.cci.MappedRecord recordOut =

(javax.resource.cci.MappedRecord) interaction.execute

(null, (javax.resource.cci.Record)recordIn);

myCon.close();

Object result = recordOut.get(“HomeEquityRate”);

retVal = ((Float)result).floatValue();

} catch(Exception e) {

e.printStackTrace();

}

return retVal;

}

}

Source 15.16 (continued)

Note that we are using the @Resource annotation to get hold of the resource
connection factory via the resource injection mechanism. We have no use for a
deployment descriptor in this example, since all the deployment information is
supplied in the bean class, using annotations.

LoanRatesClient
LoanRatesClient standalone Java application is a client to LoanRatesEJB.
Like a typical EJB client, it looks up the EJB business interface object and
invokes the getHomeEquityRate() method once it has reference to the
business interface object. Source 15.17 shows LoanRatesClient.java.

package examples.integration.loanratesejb;

import javax.naming.Context;

Source 15.17 The LoanRatesClient class.

496 Chapter 15

21_785415 ch15.qxp 6/5/06 7:04 PM Page 496

EJB Integration 497

import javax.naming.InitialContext;

public class LoanRatesClient {

public static void main(String[] args) throws Exception{

Context ctx = new InitialContext();

LoanRates loanRates = (LoanRates)

ctx.lookup(“examples.integration.loanratesejb.LoanRates”);

System.out.println(“getHomeEquityRate() returned: “ +

loanRates.getHomeEquityRate() + “. Take a look at

application server log or console for messages from

LoanRatesEJB and OutboundLoanRA.”);

}

}

Source 15.17 (continued)

Running the Client
To run the client, look at the Ant scripts bundled along with this example.
The following is the client-side output you would get upon running the
LoanRatesClient.

C:\MEJB4.0\src\examples\integration>asant run_client

Buildfile: build.xml

build_cpath:

init_common:

setup_env:

run_client:

[java] Mar 24, 2006 3:32:14 PM

com.sun.corba.ee.spi.logging.LogWrapperBasedoLog

[java] INFO: “IOP00710299: (INTERNAL) Successfully created IIOP

listener on the specified host/port: all interfaces/2090”

[java] getHomeEquityRate() returned: 5.64. Take a look at

application server log or console for messages from LoanRatesEJB and

OutboundLoanRA.

BUILD SUCCESSFUL

Total time: 6 seconds

21_785415 ch15.qxp 6/5/06 7:04 PM Page 497

On the application server side, you can find out about the goings on by run-
ning your application server in verbose mode or by looking into the
server.log file. For Java EE 5 reference implementation, you can find this file
under the <Java EE 5 Install Directory>/domains/domain1/logs
directory. Note that this output is for Java EE 5 reference implementation.

[#|2006-03-24T15:32:16.346-0500|INFO|sun-appserver-pe9.0|javax

.enterprise.system.stream.out|_ThreadID=17;_ThreadName=p: thread-pool-1;

w: 12;|LoanRatesBean.getHomeEquityRate() called|#]

[#|2006-03-24T15:32:16.346-0500|INFO|sun-appserver-pe9.0|javax

.enterprise.system.stream.out|_ThreadID=17;_ThreadName=p: thread-pool-1;

w: 12;|ConnectionFactoryImpl.getConnection() called|#]

[#|2006-03-24T15:32:16.366-0500|INFO|sun-appserver-pe9.0|javax

.enterprise.system.stream.out|_ThreadID=17;_ThreadName=p: thread-pool-1;

w: 12;|ManagedConnectionFactoryImpl.createManagedConnection (Subject,

ConnectionRequestInfo) called|#]

[#|2006-03-24T15:32:16.366-0500|INFO|sun-appserver-pe9.0|javax

.enterprise.system.stream.out|_ThreadID=17;_ThreadName=p: thread-pool-1;

w: 12;|ManagedConnectionImpl(ManagedConnectionFactory) called|#]

[#|2006-03-24T15:32:16.376-0500|INFO|sun-appserver-pe9.0|javax

.enterprise.system.stream.out|_ThreadID=17;_ThreadName=p: thread-pool-1;

w: 12;|ManagedConnectionImpl.addConnectionEventListener

(ConnectionEventListener) called|#]

[#|2006-03-24T15:32:16.386-0500|INFO|sun-appserver-pe9.0|javax

.enterprise.system.stream.out|_ThreadID=17;_ThreadName=p: thread-pool-1;

w: 12;|ManagedConnectionFactoryImpl.createManagedConnection (Subject,

ConnectionRequestInfo) called|#]

[#|2006-03-24T15:32:16.386-0500|INFO|sun-appserver-pe9.0|javax

.enterprise.system.stream.out|_ThreadID=17;_ThreadName=p: thread-pool-1;

w: 12;|ManagedConnectionImpl(ManagedConnectionFactory) called|#]

[#|2006-03-24T15:32:16.386-0500|INFO|sun-appserver-pe9.0|javax

.enterprise.system.stream.out|_ThreadID=17;_ThreadName=p: thread-pool-1;

w: 12;|ManagedConnectionImpl.addConnectionEventListener

(ConnectionEventListener) called|#]

[#|2006-03-24T15:32:16.386-0500|INFO|sun-appserver-pe9.0|javax

.enterprise.system.stream.out|_ThreadID=17;_ThreadName=p: thread-pool-1;

w: 12;|ManagedConnectionFactoryImpl.createManagedConnection (Subject,

ConnectionRequestInfo) called|#]

[#|2006-03-24T15:32:16.386-0500|INFO|sun-appserver-pe9.0|javax

.enterprise.system.stream.out|_ThreadID=17;_ThreadName=p: thread-pool-1;

498 Chapter 15

21_785415 ch15.qxp 6/5/06 7:04 PM Page 498

w: 12;|ManagedConnectionImpl(ManagedConnectionFactory) called|#]

[#|2006-03-24T15:32:16.386-0500|INFO|sun-appserver-

pe9.0|javax.enterprise.system.stream.out|_ThreadID=17;_ThreadName=p:

thread-pool-1; w:

12;|ManagedConnectionImpl.addConnectionEventListener(ConnectionEventList

ener) called|#]

[#|2006-03-24T15:32:16.386-0500|INFO|sun-appserver-

pe9.0|javax.enterprise.system.stream.out|_ThreadID=17;_ThreadName=p:

thread-pool-1; w:

12;|ManagedConnectionFactoryImpl.createManagedConnection (Subject,

ConnectionRequestInfo) called|#]

[#|2006-03-24T15:32:16.386-0500|INFO|sun-appserver-

pe9.0|javax.enterprise.system.stream.out|_ThreadID=17;_ThreadName=p:

thread-pool-1; w: 12;|ManagedConnectionImpl(ManagedConnectionFactory)

called|#]

[#|2006-03-24T15:32:16.386-0500|INFO|sun-appserver-

pe9.0|javax.enterprise.system.stream.out|_ThreadID=17;_ThreadName=p:

thread-pool-1; w:

12;|ManagedConnectionImpl.addConnectionEventListener(ConnectionEventList

ener) called|#]

[#|2006-03-24T15:32:16.386-0500|INFO|sun-appserver-

pe9.0|javax.enterprise.system.stream.out|_ThreadID=17;_ThreadName=p:

thread-pool-1; w:

12;|ManagedConnectionFactoryImpl.createManagedConnection (Subject,

ConnectionRequestInfo) called|#]

[#|2006-03-24T15:32:16.386-0500|INFO|sun-appserver-

pe9.0|javax.enterprise.system.stream.out|_ThreadID=17;_ThreadName=p:

thread-pool-1; w: 12;|ManagedConnectionImpl(ManagedConnectionFactory)

called|#]

[#|2006-03-24T15:32:16.386-0500|INFO|sun-appserver-

pe9.0|javax.enterprise.system.stream.out|_ThreadID=17;_ThreadName=p:

thread-pool-1; w:

12;|ManagedConnectionImpl.addConnectionEventListener(ConnectionEventList

ener) called|#]

[#|2006-03-24T15:32:16.386-0500|INFO|sun-appserver-

pe9.0|javax.enterprise.system.stream.out|_ThreadID=17;_ThreadName=p:

thread-pool-1; w:

12;|ManagedConnectionFactoryImpl.createManagedConnection (Subject,

ConnectionRequestInfo) called|#]

[#|2006-03-24T15:32:16.386-0500|INFO|sun-appserver-pe9.0|javax

.enterprise.system.stream.out|_ThreadID=17;_ThreadName=p: thread-pool-1;

EJB Integration 499

21_785415 ch15.qxp 6/5/06 7:04 PM Page 499

w: 12;|ManagedConnectionImpl(ManagedConnectionFactory) called|#]

[#|2006-03-24T15:32:16.386-0500|INFO|sun-appserver-pe9.0|javax

.enterprise.system.stream.out|_ThreadID=17;_ThreadName=p: thread-pool-1;

w: 12;|ManagedConnectionImpl.addConnectionEventListener

(ConnectionEventListener) called|#]

[#|2006-03-24T15:32:16.386-0500|INFO|sun-appserver-pe9.0|javax

.enterprise.system.stream.out|_ThreadID=17;_ThreadName=p: thread-pool-1;

w: 12;|ManagedConnectionFactoryImpl.createManagedConnection (Subject,

ConnectionRequestInfo) called|#]

[#|2006-03-24T15:32:16.386-0500|INFO|sun-appserver-pe9.0|javax

.enterprise.system.stream.out|_ThreadID=17;_ThreadName=p: thread-pool-1;

w: 12;|ManagedConnectionImpl(ManagedConnectionFactory) called|#]

[#|2006-03-24T15:32:16.386-0500|INFO|sun-appserver-pe9.0|javax

.enterprise.system.stream.out|_ThreadID=17;_ThreadName=p: thread-pool-1;

w: 12;|ManagedConnectionImpl.addConnectionEventListener

(ConnectionEventListener) called|#]

[#|2006-03-24T15:32:16.386-0500|INFO|sun-appserver-pe9.0|javax

.enterprise.system.stream.out|_ThreadID=17;_ThreadName=p: thread-pool-1;

w: 12;|ManagedConnectionFactoryImpl.createManagedConnection (Subject,

ConnectionRequestInfo) called|#]

[#|2006-03-24T15:32:16.397-0500|INFO|sun-appserver-pe9.0|javax

.enterprise.system.stream.out|_ThreadID=17;_ThreadName=p: thread-pool-1;

w: 12;|ManagedConnectionImpl(ManagedConnectionFactory) called|#]

[#|2006-03-24T15:32:16.397-0500|INFO|sun-appserver-pe9.0|javax

.enterprise.system.stream.out|_ThreadID=17;_ThreadName=p: thread-pool-1;

w: 12;|ManagedConnectionImpl.addConnectionEventListener

(ConnectionEventListener) called|#]

[#|2006-03-24T15:32:16.397-0500|INFO|sun-appserver-pe9.0|javax

.enterprise.system.stream.out|_ThreadID=17;_ThreadName=p: thread-pool-1;

w: 12;|ManagedConnectionFactoryImpl.matchManagedConnections(Set,

Subject, ConnectionRequestInfo) called|#]

[#|2006-03-24T15:32:16.397-0500|INFO|sun-appserver-pe9.0|javax

.enterprise.system.stream.out|_ThreadID=17;_ThreadName=p: thread-pool-1;

w: 12;|From ManagedConnectionFactoryImpl.matchManagedConnections() ->

Connection matched|#]

[#|2006-03-24T15:32:16.397-0500|INFO|sun-appserver-pe9.0|javax

.enterprise.system.stream.out|_ThreadID=17;_ThreadName=p: thread-pool-1;

500 Chapter 15

21_785415 ch15.qxp 6/5/06 7:04 PM Page 500

w: 12;|ManagedConnectionImpl.getConnection(Subject,

ConnectionRequestInfo) called|#]

[#|2006-03-24T15:32:16.417-0500|INFO|sun-appserver-pe9.0|javax

.enterprise.system.stream.out|_ThreadID=17;_ThreadName=p: thread-pool-1;

w: 12;|ConnectionImpl(ManagedConnectionImpl) called|#]

[#|2006-03-24T15:32:16.427-0500|INFO|sun-appserver-pe9.0|javax

.enterprise.system.stream.out|_ThreadID=17;_ThreadName=p: thread-pool-1;

w: 12;|InteractionImpl(Connection conn) called|#]

[#|2006-03-24T15:32:16.437-0500|INFO|sun-appserver-pe9.0|javax

.enterprise.system.stream.out|_ThreadID=17;_ThreadName=p: thread-pool-1;

w: 12;|InteractionImpl.execute(InteractionSpec iSpec, Record in)

called|#]

[#|2006-03-24T15:32:16.437-0500|INFO|sun-appserver-pe9.0|javax

.enterprise.system.stream.out|_ThreadID=17;_ThreadName=p: thread-pool-1;

w: 12;|InteractionImpl.exec(MappedRecord in, MappedRecord out) called|#]

[#|2006-03-24T15:32:16.467-0500|INFO|sun-appserver-pe9.0|javax

.enterprise.system.stream.out|_ThreadID=17;_ThreadName=p: thread-pool-1;

w: 12;|JNI Call Returned: 5.64|#]

[#|2006-03-24T15:32:16.467-0500|INFO|sun-appserver-pe9.0|javax

.enterprise.system.stream.out|_ThreadID=17;_ThreadName=p: thread-pool-1;

w: 12;|ConnectionImpl.close() called|#]

[#|2006-03-24T15:32:16.467-0500|INFO|sun-appserver-pe9.0|javax

.enterprise.system.stream.out|_ThreadID=17;_ThreadName=p: thread-pool-1;

w: 12;|ManagedConnectionImpl.sendEvent(int, e, connHandle) called|#]

[#|2006-03-24T15:32:16.467-0500|INFO|sun-appserver-pe9.0|javax

.enterprise.system.stream.out|_ThreadID=17;_ThreadName=p: thread-pool-1;

w: 12;|ManagedConnectionImpl.cleanup() called|#]

Carefully study the output above. This will further clear up the sequence
of interactions among various objects in our integration solution. Take a
look at the highlighted portions in the text. As you can see, the container cre-
ates eight instances of ManagedConnection the first time you run
LoanRatesClient. These instances are maintained in the pool to service
subsequent requests. Obviously, the next time you run LoanRatesClient,
the instances will not be created again. Instead, a ManagedConnection
instance from the pool will be assigned to service the request. You can change
the size of the resource adapter’s connection pool by modifying the vendor
specific deployment descriptor. For Java EE 5 reference implementation, this
file is sun-ra.xml.

EJB Integration 501

21_785415 ch15.qxp 6/5/06 7:04 PM Page 501

Extending OutboundLoanRA
Before ending our discussion of the example application, let’s briefly go
through possible extensions to OutboundLoanRA.

Implementing additional system contracts can certainly augment the cur-
rent capabilities of OutboundLoanRA. A good starting point for this exercise
will be to add security management. Try component-managed EIS sign-on.
LoanApp.dll currently does not authenticate access. However, you can
improve LoanApp.dll by adding a signOn() native method. The signOn()
method implementation could be as simple as logging the user name/password
security credentials received from the client. At the RA end, you will be
required to implement the ConnectionSpec and ConnectionRequestInfo
JavaBeans so that they reflect the user name/password connection properties.

Another possible extension could be to augment the current outbound con-
nection management contract of OutboundLoanRA with the inbound messag-
ing contract. Imagine a scenario in which a user submits a loan application to
our loan-processing application. Since it can take days to make a decision on
loan application, we want our loan application to send a message to the RA
when the loan approval decision is ready. This could be done very simply: The
loan application can create a simple text file containing the loan approval deci-
sion, in a file system location that is continuously monitored by the RA. The
RA will pick up the loan approval decision’s text file, parse it, and create an
examples.integration.out_loan_ra.LoanApprovalMessage instance.
Finally, it sends this message to the endpoint that implements examples
.integration.out_loan_ra.LoanApprovalMessageListener within
application server. You can extend this one step further by allowing the RA to do
file system monitoring with the help of a Work instance!

Integration Best Practice: When to Use Which
Technology

Now that you know all the technologies for integrating EJB applications, the
question is how to decide which one to use in a given scenario. The following
guidelines should help you determine the right technology for your applica-
tion integration problem on the EJB platform.

When to Use JMS and JMS-Based MDB
Java Message Service is a Java abstraction to MOM systems. All application
servers support a JMS service that listens to a messaging provider (an RA, actu-
ally) and delivers messages from the messaging provider to JMS messaging
endpoints a.k.a. JMS-based MDB. Decoupled communication along with reli-
able and asynchronous messaging forms the basis of this approach.

502 Chapter 15

21_785415 ch15.qxp 6/5/06 7:04 PM Page 502

Use JMS and JMS-based MDB for application integration when:

■■ You are integrating Java application endpoints; for example, consider a
scenario where a Java application wants to integrate with your EJB
application in an asynchronous yet reliable manner. Here, your Java
application can simply create and send a JMS message to the MDB, and
it is all set.

■■ You are integrating non-real-time applications—for example, process-
ing inventory and shipping or communication with suppliers.

■■ You need reliability and transaction support for integrating application
endpoints.

The only disadvantage to this approach is that because JMS does not define
a wire protocol, out-of-the-box integration across various JMS products is dif-
ficult and almost impossible without using MOM bridges. As a result, if your
scenario involves using different JMS products, this approach might not work
without using a bridge to translate your JMS product’s protocol to that of the
target application endpoint’s JMS product protocol.

When to Use Java EE Connectors
Use Java EE connectors for application integration when:

■■ You want to integrate with back-end EIS applications without modify-
ing them.

■■ Quality of service is a prerequisite for integration. For example, if you
need transactional and secure access to the EIS, connectors can be the
way to go. If you want the application server to pool your outbound
connections, connector architecture can enable that. Again, if you want
the application server to host message endpoints so that they can con-
sume messages from your EIS, connector architecture is the answer.

■■ You are integrating with a widely used EIS because you are likely to
find off-the-shelf connectors for most of these. This greatly reduces the
time it takes to integrate with the EIS.

When to Use Java Web Services
Web services are becoming a predominant choice for application integration,
both within and outside the enterprise boundaries. The main reason behind
this is the ubiquitous support for Web services protocols found in most of the
modern programming platforms and languages. The interoperability guide-
lines from organizations such as Web Services Interoperability (WS-I) further
increase the applicability of Web services in integration space.

EJB Integration 503

21_785415 ch15.qxp 6/5/06 7:04 PM Page 503

Think of using Web services when:

■■ You need to quickly integrate application endpoints.

■■ The target applications for integration exist on disparate platforms.

■■ The target application endpoints are deployed behind the demilitarized
zone (DMZ), thereby requiring access through the firewalls.

Web services provide a quick fix to the integration problem. However, they
are far from providing a robust solution for integration because of the lack of
quality of service support in the Web services protocols. The good news is that
industry is working hard to define security, transactions, and other such
semantics for Web services.

Summary

In this chapter, we introduced integration and presented an overview of vari-
ous styles of integration. You learned how Java EE connectors provide an
excellent framework for integrating EJB with non-IIOP applications. You then
learned various best practices related to choosing appropriate technology for
application integration on the EJB platform.

In the next chapter, you learn about various clustering techniques you can
implement in the enterprise Java applications.

504 Chapter 15

21_785415 ch15.qxp 6/5/06 7:04 PM Page 504

505

In this chapter, we’ll talk about clustering technology, which addresses many of
the challenges faced by large, high-capacity systems. This chapter first explores
many issues relating to EJB and large systems. After providing you with a
broad understanding of these issues we’ll look at solutions.

Specifically, we’ll cover the following topics:

■■ Approaches and characteristics of large-scale systems with Java EE
application servers

■■ How clustering addresses the requirements of large-scale systems

■■ Approaches to instrumenting clustered EJBs

■■ Issues related to designing clustered EJB systems

■■ Issues that impact EJB performance in a clustered system

Overview of Large-Scale Systems

The number of systems being developed is rapidly increasing year after year.
Some of these systems are small, targeted at a specific, well-defined user group
that is understood when development of the system begins. Other systems are

Clustering

C H A P T E R

16

22_785415 ch16.qxp 6/5/06 7:04 PM Page 505

large, targeted at a diverse, massive user group that evolves over time. Given
the variety of systems that can be designed, what makes a system large-scale?
And, more importantly, how can EJB technology operate in a large-scale system?

This section discusses some of the principles behind large systems and
defines terminology that will be used throughout the chapter.

What Is a Large-Scale System?
Unfortunately, there is no complete computer science definition of a large-scale
system. Since requirements for systems vary wildly, what may be considered
large for one project is insignificant for another project. For example, we will
not consider system size in terms of function points, number of components or
interfaces, or lines of code. Rather, our focus here is on operational character-
istics. Let’s just enumerate the most important and obvious ones.

A large-scale system typically:

■■ Has many users, potentially in many different places

■■ Is long-running, that is, required to be “always up”

■■ Processes large numbers of transactions per second

■■ May see increases in both its user population and system load

■■ Represents considerable business value

■■ Is operated and managed by multiple persons

For example, think of a worldwide online store that needs to accommodate
a growing number of customers and transactions, or an air traffic control sys-
tem that needs to handle more flights every year.

Essential requirements on large-scale systems are often summarized by the
following three properties (collectively called RAS):

■■ Reliability gauges whether the system performs consistently as expected.
A completely reliable system works 100% of the time according to its
specification. In theory, this means it has no errors in any of its compo-
nents that would impact its functionality or performance. This is a little
too ambitious for any practical system, so you should think of a reliable
system as one that can perform predictably even in the presence of
faults. Fault tolerance is one aspect of a reliable system.

■■ Availability measures the percentage of time that your system is avail-
able for use by its clients. Availability is not related to the effectiveness
of servicing those requests; rather, it focuses on whether the services are
accessible at all. A system may be unavailable for a variety of reasons,
such as network blockage, network latency, maintenance downtimes, or
total system failure.

506 Chapter 16

22_785415 ch16.qxp 6/5/06 7:04 PM Page 506

A popular way of saying how available a system is to its clients is to
count the number of nines in the percentage figure: A system has an
availability of five nines if it is available 99.999 percent of the time,
whereas four nines means 99.99 percent of the time. With four nines, a
system is unavailable no more than 52 minutes throughout the year
(considering 24-hour operations). This time is reduced to just 5 minutes
with five nines. How many restarts of your application server can you
perform in this time?

■■ Serviceability measures how manageable your system is. System man-
agement occurs at a variety of levels, including runtime monitoring,
configuration, maintenance, upgrades, and so on. Indirectly, high ser-
viceability can improve availability: If it is easy to upgrade a running
system to a new software version with fewer bugs and security holes,
then there is a better chance that administrators will actually upgrade it
even before an outage occurs. Consequently, that system will be more
available.

Another requirement for large systems that is not explicitly covered by RAS
is scalability.

■■ Scalability measures how easily a system can be adapted to increasing
load, typically by adding extra resources such as CPUs, memory, com-
munication lines, and so on. It is highly unlikely that system designers
can estimate the exact load that a long-running system may need to
handle, say, three years after its installation, so being able to scale it is
an essential requirement.

NOTE Many organizations fail to estimate the load that their systems will
require and so design their system with only small-scale characteristics in mind.
While current project schedules may not leave room for planning far into the
future, we recommend that you always assume that you will need a large-scale
system eventually. With this in mind, you should anticipate ways of scaling up
the system and always have a path to follow if your user load increases, due to
future business forces that may be out of your control.

Clustering addresses many of the issues faced by large-scale systems at the
same time. A cluster is a loosely coupled group of servers that provide unified
services to their clients. Clients that use services deployed into a cluster are
typically unaware that their requests are being serviced by a cluster and typi-
cally have no control over deciding which servers in the cluster process their
requests. Requests are transparently directed to a node in the cluster that can
handle the request. The client’s view of the cluster is a single, simple system,
not a group of collaborating servers. This is often referred to as a single-system

Clustering 507

22_785415 ch16.qxp 6/5/06 7:04 PM Page 507

view or single-system image. Servers in a cluster may operate on one or more
computers, each of which may have one or more processors. These computers
are also called nodes.

Clustering can be a very involved technology, potentially encompassing
group communication and replication protocols, and network components
such as load balancers and traffic redirectors at different layers in the protocol
stack. Most commercial and open source Java EE application servers support
some form of

clustering, but how it is set up and used is highly vendor-dependent
because clustering features are out of scope of the Java EE specifications
proper.

Figure 16.1 shows a cluster with a client that is unaware of the cluster and
addresses it as if it were a single server. The request is delivered to one of the
servers in the cluster. The figure does not depict how the request is actually
routed, or if any load balancing or replication is performed in the cluster.

The principle behind clustering is that of redundancy. If you have many
redundant copies of a resource you can spread the load between them. At the
same time, redundant resources enable you to lose one or more and still be
able to operate. Clustering is the prime technology used to provide redun-
dancy. With this in mind, let’s reexamine the RAS and scalability requirements
and see how they are impacted by clustering.

■■ Reliability. For every component added to a system, the number
of scenarios that can cause a disruption in reliable service increases.
This makes reliability of the overall system harder to ensure. Adding
redundant components that remove single points of failure, however,
can improve reliability because it allows failures to be masked.

■■ Availability. If the probability of a single server being unavailable is
1/m, the probability that the server will be available is 1 – 1/m. If there
are n application servers in a cluster, the probability that all of them are
unavailable at the same time is (1 – 1/m)n. The value of (1 – 1/m)n
decreases as n increases. If these servers are truly redundant, then the
overall availability is 1 – (1 – 1/m)n, implying that a cluster will always
be more available than a single server.

The calculation that we just sketched assumes that one server in the
cluster is as good as any other, and that any server can take over pro-
cessing from a failing partner in the cluster at any time. We will explain
some of this in a little more detail later in this chapter.

■■ Serviceability. The principle of serviceability states that two application
servers are more complex to service than a single application server.
This implies that a cluster is inherently more difficult to service than a
nonclustered system. (This holds true even when you consider that a

508 Chapter 16

22_785415 ch16.qxp 6/5/06 7:04 PM Page 508

cluster may provide you with a chance for hot upgrades that a single
server may not have at all. In this case, your cluster is still more com-
plex to service, but you gain availability.)

■■ Scalability. The principle of scalability states that a system that lets you
add more resources than another system, and lets you do this more
cost-effectively, is more scalable. This is one of the strong points of clus-
tering: First, it is cheaper to build (and extend!) a cluster using standard
hardware than to rely on multiprocessor machines. This may not be
immediately obvious considering that multiprocessors PCs are inexpen-
sive these days, but these do not normally go beyond 4 CPUs. If your
load increases beyond that point, clustering becomes the cheaper option.
Second, extending a cluster by adding extra servers can be done during
operation and hence is less disruptive than plugging in another CPU
board. In both situations, a cluster is more scalable.

Note that for a cluster to scale well, there must be a way to actually
share the load. Nothing would be gained if we added resources that did
not get used. Hence, a load-balancing mechanism must be employed to
actually distribute the load between the servers in the cluster.

An important take-away point of the preceding discussion is that a cluster
does not optimize all four requirements and is clearly not the optimal choice
under all circumstances. As we saw, increasing the availability of a system impacts
its serviceability. It is important to appreciate that there is no such thing as a per-
fect system. Any system that has a high level of availability will likely not have
a high level of serviceability. You just need to be aware of the trade-offs.

Load Balancing and Failover
As we saw, the main application areas for clustering are scalability and high
availability.

Figure 16.1 Cluster.

Cluster

Client

Clustering 509

22_785415 ch16.qxp 6/5/06 7:04 PM Page 509

For a cluster to enhance scalability, it must provide some form of load bal-
ancing so that the additional resources provided by the cluster are utilized.
Load balancing means distributing the requests among cluster nodes to opti-
mize the performance of the whole system. Figure 16.2 illustrates a cluster
with a load balancer that distributes requests from different clients to different
nodes in the cluster.

The algorithm that the load balancer uses to decide which target node to
pick for a request can be systematic (such as plain or weighted round robin) or
random. Alternatively, the load balancer could try to monitor the load on the
different nodes in the cluster and pick a node that appears less loaded than the
others. Available load balancers range from dedicated hardware appliances to
software plug-in modules for Web or application servers.

Java EE load balancing can occur in different either the Web or the EJB tiers,
or even in both tiers. We will take a closer look at load balancing different EJBs
later in this chapter. An important feature for Web load balancers is session
stickiness. Session stickiness means that all requests in a client’s session are
directed to the same server. In many Web applications, session state needs to
be kept between invocations from a client. If the client’s next request went to a
different server, that session state would simply be missing, and the applica-
tion could not function correctly.

Note that a pure load-balancing cluster does not make any provisions to
deal with failure: when the server that a client interacts with fails, the client
will notice that and may need to start over. While this sounds unattractive at
first, it means load balancing can be simple and efficient, especially if no appli-
cation state is shared between the nodes in the cluster.

For a cluster to provide higher availability to clients than a single server, the
cluster must be able to failover from a primary server to another, secondary
server when failures occur. This is shown in Figure 16.3, where a dispatcher or
traffic redirector component forwards requests to servers and detects failures.

Figure 16.2 Load-balancing cluster.

ClusterClients

Load
balancer

510 Chapter 16

22_785415 ch16.qxp 6/5/06 7:04 PM Page 510

Figure 16.3 Failover in a cluster.

Here, the dispatcher finds that the primary server cannot be reached in step
2, possibly due to a machine failure or network problems. Transparently to the
client, the request is redirected to another, secondary server.

Failover in either the Web or the EJB tier can take on one of two forms:

■■ Request-level failover. Request-level failover occurs when a request
that is directed to one node for servicing cannot be serviced and is sub-
sequently redirected to another node.

■■ Session failover. If session state is shared between clients and servers,
request-level failover may not be sufficient to continue operations. In
this case, the session state must also be reconstructed at the server node.

For failover to work seamlessly, the client needs to see the same application
state and perhaps even session state after failover. This implies that this state is
somehow made available in the cluster. The mechanism that is used to make
this happen is replication, that is, primary servers backup their application state
and session state during normal operation by copying it somewhere, for exam-
ple to a central database, to one or more secondary servers, or even to all
servers in the cluster. Existing approaches differ in exactly where and how
servers perform replication. A typical approach is to rely on group communica-
tion protocols based on IP multicast internally. Note that replication is required
repeatedly to keep backups in synch with the primary server’s session.

The load-balancing and failover concepts that we just discussed were pre-
sented separately for clarity. In practice, you will find that clusters frequently
offer both functions at the same time and in the same components. For exam-
ple, the dispatcher will often also be able to offer load-balancing functionality.
However, we encourage you to also examine your clustering requirements
separately and choose the right size of the solution for your needs. High avail-
ability based on replication is technically challenging and requires runtime
operations that can cause significant processing overhead and network traffic.

Cluster

Client

1.
2.

3.Dispatcher

Clustering 511

22_785415 ch16.qxp 6/5/06 7:04 PM Page 511

NOTE Load balancing and failover logic doesn’t exist for local interfaces.
Remember that local interfaces do not receive traffic from the network.
Parameters must be marshaled by reference rather than by value serialization.
If the client is local to the bean, then any failure of either component will likely
cause the other to fail, too. Nothing can be done to save such a situation. Thus,
our discussion applies only to remote clients.

Clustering with Collocated or Distributed
Java EE Containers
Before going into the details of clustering technologies, let’s look at the differ-
ent choices you have for setting up servers in a Java EE system.

Java EE servers contain a Web container and an EJB container. This means
that in a Web-based system, the following configurations are possible:

■■ A collocated architecture runs the Web server components (servlets
and JSP files) and application server components (EJBs) on the same
machine.

■■ A distributed architecture separates the Web server components and
application server components on different physical machines.

The differences between clustering the two architectures and the request
flows are shown in Figures 16.4 and 16.5.

Figure 16.4 Clustered servers with collocated containers.

Figure 16.5 Clustered servers with distributed containers.

Dispatcher

Web
Container

Dispatcher

EJB
Container

Dispatcher

Web
Container

EJB
Container

512 Chapter 16

22_785415 ch16.qxp 6/5/06 7:04 PM Page 512

The collocated versus distributed server debate is important as the chosen
architecture has many ramifications for clustering. A distributed architecture
is invariably more complex to set up and maintain because distribution intro-
duces new classes of problems such as increased latency and additional failure
modes. It can also give more flexibility in certain areas, such as scalability and
security, as we discuss below. Whether this flexibility is worth the added com-
plexity must be carefully evaluated. A collocated architecture is sufficient and
simpler to operate in many situations—and hence recommended whenever
applicable.

The pros and cons of collocated and distributed servers are listed in Table 16.1.

Table 16.1 Clustering Collocated versus Distributed Containers

FEATURE COLLOCATED DISTRIBUTED WINNER?

Reliability High, because there is Low, because there Collocated
no remote interprocess are more machines
communication. involved with a single
Everything is in a request. Hence, there
single process, so are more factors that
there are few factors can cause unpre-
that can cause dictable behavior,
unpredictable behavior. such as network

connections.

Availability High, because any Higher than no cluster Collocated
machine can failover at all, but lower than
to any other machine. in the collocated
When the whole setting, because there
cluster fails, the entire are typically fewer
site is down. machines that can

provide for failover in
a given tier (assuming
we have the same
absolute number of
machines as in the
collocated case).
Because we actually
have a cluster for each
tier, failure of a com-
plete cluster for one
tier may still leave the
other tier intact.

(continued)

Clustering 513

22_785415 ch16.qxp 6/5/06 7:04 PM Page 513

Table 16-1 (continued)

FEATURE COLLOCATED DISTRIBUTED WINNER?

Serviceability High, because each box Low, because the Collocated
is identical (simpler), Web server cluster
and there is no must be maintained
network connection differently than the
between the Web application server
servers to bother with. cluster. There is also a

network connection
between the tiers.

Network efficiency The Web server com- The Web server Collocated
ponents can call EJB components must call
local interfaces. Local the EJB remote inter-
communication means faces, which means
no sockets to traverse more marshaling
between the Web overhead. Remote
servers and application interprocess commu-
servers. nication between Web

servers and application
servers slows things
down significantly.

Efficient use High, because a Java Low, because you Collocated
of hardware EE server can be used need to predetermine

for whatever purposes how many machines
it is needed at a given to devote to Web
point in time (Web server tasks, and how
server tasks or applica- many machines to
tion server tasks). devote to application

server tasks. This may
not be exactly optimal,
and your load charac-
teristics may change
over time.

Security You cannot place a You can place a fire- Distributed
firewall between your wall between the
Web server and appli- Web servers and
cation server. Therefore, application servers to
your EJB components further restrict
are more exposed than accesses from Web
in the distributed case. components to EJBs.

514 Chapter 16

22_785415 ch16.qxp 6/5/06 7:04 PM Page 514

Table 16-1 (continued)

FEATURE COLLOCATED DISTRIBUTED WINNER?

Serving quick static If the application If the application Distributed
data, or simple servers are overloaded, servers are overloaded,
Web requests that static data (such as static data (such as
do not involve HTML and images) HTML and images)
EJB components are served up slowly can be served up

because the Web quickly because the
servers are competing Web servers are
for hardware resources dedicated.
with the application
servers.

Conflicts over High because the Web Low, because the Distributed
ownership and team and EJB team use Web team and EJB
management the same boxes, which team use different
responsibility could mean conflicts if boxes. They don’t

you’re in a political interfere with each
environment. other as much.

Load balancing You need to set up You need to set up a Equal
a separate load- separate load-
balancing box balancing box
(dispatcher) in front of (dispatcher) in front
the Java EE servers. of the Web servers

and optionally the
EJB servers.

To determine which architecture is most appropriate you have to consider a
large number of factors. We generally favor the collocated approach because it
is simpler. However, the arguments for a distributed server architecture tend
to become more important the larger your system is.

■■ Static data. Static data can be served faster in a distributed architecture,
but this is not an issue for companies that actually run a separate Web
server box just for static data. That static Web page server could also
make use of a Storage Area Network (SAN), a network of hard drives
to increase throughput.

■■ Scalability. The separation between Web and EJB servers enables you
to fine-tune each set of servers separately and more precisely to the
actual requirements of the applications. For example, you may have
applications that use servlets and JSP files only sparingly but create sig-
nificant load on EJB servers so that adding to the number of EJB servers
more directly enhances the overall performance. This argument tends

Clustering 515

22_785415 ch16.qxp 6/5/06 7:04 PM Page 515

to be less important in smaller systems where the differences among the
interaction patterns between clients and Web components and EJBs
may not be significant.

■■ Security. The fact that you can have a firewall in distributed server sys-
tems (between the Web servers and application servers) is important.
It may seem difficult to create a malicious RMI-IIOP request that targets
exposed EJBs, but it really is not that difficult for anyone who understands
the protocols. Hence, your beans should never be directly reachable with-
out first passing through security controls. A firewall is a necessary first
line of defense at the perimeter, but it is not sufficient. (See Chapter 11
for details on additional security controls.) Moreover, a separation of
the Web and EJB servers reduces the chance that an attacker can exploit
weaknesses, such as buffer overflows, in server implementations and
thereby gain control of the entire server machine. Such vulnerabilities
are frequently found in Web Server implementations. The captured
server would then be used to stage additional attacks, for example on
your databases, because internal firewalls allow traffic from the server.
Again, these considerations become more important the larger your
system is, as the business value of your assets tends to increase as well.

NOTE Remember that we recommended you always keep the option of scaling
your systems up, so when choosing the collocated approach, you should be
prepared to switch to a distributed architecture later when it becomes necessary.

Instrumenting Clustered EJBs

Although the actual technology that your Java EE server uses is proprietary,
most application servers have similar approaches to clustering. Let’s look at
the possible options that application server vendors have for clustering EJBs of
all types. We’ll then look at the specifics of clustering stateless session, stateful
session, entity, and message-driven beans.

How EJBs Can Be Clustered
There are many places in the system where vendors can provide clustering logic
(such as load balancing or failover logic):

■■ JNDI. A vendor could provide load-balancing logic in the JNDI contexts
that are used to locate objects. The JNDI context could have several
equivalent objects for a given name and spread traffic across numerous
machines. Some vendors let you deploy an application to all machines
in the cluster at the same time.

516 Chapter 16

22_785415 ch16.qxp 6/5/06 7:04 PM Page 516

■■ Container. A vendor could provide clustering logic directly within the
container. The containers would communicate with one another behind
the scenes using an interserver communication protocol. This protocol
could be used to exchange state or perform other clustering operations.
For example, if a ShoppingCart stateful session bean container has
filled up its cache and is constantly activating and passivating EJBs to
and from secondary storage, it might be advantageous for the container
to send all create() invocations to another container in a different
server that hasn’t reached its cache limit. When the container’s burden
has been reduced, it can continue servicing new requests.

■■ Smart stub. This is the first object accessed by remote clients and runs
locally on a client’s virtual machine. Since stub code is generated by a
vendor tool, the underlying logic in a stub can be vendor-specific so
that the stub knows about multiple equivalent copies of the target. Ven-
dors can instrument method-level load balancing and failover schemes
directly in a smart stub. Every create(), find(), and business method
invocation can have its request load balanced to a different server in the
cluster; it doesn’t matter which machine handles each request.

NOTE The most common scenario is for stubs to be generated at development
time through a utility, such as a vendor-specific EJB compiler. This isn’t the only
option, however. Some application servers can use interception technology,
such as the JDK 1.3 Proxy class, to automatically generate remote stub logic
dynamically at runtime. The JBoss application server is an example of a server
that has an EJB container using this approach.

Whether an application server uses interception technology or creates custom
classes for the stubs and skeletons does not alter the places where cluster-based
logic can be inserted. In the following discussions, we continue to reference
stubs or containers irrespective of how or when these pieces are generated.

One potential drawback of vendor-specific logic on the client side is the loss
of portability: When moving clients to a different vendor’s products, even
standalone RMI-IIOP clients need to be redeployed using the new vendor’s tools.
Porting applications to a different server creates significant amount of work on
the server side anyway, however, so this issue is a comparatively minor one.

The different options that are available to developers and vendors provide a
vast array of configurations with which clusterable EJB may be instrumented.
By now, you must be thinking, “How do I know what to use, when, and
where?” The answer lies within the capabilities of any single application server.
The rest of this chapter discusses the various issues that application server
vendors face when attempting to provide a clusterable infrastructure for state-
less session beans, stateful session beans, entities, and message-driven EJBs.

Clustering 517

22_785415 ch16.qxp 6/5/06 7:04 PM Page 517

The Concept of Idempotence
An idempotent (pronounced ‘i-dim-po-tent, not i-’dimp-uh-tent) method is one
that can be called repeatedly with the same arguments and achieves the same
results each time. For example, HTTP GET requests are assumed to be idem-
potent, which means that any sequence of accesses to the same resource using
GET yields the same results.

An idempotent method in a distributed system can be called repeatedly
without worry of altering the system so that it becomes unusable or provides
errant results. Generally, any methods that alter a persistent store based on its
current state are not idempotent, since two invocations of the same method
will alter the persistent store twice. For example, if a sequencer is stored in a
database and m1() increments the sequencer, two calls to m1() will leave the
sequencer at a different value than if m1() was invoked only once. An idem-
potent method leaves the value in the persistent store the same no matter how
many invocations of m1() occur. A reset() method that sets the sequencer
value to 0 can be called multiple times and will always leave the value in the
persistent store at 0.

Remote clients that witness a failure situation of a server-side service are
faced with a perplexing problem: Exactly how far did the request make it
before the system failed? A failed request could have occurred at one of three
points:

■■ After the request has been initiated but before the method invocation on
the server has begun to execute. Failover of the request to another
server should always occur in this scenario.

■■ After the method invocation on the server has begun to execute, but
before the method has completed. Failover of the request to another
server should occur only if the method is idempotent.

■■ After the method invocation on the server has completed but before
the response has been successfully transmitted to the remote client.
Failover of the request to another server should occur only if the
method is idempotent.

Why is this important? A remote stub that witnesses a server failure never
knows which of the three points of execution the request was in when the fail-
ure occurred. Even though failures of requests that haven’t even begun
method execution should always failover, a client can never determine when a
failed request is in this category.

Thus, remote stubs can automatically failover only requests that were sent
to methods flagged as idempotent. In comparison, failover of nonidempotent
methods must occur programmatically by the client that originated the request.

518 Chapter 16

22_785415 ch16.qxp 6/5/06 7:04 PM Page 518

Some EJB servers give you the ability to mark an EJB component’s method as
idempotent or nonidempotent using proprietary annotations or container
descriptors. There is no standard EJB annotation for this purpose, however.

NOTE You might think that all methods that are marked to require a new
transaction are idempotent. After all, if failure happens, the transaction will roll
back, and all transactional state changes (such as transactional JDBC operations)
will be undone. So why can’t the stub failover to another bean to retry the
operation?

The answer is that container-managed transactions have an inherent flaw,
which we first discussed in Chapter 12. What if the transaction commits on the
server, and the network crashes on the return trip to the stub? The stub would
then not know whether the server’s transaction succeeded and would not be
able to failover.

Stateless Session Bean Clustering
Now, let’s take a look at how we can cluster each type of EJB component. We
begin with stateless session beans.

Load Balancing

All Java object instances of a stateless session bean class are considered identi-
cal. There is no way to tell them apart, since they do not hold state. Therefore
all method invocations on a remote stub can be load balanced. Some EJB
servers also give you flexibility here and allow you to pin stubs so that they
direct requests to a single server only. Some vendors even allow you to config-
ure subsets of methods on a single stub to be pinned or load balanced. This
flexibility in load balancing stateless session bean instances is what drives the
perception that stateless session EJBs are the most scalable types of synchro-
nous EJB components.

Failover

For stateless session beans, automatic failover can always occur.
Automatic failover on remote stubs can occur only if the called method is idem-

potent. If your method is nonidempotent, or if your vendor does not support
automatic failover, you might be able to failover manually by writing code to
retry the method. You need to be careful, however, and factor business rules and
other logic into the decision as to whether a failover request should be made.

Clustering 519

22_785415 ch16.qxp 6/5/06 7:04 PM Page 519

For example, the following pseudo-code manually fails over any method
invocation that is not automatically done so by the remote stub.

InitialContext ctx = null;

SomeRemoteStub remote = null;

try {

ctx = ...;

// Loop until create() completes successfully

boolean createSuccessful = false;

while (createSuccessful == false) {

try {

remote = ctx.lookup(..);

} catch (RemoteException re) {

// Handle remote exception here.

// If fail over should occur, call continue;

} catch (Exception e) {

// Handle system exception here.

// If fail over should occur, call continue;

continue;

}

// If processing gets here, then no failure condition detected.

createSuccessful = true;

}

boolean answerIsFound = false;

while (answerIsFound == false) {

try {

remote.method(...);

} catch (ApplicationException ae) {

// Handle application exception here.

// If fail over should occur, call continue.

} catch (RemoteException re) {

// Handle server-side exception here.

// If fail over should occur, call continue.

} catch (Exception e) {

// Failure condition detected.

520 Chapter 16

22_785415 ch16.qxp 6/5/06 7:04 PM Page 520

// If fail over should occur, call continue.

continue;

}

// If processing gets here, then no failure condition detected.

answerIsFound = true;

} // while

} catch (Exception e) { }

If we wanted it to do so, our EJB component could also assist with this
failover decision by checking the system state before continuing.

Stateful Session Bean Clustering
Stateful session beans are clustered a bit differently than their stateless cousins.
The major EJB server vendors support replication of state. It works like this:
When a stateful session bean is created, the state must be copied to another
machine. The backup copy isn’t used unless the primary fails. The bean is rou-
tinely synchronized with its backup to ensure that both locations are current.
If the container ever has a system failure and loses the primary bean instance,
the remote stub of the bean fails over invocations to another machine. That
other machine can use the backup state and continue processing. A new
backup is then nominated, and the state begins to replicate to that new backup.
This all occurs magically behind the scenes after you configure your EJB server
to replicate state, using your EJB server’s proprietary annotations or descrip-
tors, or administrative console.

NOTE Stateful replication should be used with caution. It will limit your
performance. Instead, you may want to consider placing critical, transactional,
and persistent data in a database via session beans entities. Stateful session
beans should be used for session-oriented (conversational) data that would not
adversely impact the system if the data were lost.

Replication of stateful data typically occurs at one of two points:

■■ At the end of every method. This is not ideal, since unnecessary repli-
cation of unmodified data can frequently occur.

■■ After the commit of a transaction. For reasons touched upon in Chap-
ter 10, this is ideal. Transactions give you an all-or-nothing failover par-
adigm. By replicating on transactional boundaries, your stateful session
bean state remains consistent in time with other changes to your system
state.

Clustering 521

22_785415 ch16.qxp 6/5/06 7:04 PM Page 521

Most EJB servers perform stateful failover in one of two ways:

■■ In-memory replication. The state could be replicated in-memory across
the cluster. In-memory replication is fast. The downside is that most EJB
servers limit the replication to only two machines, since memory then
becomes a scarce resource.

■■ Persistent storage to a shared hard drive or database. This approach is
slower than in-memory replication, but every server in the cluster has
access to the persistent state of the replicated bean.

Load Balancing

Remote stubs cannot load balance as easily. Your client requests can be sent only to
the server that has your state. Note that if your stateful session bean is replicated
across multiple servers, a remote stub could conceivably load balance different
requests to different servers. This wouldn’t be ideal, however, since most vendors
have a designated primary object that requests are sent to first. The effort
involved with load balancing requests in this scenario outweighs any benefits.

Failover

You might think that failover can always occur with stateful session beans if
the state is replicated across a cluster. After all, if something goes wrong, we
can always failover to the replica.

However, this is not the case. If your bean is in the middle of a method call, we
still need to worry about idempotency. Your bean might be modifying the state
elsewhere, such as calling a legacy system using the Java EE Connector Archi-
tecture. Your stub can failover to a backup only if the method is idempotent.
The only time your EJB server can disregard idempotency is when your con-
tainer crashes when nobody was calling it, either between method calls or
between transactions, depending on how often you replicate.

For stateful session beans, automatic failover on a remote stub can occur only
if your methods are idempotent. Most methods are not idempotent, such as a
create() method or a set() method. However, stateful session beans can
have some idempotent methods! Any method that does not alter the state of
the system or always leaves the state stored in the stateful session EJB at the
same value is an idempotent method. For example, if a stateful session EJB had
a series of get() accessor methods to retrieve the values of state stored in the
server, these get() accessor methods would be idempotent.

522 Chapter 16

22_785415 ch16.qxp 6/5/06 7:04 PM Page 522

If your method is not idempotent, or if your container does not support
replication, you can manually failover, similarly to our approach to stateless
session beans.

Entity Clustering
Now that we’ve seen session beans, let’s see how entities are clustered. Note
that dealing with these issues is in the domain of the persistence provider and
the database, so there is no need for you to write code for any of the concepts
mentioned here. You can consider the following as background material.

Load Balancing

With the new Java persistence API entities can only be accessed remotely
through a session bean façade. Therefore, all accesses to entities occur over
local interfaces by in-process session beans, rather than remote clients. Thus,
the need for separate load-balancing entities goes away.

Failover

Since you can only access entities using local interfaces, failover makes little
sense.

NOTE Entities don’t have the same replication needs as stateful session
beans. This is because entities are routinely synchronized with a database via
its store and load operations. Thus, an entity is backed up on a regular basis by
design. From this perspective, you can think of an entity as a stateful session
bean that is always replicated by the container on transactional boundaries
through store and load operations. Those automatic load and store operations
are the most important differences between stateful session beans and entities.

Caching

Because entities are basically Java objects that represent database data, they are
in themselves a middle tier cache for that database. It is a tricky and technically
complicated task for an application server’s persistence provider to support
this cache well. It is also a common misperception that caching always
improves the performance of a system. Caching makes a system perform bet-
ter only when the average overhead associated with updating the cache is less
than the overhead that would be needed to access individual instances repeat-
edly between cache updates. Since the amount of synchronization needed to

Clustering 523

22_785415 ch16.qxp 6/5/06 7:04 PM Page 523

manage a cache in a cluster is high, a cache generally needs to be accessed
three or four times between updates for the benefits of having the cache to out-
weigh not having it.

Persistence providers provide many different types of caching algorithms.
Each of these algorithms has the same principle behind it: to reduce the fre-
quency of database load and store operations, which are normally called on
transactional boundaries.

You set up these caches using proprietary container tools, or annotations or
descriptors. No Java coding should be required.

Read-Only Caches

A read-only cache contains a bunch of read-only entities. This is a very useful
cache because most enterprise data is read-only. This type of caching has enor-
mous benefits.

Since read-only entities never change, their store methods are never called,
and they are never called with a transactional context. If your entity class
methods are participating in a read-only cache, they need to have Never or
Not Supported as their transactional attribute.

Read-only caches implement an invalidation strategy that determines when
the data in the read-only instance is no longer valid and should be reloaded
from the persistent store. Common algorithms include:

■■ Timeout. Every X seconds, the cache is invalidated and the read-only
entity is reloaded immediately or upon the next method invocation.
You set the time-out interval based on your tolerance for witnessing
stale data.

■■ Systemwide notification. When someone changes entities in a read/
write cache, the container invalidates those entity that also reside in a
read-only cache elsewhere.

It doesn’t take long for you to perform operations on a read-only entity . The
lock on the entity bean needs to be held just long enough to perform the
method call that gets you the data you need. Thus, each server’s read-only
cache typically keeps a single entity instance in memory for each primary key.
This saves overhead involved with creating multiple instances and managing
the concurrent access.

Distributed Shared Object Caches

A distributed shared object cache is an advanced EJB server feature that few vendors
provide today. It is a clusterwide cache for read/write data. This immediately
introduces an obvious problem: cache consistency. How does the container stay
in sync with the database? What if someone updates the database behind your
back? You’ll need to refresh your cache.

524 Chapter 16

22_785415 ch16.qxp 6/5/06 7:04 PM Page 524

A distributed shared object cache could theoretically detect collisions at the
database level. This might be detected through database triggers, although
this gets very hairy. The idea is that when someone updates the database
behind your back, a trigger is fired. The cache is notified by this trigger and
updates its contents so that read-only clients can access the latest data. Because
each of the servers receives the notification, updating of the data can occur
concurrently across the cluster.

A distributed shared object cache also needs to stay in sync with other
caches in the cluster. It needs to replicate itself to other nodes on regular inter-
vals, similar to the concept of stateful session bean replication. It also needs to
implement a distributed lock manager that locks objects in memory, similar to
how a database locks database rows. Additionally, if an unreliable messaging
infrastructure, such as IP multicast, is used to send notification messages
between servers, a system runs the risk of having two caches trying to lock the
same data concurrently; their notification messages might cross in midair! An
algorithm that allows the pausing of other systems during the period where
critical events and notification messages are generated needs to be imple-
mented. As you can see, this convergence of state across multiple nodes is very
difficult to implement.

Read-Mostly Caches

Some application servers provide an exciting read-mostly algorithm. This pow-
erful idea allows you to have read-only entity beans that are also updated
every now and then, without having the burden of a true distributed shared
object cache. The idea is that for any given entity class, some instances will be
read-only, and some will not be cached at all (read/write).

■■ When you perform a read operation, you use a cached, read-only
entity for performance.

■■ When you perform a write operation, you use a regular, uncached
entity. When you modify a regular entity and a transaction completes,
all of the read-only entity caches are invalidated. When the read-only
entities are next used, they need to be reloaded from the database.

This read-mostly pattern has some interesting characteristics:

■■ Each cache uses a different JNDI name. For example, a read-only
cache might have RO appended to the JNDI name, while a read/write
cache might have RW appended to the JNDI name. This is somewhat
annoying.

■■ This pattern requires only the use of a read-only cache, which almost
all application servers have. You don’t need to deal with the complexity
of a true distributed shared object cache.

Clustering 525

22_785415 ch16.qxp 6/5/06 7:04 PM Page 525

When using a read-mostly algorithm, be sure that your container uses a reli-
able communications protocol when invalidating the read-only cache. If a
message is accidentally lost, you could be working with stale data.

Message-Driven Bean Clustering
Message-driven beans behave differently than session beans and entities do
and thus have different implications in a cluster. Since message-driven beans
do not have remote interfaces, they don’t have any remote stubs or skeletons
that can perform load balancing and failover logic on their behalf.

Message-driven beans are consumers of messages; they behave in a pull sce-
nario grasping for messages to consume, rather than a push scenario in which
a remote client sends invocations directly to the consumer. See Chapter 9 for a
full discussion of this behavior.

Message-driven bean clustering is really about JMS clustering. A message-
driven bean is dependent upon the clusterable features of the JMS server and
destinations that it binds itself to. Message-driven beans achieve load balancing
by having multiple EJB servers of the same type bound to a single JMS queue for
message consumption. If four messages arrive concurrently at the queue
and four containers of the same message-driven bean type are bound to the
destination, each container is delivered one of the messages for consumption.
Each container consumes its message concurrently, achieving a pseudo-load-
balancing effect.

Failover of message-driven beans is integrated into the very nature of the
beans themselves. Failover occurs any time a message that is being processed
is acknowledged as unsuccessful to the JMS server. An unacknowledged mes-
sage is placed back on the destination for reconsumption. The message-driven
bean that consumes the message a second (or third, fourth, and so on) time
need not be the one that consumed it the first time.

In some advanced JMS server implementations, JMS destination replication
allows nonpersistent messages to be replicated across servers in a cluster.
Message-driven beans that bind to a replicated destination detect any server
failures and automatically rebind themselves as a consumer to the server host-
ing the replicated destination.

Other EJB Clustering Issues

This final section discusses some miscellaneous issues about J2EE clustering
that can impact the behavior of a system.

526 Chapter 16

22_785415 ch16.qxp 6/5/06 7:04 PM Page 526

First Contact
When a client wants to use an EJB component, whether it is a session or message-
driven bean, the client must always first connect to the JNDI tree:

■■ Clients that want to use a session bean look up their stub.

■■ Clients that want to send a JMS message to be consumed by a
message-driven bean must look up a JMS ConnectionFactory and
Destination object.

Since all EJB clients use JNDI, naming server clustering ultimately has an
impact on the behavior of EJB components in a cluster, too. What kind of clus-
tering enhancements can be made to naming servers, and how does this
impact EJBs? There are two types of clustered naming servers:

■■ Centralized. The naming server is hosted on a single server. All EJB
servers register their same EJB components on the single naming server,
and all clients look up EJB components on the single naming server.
The naming server can even distribute clients to the identical servers
in the cluster.

■■ Shared, replicated. Each node in a cluster hosts its own JNDI naming
server that contains replicated objects hosted on other servers in the
cluster. The naming servers replicate their contents—including stubs,
JDBC DataSource objects, JMS ConnectionFactory object, JMS
Destination objects—to the other naming servers in the cluster.
Thus, every naming server has a copy of every other naming server’s
objects in the tree. If a server in the cluster crashes, all of the other nam-
ing servers that are still active merely have to remove from their naming
server the objects hosted on the other machine.

Initial Access Logic
When an application server provides a centralized naming server, the logic that
clients use to get access to the cluster is simple: They hard-code the DNS name or
IP address of the centralized naming server into all of their InitialContext
creation calls.

But what about Java EE vendors that support a shared, replicated naming
server? Clients can connect to any server in the cluster and make a request for
a service hosted anywhere else in the cluster. Architects have a variety of
options available to them.

Clustering 527

22_785415 ch16.qxp 6/5/06 7:04 PM Page 527

■■ DNS load balancing. This allows multiple IP addresses to be bound to a
single name in a network’s Domain Name Service (DNS). Clients that ask
for an InitialContext pass in a DNS name in the URL of the naming
server. Every translation of the DNS name results in the generation of a
different IP address, which is part of a round-robin list for that name in
the DNS server. Using this technique, every client InitialContext
request is transparently directed to a different server. Networks support
this feature or they do not—it is not dependent upon the capabilities of
your application server. Generally, this is a low-level technique that can
cause difficult-to-solve network problems and needs to be well under-
stood and implemented. We do not recommend it for your average
network.

■■ Software proxies. Software proxies maintain open connections to a list
of servers that are preconfigured in a descriptor file. Software proxies
can maintain keep-alive TCP/IP connections with each of the servers to
provide better performance instead of attempting to reconnect every
request. These software proxies immediately detect any server crash
or unresponsiveness because their link is immediately lost. Software
proxies can also support a wider range of load-balancing algorithms,
including round-robin, random, and weight-based algorithms.

■■ Hardware proxies. Hardware proxies have capabilities similar to soft-
ware proxies but often can outperform their software counterparts.
Hardware proxies can also double as firewalls and gateways.

Summary

In this chapter, we discussed the major challenges and solutions for working
with EJB in a clustered system. We also discussed the major characteristics that
large systems exhibit and how clustering addresses the issues that arise in
these systems. We then presented the concepts of load balancing and failover
and compared the collocated and distributed approaches to clustering. We
analyzed the type-specific behavior that can be exhibited by stateless session
beans, stateful session beans, entities, and message-driven beans in a cluster.
And finally, we discussed cluster deployments of EJB, clustered naming
servers, and initial access logic to naming servers. So pat yourself on the back!
You’ve just learned a great deal about clustering.

528 Chapter 16

22_785415 ch16.qxp 6/5/06 7:04 PM Page 528

529

In this chapter, we will show you how to design and build a complete EJB/
Java EE system. In particular, you’ll learn how to use entities, session beans,
and message-driven beans together, and how to call EJB components from Java
servlets and Java Server Pages (JSP). We will also expose a stateless session
bean as a Web service for integration with other applications.

We will first provide motivation for our deployment by describing the busi-
ness problem. We’ll then design the example system. The complete source
code is available on the book’s accompanying Web site at www.wiley.com/
go/sriganesh. The code is fully commented and ready to run. As we go
through the design, we will point out implementation alternatives that you
can use for your own experiments.

If you have read previous editions of this book, you may want to compare
the EJB 3.0 design of this application with that of the previous editions. What
you will find is that EJB 3.0 lets you build the entire application a lot easier and
much closer to the actual domain model. The large amounts of infrastructure
code that earlier EJB versions required you to write have simply vanished.

The Business Problem

Jasmine’s Computer Parts, Inc. is a fictitious manufacturing company that makes
a wide variety of computer equipment, including motherboards, processors,

EJB-Java EE Integration:
Building a Complete Application

C H A P T E R

17

23_785415 ch17.qxp 6/5/06 7:05 PM Page 529

and memory. Jasmine, the company’s owner, has been selling her products
using direct mail catalogs, as well as a network of distributors and resellers.

Jasmine wants to lower the cost of doing business by selling her computer
parts directly to the end customer through a Web-based sales model. Jasmine
has given us a high-level description of the functionality of the e-commerce
solution. She’d like the following features in the system we provide for her:

■■ User authentication. Registered users would first log in to the Web site
to access the complete catalog. Only registered users should be able to
browse and purchase from her online store.

■■ An online catalog. Users should be able to browse her complete prod-
uct line on the Web and view details of each product.

■■ Shopping cart functionality. While browsing the catalog, a user should
be able to choose the products he or she wants. The user should be able
to perform standard shopping cart operations, such as viewing the cur-
rent shopping cart or changing quantities of items already picked out.

■■ Specialized pricing functionality. Users who order items in bulk
should get a percentage discount. For example, if I order five memory
modules, I get a 10 percent discount on that memory. In addition, regis-
tered users who frequent the store should get additional discounts.

■■ Order generation. Once the user is happy with his or her selections and
has committed to ordering the products, a permanent order should be
generated. A separate fulfillment application (which we won’t write)
would use the data in the orders to manufacture the products and ship
them. The user would be able to return to the Web site later to view the
status of current orders.

■■ Billing functionality. Once the user has placed the order, we should bill
it to him or her. If the user does not have enough funds to pay, the order
should be cancelled.

■■ E-mail confirmation. After the order has been placed and the credit
card debited, a confirmation e-mail should be sent to the user.

This is definitely going to be a full-featured deployment!

A Preview of the Final Web Site

To give Jasmine an idea of what the final product should be like, our sales
team has put together a series of screenshots. The screenshots show what the
e-commerce system will look like when an end user hits the Web site. These
example screens do not yet contain any artwork or corporate design items
because we focus on functionality here.

Figure 17.1 shows a user logging into the system initially. Our authentica-
tion will be through login names and passwords.

530 Chapter 17

23_785415 ch17.qxp 6/5/06 7:05 PM Page 530

Figure 17.1 A user logging into Jasmine’s Computer Parts.

After the user has been recognized, he or she is presented with a Web store-
front. The Web storefront is the main page for Jasmine’s online store (see Fig-
ure 17.2). From the Web storefront, the user can jump to the catalog of products
that Jasmine offers (see Figure 17.3). A user who wants to view details about a
product can check out the product detail screen (see Figure 17.4). The user can
also add the product to the current shopping cart—a temporary selection of
products that the user has made but has not committed to purchasing yet.

Figure 17.2 The Web storefront for the online store.

EJB-Java EE Integration: Building a Complete Application 531

23_785415 ch17.qxp 6/5/06 7:05 PM Page 531

Figure 17.3 Browsing the online catalog.

Figure 17.4 Viewing a particular product.

532 Chapter 17

23_785415 ch17.qxp 6/5/06 7:05 PM Page 532

Once the user has made product choices, the user can view a cart for the cur-
rent selections (and make any last-minute changes), as shown in Figure 17.5.
When the user clicks the button to purchase the selection, he or she is billed
and a new order is generated. Finally, the user is given the order number for
future reference (see Figure 17.6).

Figure 17.5 Viewing and modifying a cart.

Figure 17.6 Making a purchase.

EJB-Java EE Integration: Building a Complete Application 533

23_785415 ch17.qxp 6/5/06 7:05 PM Page 533

Scoping the Technical Requirements

While meeting Jasmine’s requirements, we’d like to develop an extensible
infrastructure that she can add to in the future. That means making the right
abstractions to loosen the coupling between our components. Ideally, Jasmine
should be able to plug in a different implementation of any part of the system
with very few modifications.

Our deployment will be partitioned into three tiers:

■■ The presentation tier involves one or more Web servers, each responsi-
ble for interacting with the end user. The presentation tier displays the
requested information in HTML to the end user; it also reads in and
interprets the user’s selections and makes invocations to the business
tier’s EJB components. The implementation of the presentation tier uses
servlets and JSP technology.

■■ The business logic tier consists of multiple EJB components running
under the hood of an EJB container or server. These reusable compo-
nents are independent of any user interface logic. We should be able to,
for example, take the business tier and port it to a different presentation
tier (such as a disconnected salesforce’s laptop) with no modifications.
The business tier is made up of session beans, and message-driven beans
that realize the business logic. Entities implement the data access layer.
To allow Jasmine to integrate the pricing functionality with other appli-
cations, we will additionally expose this bean as a Web service.

■■ The data tier is where our permanent data stores reside. The databases
aggregate all persistent information related to the e-commerce site.
Jasmine has relational databases already in place, so we need to map
any persistent data to relational tables.

The Business Logic Tier
Let’s begin by designing the entity classes that we need to handle Jasmine’s
persistent data. After that, we will look at the session and message-driven
beans that we want to build.

Persistent Data: Entities

For discussing her business domain with Jasmine and for determining which
entity classes we will need to develop, we created a simple Unified Modeling
Language (UML) class diagram that will be the basis for our design. Let’s take
a quick tour through the central classes in Figure 17.7. Except for the cart and

534 Chapter 17

23_785415 ch17.qxp 6/5/06 7:05 PM Page 534

the catalog class, all classes in the diagram represent nonvolatile, persistent
data. These will be our entity classes.

Customer

First, we need to represent information about Jasmine’s customers. A customer
represents an end user—perhaps an individual or a corporation that purchases
goods from our Web site. Our customer abstraction contains the following
data:

■■ The customer’s name (also used as the customer’s login name for our
Web site)

■■ The customer’s address

■■ The customer’s password (used to verify the customer’s identity)

■■ Personal discount information for the customer

Figure 17.7 The UML class diagram.

<<session bean>>

Cart

purchase(): Order

add(): void

<<entity>>

LineItem

quantity : int

<<session bean>>

Catalog

getProductList(): ProductList
 shopsWith

<<entity>>

Customer

loginName : String

password : String

address : String

discount : int

<<entity>>

Product

productId : int

name : String

description : String

basePrice : int

<<entity>>

Order

orderId : int

subTotal : int

orderDate : Date

status : int

taxes : double

collects
0..*

containedIn
0..1

0..*
 lists
1..*

places

quantifies

EJB-Java EE Integration: Building a Complete Application 535

23_785415 ch17.qxp 6/5/06 7:05 PM Page 535

NOTE New customers, products, and so on can be added to the system in
many ways. Jasmine could have users log in through a separate Web site and
input their name, address information, password, and other profile data. We
could also develop a custom maintenance tool (standalone or Web-based) for
adding new products. To keep this example simple, we’ll manually insert direct
database data, but feel free to extend this for your purposes.

In each shopping session, a Customer uses a single Cart object to collect his
or her shopping items. The cart is not a persistent object and will be modeled
as a stateful session bean. It’s in the diagram only to represent the relationship
between customers and line items. It will be explained in more detail in the next
section. Suffice it to say here that the purchase() operation creates an Order
object from the cart’s contents when the customer’s selection is complete.

Order

Next, we need to model a permanent order for goods. We’ll define an order
class in the diagram for this purpose. An order is a shopping cart that has been
converted into a work request. An order represents a real business action that
needs to take place, such as the production of goods. Generating an order and
billing a customer go hand in hand.

An order contains the following information:

■■ The ID of this order (which the user can use to check on order status)

■■ The customer for which this order is generated (used for shipping
address information)

■■ The products and quantities that should be ordered (as with carts, best
represented as separate information; contained in line items, described
shortly)

■■ The subtotal and taxes on the order

■■ The date the order was placed

■■ The order status

Orders are permanent, persistent objects. You want an order’s state to be
around even if your deployment crashes for any reason because an order
means money. Therefore, orders are best depicted as entities. In comparison,
carts are not permanent—they represent temporary interactions with the cus-
tomer. You don’t want to write a cart’s data to a database during a customer
interaction, but you do want to keep track of the user’s information—hence
the stateful session bean is best applied for carts.

536 Chapter 17

23_785415 ch17.qxp 6/5/06 7:05 PM Page 536

Line Item

For convenience of manipulation, we break up our notion of an order into indi-
vidual line items, where each line item represents data pertaining to a single
product the user has ordered. An order has a one-to-many relationship with its
constituent line items. Our line item abstraction contains the following data:

■■ The ID of this order line item

■■ The product that this order line item represents (used by manufacturing
to reveal which product to make)

■■ The quantity of the product that should be manufactured

Because order line items are permanent, persistent objects, they are rep-
resented as entities. At first, you might think a line item is too small and
fine-grained to be an entity and might better be represented as Java classes for
performance. However, with EJB local interfaces and by properly tweaking
your EJB server, it is possible to have both fine-grained and large-grained enti-
ties. Chapter 14 has more detail about how to optimize such entities for
performance.

Line items will be part of persistent orders, but they also serve as simple
data objects in carts. Since carts are session beans and not persistent, we will
not persist line items before an order is actually generated. Until then, we will
just pass them around as plain, serializable Java objects.

Products and Catalog

At some stage we need to model the products that Jasmine is selling. A prod-
uct could be a motherboard, a monitor, or any other component. Products
should be persistent parts of the deployment that last forever. Our product
abstractions should represent the following data:

■■ The unique product ID

■■ The product name

■■ A description of the product

■■ The base price of the product (indicating the price of the product, with
no discounts or taxes applied)

Jasmine should be able to add and delete products from the system using a
separate tool that connects to the database; we don’t provide this functionality in
our Web shop. Because products are permanent, persistent parts of the system,
they are best modeled as entities. The product entity should have methods to
get and set the above fields. We also have a catalog session bean that functions
as a façade for this entity bean, serving as a transactional networked façade.

EJB-Java EE Integration: Building a Complete Application 537

23_785415 ch17.qxp 6/5/06 7:05 PM Page 537

NOTE Rather than entity classes, we could have used Java classes to represent
the entities in our system, such as products, customers, and so on. However,
many of these nouns (especially products) are prime candidates to be cached
by the container. This means that by going with entities, our performance
would actually improve. Because we are using local interfaces, the access time
is comparable to a local object access.

Business Logic: Session and Message-Driven Beans

You have seen the central entities that make up our domain model, but so far
there has not been much activity in our Web shop.

The entity classes just explained should not directly contain any of this busi-
ness logic because Jasmine should be able to reuse our entity access layer in
future applications, such as inventory or marketing tools. Also, these entities
cannot be accessed from outside the container. Hence, we develop a number of
EJBs that implement the application’s business logic and provide access to
entity data. Figure 17.8 depicts the beans in our business logic tier.

Figure 17.8 The major EJB components in our system.

UserManager (SLSB)

Cart (SFSB)

Pricer (WS)

OrderProcessor (MDB)

Catalog (SLSB)

538 Chapter 17

23_785415 ch17.qxp 6/5/06 7:05 PM Page 538

The central actual shopping functionality that our Web shop provides is built
around the shopping cart session bean, with which users interact. The busi-
ness function of calculating the prices for carts by adding up the individual
items and applying personal and bulk discounts is modeled in a separate
Pricer session bean. Let’s now take a closer look at each of the beans in turn.

Carts

We need to keep track of the selections a customer has made while navigating
our catalog by modeling a shopping cart. Each customer who has logged in
should have his or her own temporary and separate cart in which to work.
Therefore, our carts need to hold client-specific state in them. They should not
be persistent, because the user can always cancel the cart.

This naturally lends itself to the stateful session bean paradigm. Each cart
stateful session bean holds conversational state about the user’s current cart. It
enables us to treat the entire cart as one coarse-grained object. A new cart
needs to be generated every time a user logs in. Each cart bean contains the fol-
lowing information:

■■ The customer we authenticated at the login screen. We need to store
customer information so that we know who to bill, what discounts to
apply, and where to ship the manufactured products.

■■ The products and quantities that the customer currently has selected.
We can reuse the LineItem entity class here that we introduced earlier,
which does just the right thing. When the cart is transformed into an
order, these line items are persisted and stored together with the order.

■■ The subtotal for the cart, taking into account all the prices of the prod-
ucts the user wants as well as any discounts the user gets.

■■ The taxes charged. This is added to the subtotal for the final grand total.

In addition to this data, the cart beans will be smart and will know how to
generate permanent orders from themselves. We describe orders a bit later.

NOTE When making shopping cartlike functionality, you have several choices.
You can use session beans (as we are) for temporary shopping carts. You can
also use servlets or JSP session objects, which is appropriate if your shopping
cart is primitive in functionality and shouldn’t be reused for other graphical
user interfaces.

A final choice is to use entities and to keep the shopping cart data in the
database. The entity approach is appropriate for persistent shopping carts,
where you’d like the user to retrieve the shopping cart when returning later.
This might be useful if it requires complex configuration to get an item into a
shopping cart, such as custom configuring a laptop computer. The downside to
the entity approach is that you need to write a shopping cart cleaning program
that routinely sweeps abandoned shopping carts from the database.

EJB-Java EE Integration: Building a Complete Application 539

23_785415 ch17.qxp 6/5/06 7:05 PM Page 539

Pricer

Because Jasmine wants customized pricing, we need the concept of a pricer—
a component that takes a cart as input and calculates the price of that cart
based on a set of pricing rules. A pricing rule might be, “Customer X gets a
5 percent discount” (a frequent-buyer discount) or “If you purchase 10 moth-
erboards, you get a 15 percent discount” (a bulk discount). These pricing rules
could be read in from a database or set via EJB environment properties (see
Chapter 10). The implementation on the companion Web site uses this latter
approach. It is a useful exercise to move the frequent buyer discount informa-
tion to the customers database instead.

Our pricer takes a cart as input and computes the subtotal (before taxes) of
that cart. It figures out the subtotal by computing a discount for each cart line
item in that bean and subtracting the discounts from the total price.

Our pricer works on any cart and holds no client-specific state. Once the
pricer has computed a price on a cart, it is available to perform another com-
putation on a different cart. It is also not a persistent object—it would not make
sense to save a price, because a pricer simply performs logic and holds no
state. This means that our pricer fits into the EJB world best as a stateless ses-
sion bean.

Finally, Jasmine considers reusing the pricing logic in other applications,
such as her mail order processing system and even considers making it avail-
able to external applications. Consequently, we need to plan in advance for
integrating this component with other, potentially non-EJB systems. We, there-
fore, expose the pricer stateless session bean as a Web service to allow for easy
integration.

Order Processor

The last challenge we face is how to generate orders in our system. We’d like for
the user to continue browsing the Web site when he has placed the order,
rather than waiting to see if his credit card is approved. This is similar to the
Amazon.com one-click functionality. We’d also like to e-mail the user after-
ward, indicating whether the order was successfully placed.

The best paradigm to achieve this is messaging. When the user wants to
order the shopping cart, we could send a JMS message containing the shop-
ping cart reference. Then later, the message will be processed off the queue by
an order processor message-driven bean. This order processor is responsible for
querying the shopping cart, checking the user’s credit card, checking inven-
tory, e-mailing the user a confirmation, and creating the order (entity bean).

The challenge of sending data through JMS is that we cannot marshal EJB
stubs in a JMS message. Thus, we couldn’t send a shopping cart stub as a seri-
alized bit-blob in a JMS message. This is a fundamental problem with message-
driven beans: It’s very challenging to send data into a message-driven bean
that comes from another bean.

540 Chapter 17

23_785415 ch17.qxp 6/5/06 7:05 PM Page 540

One option is to use EJB object handles, which are serializable stubs. How-
ever, this might not work either, since the stateful session bean cart might time
out before the JMS message was processed.

Another option is to create a custom, serializable representation of the shop-
ping cart, perhaps by using serializable Java objects. The problem here is that
we’d need to create all these extra Java classes, which is very annoying. Alterna-
tively, we could create the order and transmit that as a serializable object, which
is simple if we let the entity class Order implement java.io.Serializable.

The best solution for us is to submit the order before sending a JMS message.
We then mark the order status as unverified. The order processor receives the
primary key of the order, retrieves the order entity from the database, checks
the credit card, sends the confirmation e-mail, and then changes the order sta-
tus to submitted.

Our notion of an order can be easily extended to include order status, such
as Manufacturing or Shipping and other order fulfillment information. It would
also be interesting to e-mail the order status to the end user at regular intervals
using the JavaMail API. Since we do not fulfill orders, we leave this as an
exercise to the reader.

The Presentation Tier
Our next task is to design our presentation tier, which displays the graphical
user interface to the end user. For our presentation tier, we will use a few Java
servlets and JSP files to interact with a client over HTTP. The following sec-
tions contain a brief introduction to servlets and JSP technologies. You can
safely skip this if you are already familiar with these technologies.

What Are Servlets?

A servlet is a Java object that runs within a Web container and reacts to Hyper-
Text Transfer Protocol (HTTP) requests by sending HTTP responses. Requests
contain data that the client wants to send to the server. A response is data that
the server wants to return to the client to answer the request. A servlet is a Java
object that takes a request as input, parses its data, performs some logic, and
issues a response back to the client (see Figure 17.9).

Figure 17.9 The basic servlet paradigm.

Servlet
1: receive request 3: issue response

2: perform logic

EJB-Java EE Integration: Building a Complete Application 541

23_785415 ch17.qxp 6/5/06 7:05 PM Page 541

Figure 17.10 illustrates an HTTP servlet running inside a Java EE server, and
Source 17.1 shows an example of an HTTP servlet.

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

public class HelloWorld extends HttpServlet

{

public void service(HttpServletRequest req, HttpServletResponse rsp)

throws ServletException, IOException

{

PrintWriter out = rsp.getWriter();

out.println(“<H1>Hello World</H1>”);

}

}

Source 17.1 A sample HTTP servlet.

As you can see, HTTP servlets are very straightforward. They have a simple
method called service() that responds to HTTP requests. In that method,
we write some HTML back to the browser. If properly configured, the Java EE
server will pool and reuse this servlet to service many HTTP requests at once.

We can also do trickier things—respond differently to different types of
HTTP requests, maintain user sessions, read input parameters from Web forms
(using the HttpServletRequest object), and call EJB components.

Figure 17.10 HTTP servlets.

HTTP Servlet

3: perform logic

J2EE Server

Client Browser

1: send HTTP request

2: call servlet with
the request information

4: return response
information to
servlet engine

5: send HTTP response

542 Chapter 17

23_785415 ch17.qxp 6/5/06 7:05 PM Page 542

The great thing about servlets is that they are written in Java and, therefore,
can be debugged just like any other Java code. The downside to servlets is that
they require Java knowledge. It is, therefore, inappropriate to use servlets to
write large amounts of HTML back to the user, because that HTML is inter-
laced with Java code, as you saw in Source 17.1. This makes it very challenging
for Web designers to get involved with your deployment.

What Are Java Server Pages?

A Java Server Page (JSP) is a flat file that is translated at runtime into a servlet.
JSP files are generally useful for presentation-oriented tasks, such as HTML
rendering. You don’t need to know Java to write a JSP file, which makes JSP
files ideal for Web designers. A sample JSP is shown in Source 17.2.

<!doctype html public “-//w3c/dtd HTML 4.0//en”>

<html>

<body>

<H1>Hello World</H1>

</body>

</html>

Source 17.2 A sample JSP.

As you can see, this just looks like HTML and is easily maintained by a
graphic designer. You can do fancy things as well, such as interlacing Java code
with JSP, managing user sessions, and so on. Just about anything you can do in
a servlet can be done with JSP. The difference is that a JSP file is a flat file that
is translated into a servlet later. The code in Source 17.2 would be translated
into a servlet with out.println() statements for the HTML code.

How Do I Combine Servlets, JSP, and EJB Components?

You have several choices when architecting your Web-based system. Here are
just a few examples.

■■ The JSP files can have embedded Java code that calls EJB compo-
nents. For example, we could interlace the following code into a
JSP file:

<html>

<H1>About to call EJB...</H1>

<%

EJB-Java EE Integration: Building a Complete Application 543

23_785415 ch17.qxp 6/5/06 7:05 PM Page 543

javax.naming.Context ctx = new javax.naming.InitialContext();

C cObj = (C)ctx.lookup(C.class.getName());

...

%>

</html>

When this JSP is translated into a servlet, the Java code would be
inserted into the generated servlet. This is a bad idea, because the JSP
files cannot be easily maintained by a graphic designer due to the large
amount of Java code in the JSP file.

■■ The JSP files can communicate with EJB components via custom tags.
You can design custom JSP tags that know how to interact with EJB
components, called JSP tag libraries. Tag libraries are appealing because
once you’ve designed them, graphic designers can call EJB components
by using familiar tag-style editing rather than writing Java code. The tags
then call Java code that understands how to invoke EJB components.

■■ Servlets can call EJB components and then call JSP files. You can
write one or more Java servlets that understand how to call EJB
components and pass their results to JSP files. This is a Model-View-
Controller (MVC) paradigm, because the EJB layer is the model, the
JSP files are the view, and the servlet(s) are the controller—they under-
stand which EJB components to call and then which JSP files to call
(see Figure 17.11). The advantage of this paradigm is that it pushes
most of the Java code into servlets and EJB components. The JSP files
have almost no Java code in them at all and can be maintained by
graphic designers.

■■ You can go with an off-the-shelf Web framework. Several off-the-shelf
Web frameworks aid in building Web-based systems, such as Jakarta
Struts.

JSP Files in Our E-Commerce Deployment

We will choose an MVC paradigm for our e-commerce deployment. We will
have servlets that perform the controller processing, call our EJB components,
and select the appropriate JSP file based on the results of the EJB layer
processing.

544 Chapter 17

23_785415 ch17.qxp 6/5/06 7:05 PM Page 544

Figure 17.11 The EJB-JSP-Servlet Model-View-Controller paradigm.

To fulfill Jasmine’s requirements, we’ll define the following servlets and JSP
files:

■■ A login page. The login page will be the first page that the user deals
with when going to Jasmine’s Web site. It is responsible for reading in
the user’s name and then retrieving the appropriate customer entity
bean that matches that name. It compares the user’s submitted pass-
word with the permanent password stored with the customer entity
bean. If the passwords match, a new cart stateful session bean is created
for this customer. The customer information is stored in the cart so the

J2EE Server

2: call appropriate
EJB components

Web Browser

Servlets

Business layer
(EJBs)

Login JSP

Main page JSP

Product detail
JSP

Catalog JSP

View Cart JSP

Order
Confirmation

JSP

1: HTTP request

3: Choose the
appropriate JSP.
Pass the data obtained
from the business layer
to the JSP.

4: Construct HTML
Return the HTML on the HTTP response

EJB-Java EE Integration: Building a Complete Application 545

23_785415 ch17.qxp 6/5/06 7:05 PM Page 545

cart contains the user’s billing and shipping information. If the pass-
words don’t match, an error is displayed and the user is given another
chance to enter a password.

■■ A Web storefront page. The user who gets through the login page is
redirected to the Web storefront, which is the main page for Jasmine’s
store. This is the main navigation page for Jasmine’s store. It links to the
catalog page and the view cart page.

■■ A catalog page. To start adding products to the cart, the user can
browse the list of available products by going to the catalog page.
The user can also view details of a particular product, in which case we
direct the user to the product detail page.

■■ A product detail page. When the user wants information about a
particular product in the catalog, the product detail page shows that
information. From this screen, the user can add the product to his or
her cart.

■■ A view cart page. This page enables the user to view and modify the
shopping cart. This means deleting items or changing quantities. Every
time the user changes something, we recalculate the price of the cart by
calling the pricer stateless session bean.

■■ An order confirmation page. Finally, when the user is happy, he or she
can convert the cart stateful session into an order entity bean. The user
is then shown his or her order number, which is extracted from the
order bean. We then send a JMS message to the OrderProcessor
bean, which asynchronously processes the order.

This completes the design for our presentation tier. The flow of control for
our pages is depicted in Figure 17.12. Note that the JSP files do not directly call
each other: Servlets receive all requests, call the appropriate EJB components,
and route the results to the appropriate JSP file for the HTML to be rendered.

Once we’ve developed the application, we need to package and deploy it.
A Java EE application is packaged this way:

■■ An Ejb-jar file (.jar) contains EJB components.

■■ A Web archive file (.war) contains Web components, such as servlets,
JSP files, HTML, images, and JSP tag libraries.

■■ An enterprise archive file (.ear) is a Java EE application that contains
a .jar file and a .war file. This is the unit of deployment you care most
about, because it represents a Java EE application.

546 Chapter 17

23_785415 ch17.qxp 6/5/06 7:05 PM Page 546

Figure 17.12 State diagram for our Web shop.

Each of these files follows the ZIP rules for compression. The idea is that you
first create the Ejb-jar file, then the Web archive, and then zip them up together
into an enterprise archive. You deploy the enterprise archive into your appli-
cation server using its tools, or perhaps by copying it into the appropriate
folder. For code examples of how to build and deploy these archives, see the
book’s accompanying source code.

Example Code

Before concluding this chapter, let’s look at an example of a servlet calling EJB
components and then calling a JSP file, so that you can grasp how this MVC
paradigm is achieved. As a final piece of code, we will also look at the pricer
Web service and bean interfaces.

Login
Web

Storefront

return user to
main page

get info on
a Product

Add Product
to user’s Cart

update Product
quantities in the

user’s Cart

Generate the Order,
send JMS message to
process order

show receipt

authenticate user
by querying the
Customer entity

Order
Confirmation

Catalog

View
Cart

Product
Detail

EJB-Java EE Integration: Building a Complete Application 547

23_785415 ch17.qxp 6/5/06 7:05 PM Page 547

We’ll take the example of logging into our site. Source 17.3 shows the login
JSP code.

<%--

This JSP displays a login screen. When the user fills out the login

screen, it will submit it to the Login Servlet, which will verify the

user’s credentials by calling EJB components.

If the verification is unsuccessful, the login servlet will return

the user to this page to reenter his credentials.

If the verification is successful, Jasmine’s main page will be

displayed.

--%>

<html>

<head>

<title>Jasmine’s Login page </title>

</head>

<body>

<%-- Include the title, which is “Jasmine’s Computer Parts”--%>

<jsp:include page=”title.jsp” />

<%-- Indicate the error page to use if an error occurs --%>

<jsp:directive.page errorPage=”error.jsp” />

<%-- Display the login form --%>

<h4>Please enter login information</h4>

<p>

<form action=”/jasmine/login” method=”get”>

<table>

<tr>

<td>Name:</td>

<td>

<input type=”text” name=”Login” size=”19”/>

</td>

</tr>

<tr>

<td>Password:</td>

<td>

<input type=”text” name=”Password” size=”19”/>

</td>

</tr>

<tr>

<td></td>

Source 17.3 The login JSP. (continued)

548 Chapter 17

23_785415 ch17.qxp 6/5/06 7:05 PM Page 548

<td>

<input type=”submit” value=”Submit Information”/>

<input type=”submit” value=”Register”/>

</td>

</tr>

</table>

</form>

<%

// get whether the person logged in successfully

Boolean failed = (Boolean) request.getAttribute(“loginFailed”);

if (failed != null) {

if (failed.booleanValue() == true) {

%>

<p>

Could not log in! Please try again.

<p>

<%

}

}

%>

<%-- Include the page footer --%>

<jsp:include page=”footer.jsp” />

</body>

</html>

Source 17.3 (continued)

Source 17.4 shows the login servlet.
The login servlet is self-documenting. It cracks open the request, figures out

which EJB components to call, and selects the appropriate JSP file.

package examples.shop.web.servlet;

import java.io.IOException;

import javax.naming.Context;

import javax.naming.InitialContext;

import javax.servlet.RequestDispatcher;

import javax.servlet.ServletConfig;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

Source 17.4 The login servlet. (continued)

EJB-Java EE Integration: Building a Complete Application 549

23_785415 ch17.qxp 6/5/06 7:05 PM Page 549

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import javax.servlet.http.HttpSession;

import examples.shop.logic.Cart;

import examples.shop.logic.UserManager;

/**

* This is the very first servlet the client deals with. It’s a login

* authentication servlet and asks the user for his name and password,

* and passes it to the UserManager stateless session bean for

* verification.

*

* If the user authenticates properly, a reference to a new Cart is

* saved in his HttpSession object, and the user can begin to add items

* to his cart and shop around.

*/

public class LoginServlet extends HttpServlet {

/** the user manager used to authenticate the user */

UserManager userManager;

/** the user’s cart object */

Cart cart;

/**

* The servlet engine calls this method once to initialize a servlet

* instance.

*/

public void init(ServletConfig config) throws ServletException {

super.init(config);

try {

/*

* Get the initial context using the above startup params.

*/

Context ctx = new InitialContext();

userManager = (UserManager) ctx.lookup(UserManager.class

.getName());

cart = (Cart) ctx.lookup(Cart.class.getName());

} catch (Exception e) {

log(e);

throw new ServletException(e.toString());

}

}

/**

Source 17.4 (continued)

550 Chapter 17

23_785415 ch17.qxp 6/5/06 7:05 PM Page 550

* The servlet engine calls this method when the user’s desktop

* browser sends an HTTP request.

*/

public void service(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

/*

* Set up the user’s HttpSession

*/

HttpSession session = request.getSession(true);

System.out.println(request.getAttributeNames().toString());

/*

* Retrieve the login name/password from the URL string.

*/

String loginName = request.getParameter(“Login”);

String password = request.getParameter(“Password”);

boolean isLogin = false;

/*

* If user has not tried to log in yet, present him with the

* login screen.

*/

if ((loginName == null) || (password == null)) {

writeForm(request, response, false);

return;

} else {

/*

* Otherwise, the user has been to this screen already, and

* has entered some information. Verify that information.

*/

try {

isLogin = userManager.validateUser(loginName, password);

} catch (Exception e) {

writeForm(request, response, true);

e.printStackTrace();

return;

}

/*

* If the passwords match, make a new Cart Session Bean,

* and add it to the user’s HttpSession object. When the

* user navigates to other servlets, the other servlets can

* access the HttpSession to get the user’s Cart.

*/

Source 17.4 (continued)

EJB-Java EE Integration: Building a Complete Application 551

23_785415 ch17.qxp 6/5/06 7:05 PM Page 551

if (isLogin) {

try {

cart.setOwner(loginName);

cart.clear();

session.setAttribute(“cart”, cart);

/*

* Call the main page

*/

RequestDispatcher disp = this.getServletContext()

.getRequestDispatcher(“/wsf.jsp”);

disp.forward(request, response);

return;

} catch (Exception e) {

log(e);

throw new ServletException(e.toString());

}

} else

writeForm(request, response, true);

}

/*

* If there was no match, the user is not authenticated. Present

* another login screen to him, with an error message indicating

* that he is not authenticated.

*/

writeForm(request, response, true);

}

/**

* Writes the login screen (private use only)

*

* @param showError

* true means show an error b/c client was not

* authenticated last time.

*/

private void writeForm(HttpServletRequest request,

HttpServletResponse response, boolean showError)

throws ServletException, IOException {

/*

* Set a variable indicating whether or not we failed to log in.

* The JSP will read this variable.

*/

request.setAttribute(“loginFailed”, new Boolean(showError));

/*

* Forward the request to the login JSP

Source 17.4 (continued)

552 Chapter 17

23_785415 ch17.qxp 6/5/06 7:05 PM Page 552

*/

RequestDispatcher disp =

this.getServletContext().getRequestDispatcher(

“/login.jsp”);

disp.forward(request, response);

}

private void log(Exception e) {

e.printStackTrace();

}

public String getServletInfo() {

return “The Login servlet verifies a user.”;

}

}

Source 17.4 (continued)

As a final code example, let’s look at the interface that the Pricer component
exposes, in Source 17.5.

package examples.shop.logic;

import java.util.List;

import examples.shop.impl.entity.LineItem;

/**

* These are the business logic methods exposed publicly by the

* Pricer component, a function that computes a price for a

* given user and base price.

*/

public interface Pricer {

/**

* Computes the price of a set of goods

*/

public double priceSubtotal(String user, List<LineItem> items);

public double priceTaxes(double subtotal);

/**

* @return the applicable tax rate

Source 17.5 The Pricer Web service interface. (continued)

EJB-Java EE Integration: Building a Complete Application 553

23_785415 ch17.qxp 6/5/06 7:05 PM Page 553

*/

double getTaxRate();

/**

* @return the current discount rate for buying lots of items

*/

double getBulkDiscountRate();

/**

* @return the discount rate for a given user in percent

*/

double getPersonalDiscountRate(String userName);

/**

* This method computes the applicable discount in absolute

* figure, based on bulk and personal discounts that may apply.

*

* @param quantity the number of items that a user intends to buy

* @param basePrice the overall, non-discounted volume of the

* purchase (individual price times quantity)

* @param the user name

* @return the subTotal for the line item after applying any

* applicable discounts, excluding taxes

*/

double getDiscount(int quantity, double basePrice, String user);

}

Source 17.5 (continued)

In the same manner as in Chapter 5, we can let the application server tools
generate a WSDL file from the Java session bean class, and then generate
SOAP stubs and a JAX-RPC mapping file from the WSDL. The pricer bean
exposes and implements a regular business interface in Source 17.6. The ratio-
nale here is that other applications at Jasmine’s, such as a mail order applica-
tion, do not use the shopping cart abstraction that our Web shop uses. These
applications do need the discount calculation operations, however. Source 17.6
shows the stateless session bean implementation of the Web service.

package examples.shop.impl.session;

import java.util.Iterator;

import java.util.List;

import javax.annotation.Resource;

import javax.ejb.EJB;

Source 17.6 The Pricer Web service. (continued)

554 Chapter 17

23_785415 ch17.qxp 6/5/06 7:05 PM Page 554

EJB-Java EE Integration: Building a Complete Application 555

import javax.ejb.Remote;

import javax.ejb.Stateless;

import javax.jws.WebService;

import examples.shop.impl.entity.Customer;

import examples.shop.impl.entity.LineItem;

import examples.shop.logic.Pricer;

import examples.shop.logic.UserManager;

/**

* Stateless Session Bean that computes prices based

* upon a set of pricing rules. The pricing rules are

* deployed with the bean as environment properties.

*/

@Stateless

@Remote(Pricer.class)

@WebService(serviceName=”PricerService”, portName=”PricerPort”)

public class PricerBean implements Pricer {

@Resource(name=”taxRate”)

public int taxRate = 0;

@Resource(name=”bulkDiscountRate”)

public int bulkDiscountRate = 0;

@EJB

UserManager userManager;

public PricerBean() {

}

/**

* bulk discounts apply to quantities of BULK or more items

*/

private static final int BULK = 5;

/**

* This method computes the applicable discount in absolute

* figures, based on bulk and personal discounts that may apply.

*

* @param quantity the number of items that a user intends to buy

* @param basePrice the overall, non-discounted volume of the

* purchase (individual price times quantity)

* @param the user name

* @return the subTotal for the line item after applying any

* applicable discounts, excluding taxes

*/

Source 17.6 (continued)

23_785415 ch17.qxp 6/5/06 7:05 PM Page 555

public double getDiscount(int quantity, double basePrice,

String user) {

double discountRate = getPersonalDiscountRate(user);

if (quantity >= BULK) {

discountRate += getBulkDiscountRate();

System.out.println(“Using getBulkDiscountRate “ +

getBulkDiscountRate());

}

/*

* Calculate the discount in absolute figures

*/

return basePrice * (discountRate / 100);

}

/**

* A bulk discount applies to quantities of more than 5 pieces.

* @return the bulk discount rate int percent

*/

public double getBulkDiscountRate() {

return this.bulkDiscountRate;

}

/**

* Customers with certain names get discounts. The discount rules

* are stored in the environment properties that the bean is

* deployed with.

*/

public double getPersonalDiscountRate(String userName) {

/*

* Get the name of this customer.

*/

Customer user = userManager.getUser(userName);

if(user != null)

return user.getDiscount();

else

return 0;

}

/**

* Computes the subtotal price for a set of products the customer

* is interested in. The subtotal takes into account the price of

* each product the customer wants, the quantity of each product,

* and any personal discounts the customer gets. However, the

* subtotal ignores taxes.

*

Source 17.6 (continued)

556 Chapter 17

23_785415 ch17.qxp 6/5/06 7:05 PM Page 556

* @param quote All the data needed to compute the

* subtotal is in this parameter.

*/

public double priceSubtotal(String user, List<LineItem> items) {

System.out.println(“PricerBean.priceSubtotal() called”);

/*

* Compute the subtotal

*/

double subTotal = 0;

for(Iterator<LineItem> iter = items.iterator();

iter.hasNext();) {

LineItem item = iter.next();

item.setDiscount(

getDiscount(item.getQuantity(),

item.basePrice(),user));

/*

* Add the price to the subtotal.

*/

subTotal += (item.basePrice() - item.getDiscount());

}

return subTotal;

}

/**

* Computes the taxes on a quote.

*/

public double priceTaxes(double subtotal) {

System.out.println(“PricerBean.priceTaxes() called, taxes: “ +

getTaxRate());

return (getTaxRate() / 100) * subtotal;

}

/**

* @return the applicable tax rate

*/

public double getTaxRate() {

return taxRate;

}

}

Source 17.6 (continued)

EJB-Java EE Integration: Building a Complete Application 557

23_785415 ch17.qxp 6/5/06 7:05 PM Page 557

If you’re curious to see how the other use cases are implemented, see the
book’s accompanying source code. And as a reminder, this is just one of many
ways to implement a Web architecture.

NOTE As an alternative, we could have also chosen a single-servlet
architecture with only one servlet and many JSP files. This single servlet would
call Java classes, and each Java class would represent a Web use case and
understand the EJB components to call. For example, we could have a Java
class that understood how to verify login credentials. The advantage of this
paradigm is we could reuse these Web use-case classes in several pages, and
our servlet layer would be completely decoupled from our EJB components.

Summary

In this chapter, we’ve painted a picture of how our e-commerce system should
behave. Now that we’ve made the proper abstractions, our components
should fall into place easily. By performing this high-level analysis, we can be
confident that our final product will be extensible and reusable for some time
to come.

We strongly encourage you to compile and run the example code that we
have provided for you. You can use this code as the basis for doing your own
experiments with a shopping-style application and for exploring other options.
Some of the directions that we encourage you to take with the example is to play
with global distributed transactions, devise your own graphic design for the
JSP files, let the OrderProcessor send e-mail notifications to customers, and
perhaps try a different, non-JMS messaging style for the OrderProcessor
message-driven bean.

558 Chapter 17

23_785415 ch17.qxp 6/5/06 7:05 PM Page 558

559

For more technological background on EJB, this appendix explains the tech-
nologies that EJB depends upon—Java RMI-IIOP and the Java Naming and
Directory Interface (JNDI). RMI-IIOP is the networking protocol used in EJB
and is key to interoperability with non-EJB applications, such as legacy appli-
cations written in C++ or COBOL. JNDI is how beans (and their clients) look
up other beans and external resources by name when dependency injection is
not available or sufficient.

The goal of this appendix is to teach you enough about RMI-IIOP and JNDI
to be productive in an EJB environment. This tutorial will cover the basics, but
is by no means a complete RMI-IIOP and JNDI tutorial, and for good reason—
most organizations will not need to use these technologies beyond the extent
we describe in this appendix, and your reading time is valuable.

Readers who want to learn more about RMI-IIOP and JNDI should consult
the following references:

■■ The RMI-IIOP and JNDI tutorials. These are available for free on the
Sun Microsystems Web site at http://java.sun.com.

■■ The RMI-IIOP and JNDI specifications. The specifications define the
core of RMI-IIOP and JNDI. They are a bit more technical but should
not be tough to understand after reading this appendix. They are also
downloadable from http://java.sun.com.

RMI-IIOP and JNDI Tutorial

A P P E N D I X

A

24_785415 appa.qxp 6/5/06 7:05 PM Page 559

Click here to purchase this book.

http://www.amazon.com/gp/product/0471785415/ref=sr_11_1/103-1174895-6545420?%5Fencoding=UTF8
jpiscitelli
cover

Java RMI-IIOP

Java RMI (which stands for Java Remote Method Invocation) is a mechanism
for performing simple but powerful networking. Using RMI you can write dis-
tributed objects in Java, enabling objects to communicate in memory, across
Java Virtual Machines and physical devices.

Java RMI-IIOP (which stands for Java RMI over the Internet Inter-ORB Pro-
tocol) is J2EE’s de facto mechanism for providing networking services relying
on the CORBA network protocol IIOP. The main advantage of IIOP over plain
RMI’s native transport protocol JRMP (Java Remote Method Protocol) is that
IIOP lets your code interoperate remotely with any application on any plat-
form that uses CORBA. It is also more mature than JRMP.

NOTE RMI-JRMP has some interesting features not available in RMI-IIOP,
such as distributed garbage collection, object activation, and downloadable
class files. Because of the importance of CORBA interoperability, EJB and J2EE
mandate that you use RMI-IIOP, not RMI-JRMP, so we focus on this RMI variant
exclusively. Note that whenever we refer to RMI in the following, we always
mean RMI-IIOP.

The fundamental concepts of remote invocations that we explain here apply to
both RMI-JRMP and RMI-IIOP, but keep in mind that only RMI-IIOP provides
CORBA interoperability. We also provide a short survey of the CORBA
compatibility features of RMI-IIOP later in this chapter.

Remote Method Invocations
A remote procedure call (RPC) is a procedural invocation from a process on one
machine to a process on another machine. RPCs enable traditional procedures
to reside on multiple machines yet still remain in communication. They pro-
vide a simple way to perform cross-process or cross-machine networking.

A remote method invocation (RMI) in Java takes the RPC concept one step fur-
ther and allows for distributed object communications. RMI enables you to
invoke not procedures, but methods, on objects remotely. You can build your
networked code as full objects. This yields the benefits of object-oriented pro-
gramming, such as inheritance, encapsulation, and polymorphism.

Remote method invocations are by no means a simple mechanism. These
are just some of the issues that arise:

■■ Marshaling and unmarshaling. RMIs (as well as RPCs) enable you to
pass parameters, including Java primitives and Java objects, over the
network. But what if the target machine represents data differently than

560 Appendix A

24_785415 appa.qxp 6/5/06 7:05 PM Page 560

the way you represent data? For example, what happens if one machine
uses a different binary standard to represent numbers? The problem
becomes even more apparent when you start talking about objects.
What happens if you send an object reference over the wire? That
pointer is not usable on the other machine because that machine’s
memory layout is completely different from yours. Marshaling and
unmarshaling is the process of massaging parameters so that they are
usable on the machine on which they are invoked remotely. It is the
packaging and unpackaging of parameters so that they are usable in
two heterogeneous environments. As you will see, this is taken care of
for you by Java and RMI-IIOP.

■■ Parameter passing semantics. There are two major ways to pass para-
meters when calling a method: pass-by-value and pass-by-reference (see
Figure A.1). When you use the pass-by-value parameter, you pass a
copy of your data so that the target method is using a copy, rather than
the original data. Any changes to the argument are reflected only in the
copy, not the original. Pass-by-reference, on the other hand, does not
make a copy. With pass-by-reference, any modifications to parameters
made by the remote host affect the original data. The flexibility of both
the pass-by-reference and pass-by-value models is advantageous, and
RMI supports both. You’ll see how in the following pages.

■■ Network or machine instability. With a single JVM application, a crash
of the JVM brings the entire application down. But consider a distrib-
uted object application, which has many JVMs working together to
solve a business problem. In this scenario, a crash of a single JVM
should not cause the distributed object system to grind to a halt. To
enforce this, remote method invocations need a standardized way of
handling a JVM crash, a machine crash, or network instability. When
some code performs a remote invocation, the code should be informed
of any problems encountered during the operation. RMI performs this
for you, abstracting out any JVM, machine, or network problems from
your code.

As you can see, there’s a lot involved in performing remote invocations.
RMI handles many of these nasty networking issues for you.

J2EE-compliant servers are required to ship RMI-IIOP implementations to
enable you to perform networking. Your RMI code is then portable to any
hardware or operating system on which these implementations execute. Better
still, RMI-IIOP lets you even communicate with non-EJB, non-Java applica-
tions written in any language such as banking applications written in C++ or
COBOL. Contrast this with proprietary, platform-dependent RPC libraries,
and you can see some real value in RMI-IIOP.

RMI-IIOP and JNDI Tutorial 561

24_785415 appa.qxp 6/5/06 7:05 PM Page 561

Figure A.1 Pass-by-value versus pass-by-reference.

Object A Object APass-by-Value

RMI-IIOP Client Address Space RMI-IIOP Server Address Space

Return
Object A

M
od

ify
 O

bj
ec

t A

Object A'

Object A Pass-by-
Reference

ReturnObject A'

M
od

ify
 O

bj
ec

t A
Reference back to

Object A

When performing remote
invocations with pass-by-value, a
new copy of Object A is instan-
tiated on the remote host. When
the remote host modifies Object A,
the new value, A', does not
affect the local host's data.

With pass-by-reference, the remote
host receives a remote reference to
the original Object A, rather than a
copy of Object A. Any modifica-
tions to Object A are reflected
the original data.

Reference back to
modified Object A'

562 Appendix A

24_785415 appa.qxp 6/5/06 7:05 PM Page 562

The Remote Interface
We begin our exploration of RMI by reviewing one of object-oriented design’s
great programming practices—the separation of the interface of code from its
implementation.

■■ The interface defines the exposed information about an object, such as
the names of its methods and what parameters those methods take. It’s
what the client works with. The interface masks the implementation
from the viewpoint of clients of the object, so clients deal only with the
end result: the methods the object exposes.

■■ The implementation is the core programming logic that an object pro-
vides. It has some very specific algorithms, logic, and data.

By separating interface from implementation, you can vary an object’s pro-
prietary logic without changing any client code. For example, you can plug in
a different algorithm that performs the same task more efficiently.

RMI makes extensive use of this concept. All networking code you write is
applied to interfaces, not implementations. In fact, you must use this paradigm
in RMI—you do not have a choice. It is impossible to perform a remote invo-
cation directly on an object implementation because the RMI networking ser-
vice layer needs to get involved to contact the remote object.

Therefore, when using RMI, you must build a custom interface, called a
remote interface. This remote interface extends the interface java.rmi.Remote.
Your interface provides all methods that your remote object exposes.

We’ll now begin to build a simple example illustrating the basics of RMI.
In this example, a remote object exposes one method: generate(). The
generate() method returns a new, unique long number each time it’s called.
This is useful, for example, when generating primary keys for data, such as
entity beans (discussed in Chapter 6).

Source A.1 is a valid remote interface.

package examples.jndi;

import java.rmi.Remote;

import java.rmi.RemoteException;

/**

* The remote interface for the remote object. Clients use it

* for all operations on the remote object.

*/

public interface PrimaryKeyGenerator extends Remote {

public long generate() throws RemoteException;

}

Source A.1 primaryKeyGenerator.java.

RMI-IIOP and JNDI Tutorial 563

24_785415 appa.qxp 6/5/06 7:05 PM Page 563

Client code that wants to call methods on your remote object must operate
on PrimaryKeyGenerator. Notice that each method must also declare a
java.rmi.RemoteException. ARemoteException is thrown when there
is a problem with the network, such as a machine crashing or the network
dying.

NOTE With RMI, you can never fully separate your application from the
network. At some point, you’ll need to deal with remote exceptions being
thrown due to networking issues. Some may consider this a limitation of RMI
because the network is not entirely transparent: Remote exceptions force you
to differentiate a local method from a remote method. But in some ways, this is
an advantage of RMI as well. Interlacing your code with remote exceptions
forces you to think about the network and encourages distributed object
developers to consider issues such as invocation latency, the network failing,
the size of parameters going across the network, and more.

The Remote Object Implementation
Remote objects are networked object implementations that can be called by code
in another JVM. They implement a remote interface and thus expose methods
that can be invoked by remote clients.

The physical locations of remote objects and the clients that invoke them are
not important. For example, it is possible for a client running in the same
address space as a remote object to invoke a method on that object. It’s also
possible for a client across the Internet to do the same thing. To the remote
object, both invocations appear to be the same.

To make your object available as a remote object and allow remote hosts to
invoke its methods, your remote class must perform one of the following steps:

■■ Extend the class javax.rmi.PortableRemoteObject
. PortableRemoteObject is a base class from which you can derive
your remote objects. When your remote object is constructed, it auto-
matically calls the PortableRemoteObject constructor, which makes
the object available to be called remotely.

■■ Manually export your objects as remote objects. Perhaps your remote
object class needs to inherit implementation from another custom
class. In this case, because Java does not allow for multiple imple-
mentation inheritance, you cannot extend PortableRemoteObject.
Therefore, you must manually export your object so that it is available
to be invoked on by remote hosts. To export your object, call
javax.rmi.PortableRemoteObject.exportObject().

564 Appendix A

24_785415 appa.qxp 6/5/06 7:05 PM Page 564

Now let’s create the remote object class. This class implements the
PrimaryKeyGenerator interface, and it is shown in Source A.2.

package examples.jndi;

import java.rmi.RemoteException;

import javax.rmi.PortableRemoteObject;

/**

* The implementation of a remote object which generates primary keys

*/

public class PrimaryKeyGeneratorImpl

extends PortableRemoteObject

implements PrimaryKeyGenerator {

private static long i = System.currentTimeMillis();

public PrimaryKeyGeneratorImpl() throws Exception, RemoteException {

/*

* Since we extend PortableRemoteObject, the super

* class will export our remote object here.

*/

super();

}

/**

* Generates a unique primary key

*/

public synchronized long generate() throws RemoteException {

return i++;

}

}

Source A.2 PrimaryKeyGeneratorImpl.java.

Extending javax.rmi.PortableRemoteObject makes the object avail-
able to be called remotely. Once the remote object’s constructor is complete,
this object is available forever for any virtual machine to invoke on; that is,
until someone calls unexportObject().

RMI-IIOP and JNDI Tutorial 565

24_785415 appa.qxp 6/5/06 7:05 PM Page 565

Stubs and Skeletons
Now that we’ve seen the server code, let’s look at the architecture for net-
working in RMI. One of the benefits of RMI is an almost illusionary, transpar-
ent networking. You can invoke methods on remote objects just as you would
invoke a method on any other Java object. In fact, RMI completely masks
whether the object you’re invoking on is local or remote. This is called
local/remote transparency.

Local/remote transparency is not as easy as it sounds. To mask that you’re
invoking an object residing on a remote host, RMI needs some way to simulate
a local object that you can invoke on. This local object is called a stub. It is
responsible for accepting method calls locally and delegating those method
calls to their actual object implementations, which are possibly located across
the network. This effectively makes every remote invocation appear to be a
local invocation. You can think of a stub as a placeholder for an object that
knows how to look over the network for the real object. Because you invoke
methods on local stubs, all the nasty networking issues are hidden.

566 Appendix A

ISSUES WITH OUR PRIMARY KEY GENERATION ALGORITHM

Our primary key generation algorithm is to simply increment a number each
time someone calls our server. This generator overcomes two common
challenges when writing an RMI implementation:

◆ Threading. RMI-IIOP allows many clients to connect to a server at once.
Thus, our remote object implementation may have many threads running
inside of it. But when generating primary keys, we never want to gener-
ate a duplicate key because our keys are not unique and thus would not
be good candidates to use in a database. Therefore, it is important to
have the synchronized block around the generate() method, so that
only one client can generate a primary key at a time.

◆ JVM crashes. We must protect against a JVM crash (or hardware failure).
Thus, we initialize our generator to the current time (the number of mil-
liseconds that have elapsed since 1970). This is to ensure that our pri-
mary key generator increases monotonically (that is, primary keys are
always going up in value) in case of a JVM crash. Note that we haven’t
considered daylight savings time resulting in duplicate keys. If we were
to use this code in production, we would need to account for that.

If you need to generate primary keys in production, see the companion book
to this book, Floyd Marinescu’s EJB Design Patterns (ISBN 0-4712-0831-0),
published by John Wiley & Sons.

24_785415 appa.qxp 6/5/06 7:05 PM Page 566

Stubs are only half of the picture. We’d like the remote objects themselves—
the objects that are being invoked from remote hosts—not to worry about net-
working issues as well. Just as a client invokes methods on a stub that is local
to that client, your remote object needs to accept calls from a skeleton that is
local to that remote object. Skeletons are responsible for receiving calls over the
network (perhaps from a stub) and delegating those calls to the remote object
implementation (see Figure A.2).

RMI-IIOP provides a means to generate the needed stubs and skeletons, thus
relieving you of the networking burden. Typically, this is achieved through
command-line tools. The core J2SE includes a tool called rmic (which stands
for the RMI compiler) to generate stub and skeleton classes. As you can see
from Figure A.2, you must deploy the stub on the client machine and the skele-
ton on the server machine.

Figure A.2 Stubs and skeletons.

Stub

Client Remote Object

Skeleton

Remote Interface

Network

RMI-IIOP and JNDI Tutorial 567

24_785415 appa.qxp 6/5/06 7:05 PM Page 567

Object Serialization and Parameter Passing

One of the more interesting responsibilities of stubs and skeletons is to handle
your parameters. The following section discusses how parameters are passed
in Java RMI. We also explore the role of object serialization in parameter passing.

Passing by Value
When invoking a method using RMI-IIOP, all parameters to the remote
method are passed by value. This means that when a client calls a server, all
parameters are copied from one machine to the other.

Passing objects by value is very different from passing objects in the Java
programming language. When you call a method in Java and pass an object as
a parameter, that object is passed by reference. More specifically, the reference to
the object is copied, but the actual object’s data is not.

There’s a big problem with passing by value. If you’re trying to pass an
object over the network and that object contains references to other objects,
how are those references resolved on the target machine? A memory address
on one machine does not map to the same memory address on another
machine. Also, the referenced object may not even exist on the target machine.
How do you get around this?

Object Serialization

Java introduces the concept of object serialization to handle this problem. Serial-
ization is the conversion of a Java object into a bit-blob representation of that
object. You can send bit-blobs anywhere. For example, you can use object seri-
alization as an instant file format for your objects and save them to your hard
disk. RMI also uses object serialization to send parameters over the network.
When you’re ready to use the object again, you must deserialize the bit-blob
back into a Java object. Then it’s magically usable again.

The Java language handles the low-level details of serialization. In most
cases, you don’t need to worry about any of it. To tell Java that your object is
serializable, your object must implement the java.lang.Serializable
interface. That’s all there is to it: Take this one simple step, and let Java handle
the rest. java.lang.Serializable defines no methods at all—it’s simply a
marker interface that identifies your object as something that can be serialized
and deserialized.

You can provide your own custom serialization by implementing the
writeObject() method on your object, or provide custom deserialization
by implementing readObject(). This might be useful if you’d like to per-
form some sort of compression on your data before your object is converted
into a bit-blob and decompression after the bit-blob is restored to an object.

568 Appendix A

24_785415 appa.qxp 6/5/06 7:05 PM Page 568

Figure A.3 shows the serialization/deserialization API, where
writeObject() is responsible for saving the state of the class, and
readObject() is responsible for restoring the state of the class. These two
methods will be called automatically when an object instance is being serial-
ized or deserialized. If you choose not to define these methods, then the
default serialization mechanisms will be applied. The default mechanisms are
good enough for most situations.

Rules for Serialization

Java serialization has the following rules for member variables held in serial-
ized objects:

■■ Any basic primitive type (int, char, and so on) is serializable and will
be serialized with the object, unless marked with the transient key-
word. If serialized, the values of these types are available again after
deserialization.

■■ Java objects can be included with the serialized bit-blob or not; it’s your
choice. The way you make your choice is as follows:

■■ Objects marked with the transient keyword are not serialized
with the object and are not available when deserialized.

■■ Any object that is not marked with the transient keyword must
implement java.lang.Serializable. These objects are con-
verted to the bit-blob format along with the original object. If your
Java objects aren’t transient and don’t implement java.lang
.Serializable, a NotSerializable exception is thrown when
writeObject() is called.

Figure A.3 The Java serialization API.

java.io.Serializable

writeObject()
readObject()

MyClass

RMI-IIOP and JNDI Tutorial 569

24_785415 appa.qxp 6/5/06 7:05 PM Page 569

Thus, when you serialize an object, you also serialize all nontransient sub-
objects as well. This means you also serialize all nontransient sub-subobjects
(the objects referenced from the subobjects). This is repeated recursively for
every object until the entire reference graph of objects is serialized. This recur-
sion is handled automatically by Java serialization (see Figure A.4). You sim-
ply need to make sure that each of your member objects implements the
java.lang.Serializable interface. When serializing MyClass, object
serialization will recurse through the dependencies shown, packaging the
entire graph of objects as a stream. In Figure A.4, everything will be serialized
except for transient long b, since it is marked as transient.

What Should You Make Transient?

How do you know which member variables should be marked transient and
which should not? Here are some good reasons to mark an object as transient:

■■ The object is large. Large objects may not be suitable for serialization
because operations you do with the serialized blob may be very inten-
sive. Examples here include saving the blob to disk or transporting the
blob across the network.

■■ The object represents a local resource or other data that cannot be
meaningfully reconstructed on the target machine. Some examples of
such resources are thread objects, database connections, and sockets.

■■ The object represents sensitive information that you do not want to pass
in a serialized stream.

Figure A.4 Object serialization recursion.

int a
transient long b
String s
Class2 c

MyClass

java.io.Serializable

Class3 c

Class2
Class3

java.lang.String

java.io.Serializable java.io.Serializable

java.io.Serializable

570 Appendix A

24_785415 appa.qxp 6/5/06 7:05 PM Page 570

Note that object serialization is not free—it is a heavyweight operation for
large graphs of objects. Make sure you take this into account when designing
your distributed object application.

Object Serialization and RMI

Java RMI relies on object serialization for passing parameters via remote method
invocations. Figure A.5 shows what the MyObject object graph could look like.
Notice that every field and subfield is a valid type for Java serialization.

Figure A.5 Java RMI and object serialization.

java.io.Serializable

java.io.Serializable

java.io.Serializable

java.io.Serializable
int a = 5
transient long b = 3
String s = "Hello, World!"
Class2 Obj2 = new Class2();

MyObject : MyClass

Class3 Obj3 = new Class3();

Obj2 : Class2

Obj3 : Class3

s : java.lang.String

RMI Client

1: invoke(MyObject)

Remote Object
Stub

2: Since the MyObject parameter
implements Serializable, serialize
MyObject's object graph.

Network

Remote Object
Skeleton

Remote Object
Implementation

3: Deserialize the parameter. The deserialized
parameter, MyObject2, contains the same state
as MyObject, except the field b does not have
the value 3 since b is transient.

4: invoke(MyObject2)This is the process that
occurs when MyObject is
sent over the network
through Java RMI-IIOP.

RMI-IIOP and JNDI Tutorial 571

24_785415 appa.qxp 6/5/06 7:05 PM Page 571

Figure A.5 shows how RMI handles pass-by-value, where an entire graph of
objects is serialized into a bit-blob, sent across the network, and then deserial-
ized on the target machine.

Pass-by-Reference Semantics

Passing parameters by value can lead to inefficiencies. What if your referenced
graph of objects is very large? What if you have lots of state to send across the
network? The ensuing network lag from performing the invocation may be
unacceptable.

There is another way to pass arguments. RMI simulates pass-by-reference
semantics, which means the arguments are not copied over. Rather, a remote
reference to client’s parameters is copied over to the server.

If you want to pass a parameter by reference, the parameter must itself be a
remote object. When the client calls the server, the RMI runtime sends a net-
work reference to that remote object to the server. The server creates a stub
object from that reference and can perform a callback on that stub, which con-
nects the server to the remote object living on the client machine. Figure A.6
shows the process that occurs when MyRemoteObject, an instance of MyRe-
moteClass, is sent over the network through Java RMI.

Figure A.6 Pass-by-reference with Java RMI.

1: invoke(MyRemoteObject)

2: Since the MyRemoteObject
parameter is a remote reference,
serialize that reference.

RMI Client

Network

Remote Object
Stub

4: invoke(stub for:MyRemoteObject)

3: Deserialize the parameter: the
deserialized parameter is a remote
reference, so create a stub for
MyRemoteObject

Remote Object
Implementation

Remote Object
Skeleton

572 Appendix A

24_785415 appa.qxp 6/5/06 7:05 PM Page 572

The best way to understand this paradigm is by analogy. In the Java pro-
gramming language, when you pass an object as a parameter, the object refer-
ence is copied. In RMI, when you pass an object as a parameter, the network
reference is copied. Both of these strategies achieve pass-by-reference because
they are cloning the thing that points to the object, rather than the object itself.

Because Java RMI references are also serializable, they are passable over the
network as a bit-blob. This is why earlier we said that all parameters in Java
RMI are passed by value. Thus, Java RMI only simulates pass-by-reference by
passing a serializable reference, rather than serializing the original object. By
making your parameters remote objects, you can effectively avoid the network
lag in passing large objects. As usual, there is no such thing as a free lunch: In
return for this reduced transfer cost, you will have to pay a price when access-
ing your object, because all accesses are remote invocations now.

In summary, we have the following rules for passing objects using Java RMI:

■■ All Java basic primitives are passed by value when calling methods
remotely. This means copies are made of the parameters. Any changes
to the data on the remote host are not reflected in the original data.

■■ If you want to pass an object over the network by value, it must imple-
ment java.lang.Serializable. Anything referenced from within
that object must follow the rules for Java serialization. Again, any changes
to the data on the remote host are not reflected in the original data.

■■ If you want to pass an object over the network by reference, it must be a
remote object, and it must implement java.rmi.Remote. A stub for
the remote object is serialized and passed to the remote host. The
remote host can then use that stub to invoke callbacks on your remote
object. There is only one copy of the object at any time, which means
that all hosts are calling the same object.

CORBA Interoperability with RMI-IIOP
RMI-IIOP enables EJB applications to communicate with existing CORBA
applications, as well as to integrate with existing investments written in non-
Java languages, such as C++ and COBOL.

The Common Object Request Broker Architecture (CORBA) is a unifying stan-
dard for writing distributed object systems. The standard is completely neu-
tral with respect to platform, language, and vendor. Many of the concepts in
EJB came out of CORBA, which incorporates a host of technologies and is
much broader in scope than J2EE.

As one of the key parts of the CORBA specification, the OMG has defined the
Internet Inter-ORB Protocol (IIOP, pronounced “eye-op”). IIOP is the standard
Internet protocol for CORBA and the transport layer underneath RMI-IIOP.

RMI-IIOP and JNDI Tutorial 573

24_785415 appa.qxp 6/5/06 7:05 PM Page 573

With RMI-IIOP, we can perform the following:

■■ Combine client-side Java RMI with server-side CORBA. We can write
an object implementation to the CORBA API and write client code to the
Java RMI API to call that CORBA object. This is shown in Figure A.7.

■■ Combine client-side CORBA with server-side Java RMI. We can
write a remote object implementation with the RMI API and have a
client written to the CORBA API to call that object. This is shown in
Figure A.8.

Figure A.7 An RMI client calling a CORBA object implementation.

RMI Stub

RMI Client
CORBA Object

Implementation

CORBA
Skeleton

RMI Remote Object Interface

Network
Via IIOP

ORB ORB

574 Appendix A

24_785415 appa.qxp 6/5/06 7:05 PM Page 574

Figure A.8 A CORBA client calling an RMI remote object implementation.

The Big Picture: CORBA and EJB Together

CORBA and EJB have an interesting relationship. They compete with one
another in some respects (due to CORBA Components), and at the same time,
they complement each other. This is because CORBA is often the enabling
technology that resides beneath the EJB level. Many EJB server vendors layer
their EJB products on top of an existing CORBA infrastructure, and RMI-IIOP
allows just this to happen.

CORBA-EJB interoperability has been a solid technology for years now, and
it provides several benefits. The biggest benefit is that CORBA clients written
in any language can call your enterprise beans.

Another benefit of CORBA-EJB interoperability is at the transaction and
security level. Clients can mix calls to both CORBA objects and enterprise
beans under the hood of the same transaction. Similarly, you should be able to
construct a distributed transaction that spans heterogeneous EJB servers. And
finally, you should be able to propagate security contexts from one EJB server
to another, allowing for single sign-on between different EJB server vendors.

CORBA Stub

CORBA Client
RMI Remote Object

Implementation

RMI Skeleton

CORBA Object Interface

Network
Via IIOP

ORB ORB

RMI-IIOP and JNDI Tutorial 575

24_785415 appa.qxp 6/5/06 7:05 PM Page 575

After this whirlwind tour of remote invocations, let’s move on. For us to
complete our RMI sample application, we need some way to publish the
server and have the client locate that server. This process, called bootstrapping,
is achieved via the JNDI. Let’s put our RMI example on hold while we learn
about JNDI. We’ll return later to complete the example.

The Java Naming and Directory Interface

The Java Naming and Directory Interface (JNDI) is a Java API that provides a
standard interface for locating users, machines, networks, objects, and services
by name. For example, you can use JNDI to locate a printer on your corporate
intranet. You can also use it to locate a Java object or a database. JNDI is used
in EJB, RMI-IIOP, JDBC, and more. It is the standard Java way of looking up
things by name over the network and is also used to manage an enterprise
bean’s environment.

Why Use JNDI?
In many cases, EJBs inside the container need not use JNDI directly because
there are both declarative and programmatic means to refer to external
resources by name.

Throughout this book, we have already seen examples of beans that use
annotations that require the container to inject named environment resources.
The container looks up these environment references in a dedicated JNDI envi-
ronment naming context t java:comp/env.

Bean code can also access this context using the simple javax.ejb
.EJBContext.lookup(name) method. In this case, the name argument is
relative to the bean’s java:comp/env context.

While these mechanisms rely on JNDI but are simpler and more convenient
to use, they do not make the JNDI API redundant: Client code outside a con-
tainer or more advanced applications that require access to multiple name-
spaces or that need to manipulate namespaces dynamically will still use the
JNDI API.

Naming and Directory Services
To understand JNDI, you must first understand the concept of naming and
directory services.

A name is like a reference in that it denotes an entity, for example an object or
a person. The name is not the same as the referenced thing and has no mean-
ing by itself (“What’s in a name?”). Names are often preferred over other kinds
of references because they are easier to use and remember than unwieldy ref-
erences like phone numbers, SSNs, IP addresses, or remote object references.

576 Appendix A

24_785415 appa.qxp 6/5/06 7:05 PM Page 576

A naming service is analogous to a telephone operator. When you want to call
someone over the phone and you don’t know that person’s phone number,
you can call your telephone company’s information service operator to look up
the person you want to talk with. You supply the telephone operator with the
name of the person. The operator then looks up the phone number of the per-
son you want to speak with and returns it to you. (The operator can even dial
the number for you, connecting you to that person, but that is beyond what a
pure naming service will do for you.)

A naming service is an entity that performs the following tasks:

■■ It associates names with objects. We call this binding names to objects.
This is similar to a telephone company’s associating a person’s name
with a specific residence’s telephone number.

■■ It provides a facility to find an object based on a name. We call this
looking up an object, or resolving a name. This is similar to a telephone
operator finding a person’s telephone number based on that person’s
name.

Naming services are everywhere in computing. When you want to locate a
machine on the network, the Domain Name System (DNS) is used to translate a
machine name to an IP address. If you look up www.wiley.com on the Internet,
the name www.wiley.com is translated into the object (which happens to be a
String) 208.215.179.146 by the DNS.

Another example of naming occurs in file systems. When you access a file
on your hard disk, you supply a name for the file such as c:\autoexec.bat
or /etc/fstab. How is this name translated into an actual file of data? A file
system naming service can be consulted to provide this functionality.

In general, a naming service can be used to find any kind of object by name,
such as a file handle on your hard drive or a printer located across the net-
work. But one type of object is of particular importance: a directory object (or
directory entry). A directory object differs from a generic object because you can
store attributes with directory objects. These attributes can be used for a wide
variety of purposes.

For example, you can use a directory object to represent a user in your com-
pany. You can store information about that user, such as the user’s password,
as attributes in the directory object. If you have an application that requires
authentication, you can store a user’s login name and password in directory
object attributes. When a client connects to your application, the client sup-
plies a login name and password, which you can compare with the login name
and password that are stored as a directory object’s attributes. You can store
other attributes besides a login name and password, including a user’s e-mail
address, phone number, and postal address.

A directory service is a naming service that has been extended and enhanced
to provide directory object operations for manipulating attributes. A directory

RMI-IIOP and JNDI Tutorial 577

24_785415 appa.qxp 6/5/06 7:05 PM Page 577

is a system of directory objects that are all connected. Some examples of direc-
tory products are Novell eDirectory Netscape Directory Server, Microsoft
Active Directory, or OpenLDAP. Your company probably uses a directory to
store internal company information (locations of computers, current printer
status, personnel data, and so on).

What does a directory look like internally? The directory’s contents—the set
of connected directory objects—usually forms a hierarchical treelike structure.
Why would you want a treelike structure? A tree’s form suggests the way a
real-world company is organized. For example, the root (or top node) of your
directory tree can represent your entire company. One branch off the root
could represent people in the company, while another branch could represent
network services. Each branch could have subtrees that decrease in granular-
ity more and more, until you are at individual user objects, printer objects,
machine objects, and the like. This is illustrated in Figure A.9.

Figure A.9 A hierarchical directory structure.

My Company

People

Network
Services

Person 1

Printers

Computers

Fax Machines

Person 2

Printer 1

Computer 1

Computer 2

Fax Machine 1

578 Appendix A

24_785415 appa.qxp 6/5/06 7:05 PM Page 578

All in all, directories are not very different from databases. A database can
store arbitrary data, just as a directory can. Databases provide query opera-
tions to look up items in a database, just as directories do. You can think of a
directory as a scaled-down, simplified database. In fact, most directories are
implemented by a database behind the scenes.

Problems with Naming and Directories
There are many popular naming and directory products out today. Directory
vendors differentiate their product lines by offering different types of services.
Unfortunately, this leads to different naming and directory standards. And
each directory standard has a different protocol for accessing the directory. For
example, directories based on the Lightweight Directory Access Protocol (LDAP)
are accessed differently than those based on the Network Information System
(NIS) or Novell’s Network Directory System (NDS).

This means that if you want to switch directory vendors, you need to rewrite
all your client code that accesses the directory. It also means you need to
download a new library, learn a new API, and test new code each time you use
a different directory.

Initially, LDAP was meant to resolve this problem by becoming the ubiqui-
tous protocol for directories. LDAP is straightforward and has been adopted
quickly by the industry—IBM’s Lotus Notes and Microsoft’s Active Directory
both are LDAP-based. However, not all directory products are LDAP-based.

Enter JNDI
JNDI is a system for Java-based clients to interact with naming and directory
systems. JNDI is a bridge over naming and directory services, a beast that pro-
vides one common interface to disparate directories. Users who need to access
an LDAP directory use the same API as users who want to access an NIS direc-
tory or a Novell directory. All directory operations are done through the JNDI
interface, providing a common framework.

Benefits of JNDI
The following surveys the advantages that JNDI has to offer:

■■ You need to learn only a single API to access all sorts of directory ser-
vice information, such as security credentials, phone numbers, elec-
tronic and postal mail addresses, application preferences, network
addresses, machine configurations, and more.

■■ JNDI insulates the application from protocol and implementation
details.

RMI-IIOP and JNDI Tutorial 579

24_785415 appa.qxp 6/5/06 7:05 PM Page 579

■■ You can use JNDI to read and write whole Java objects from directories.

■■ You can link different types of directories, such as an LDAP directory
with an NDS directory, and have the combination appear to be one
large, federated directory. The federated directory appears to the client
to be one contiguous directory.

In J2EE, you can use JNDI for many purposes. These include:

■■ Using JNDI to acquire a reference to the Java Transaction API (JTA) User-
Transaction interface

■■ Using JNDI to connect to resource factories, such as JDBC drivers or
Java Message Service (JMS) drivers

■■ Using JNDI for clients and for beans to look up other beans

The JNDI Architecture
JNDI is made up of two halves: the client API and the Service Provider Interface
(SPI). The client API allows your Java code to perform directory operations.
This API is uniform for all types of directories. You will spend the most time
using the client API.

The JNDI SPI is a framework for JNDI implementors: an interface that
implementations of naming and directory services can be plugged into. The
SPI is the converse of the API: While the API allows clients to code to a single,
unified interface, the SPI allows naming and directory service vendors to fit
their particular proprietary protocols into the system, as shown in Figure A.10.
This allows client code to leverage proprietary naming and directory services
in Java while maintaining a high level of code portability.

The JNDI architecture is somewhat like the Java Database Connectivity
(JDBC) package:

■■ In JDBC, one uniform client API performs database operations. In JNDI,
naming and directory service clients invoke a unified API for perform-
ing naming and directory operations.

■■ In JDBC, relational database vendors provide JDBC drivers to access
their particular databases. In JNDI, directory vendors provide service
providers to access their specific directories. These providers are aware
of specific directory protocols, and they plug in to the JNDI SPI.

For example, the J2SE includes an LDAP service provider for free. The
LDAP service provider knows how to map a JNDI client API operation into an
LDAP operation. It then executes the LDAP operation on an LDAP directory,
using the specific LDAP protocol.

580 Appendix A

24_785415 appa.qxp 6/5/06 7:05 PM Page 580

Figure A.10 The JNDI architecture.

A number of JNDI service providers are bundled with the core J2SE, includ-
ing LDAP, RMI-IIOP, CORBA Naming Service and DNS, other providers avail-
able separately include NIS, Novell NDS, SLP, File System, and many more.
The JNDI homepage (http://java.sun.com/products/jndi) has a list
of service providers.

Java EE servers bundle a JNDI implementation with their product. Typically,
this is a custom implementation provided by the Java EE server vendor. JNDI
then just becomes another service provided by the server, along with RMI-
IIOP, JMS, and so on. Many servers ship JNDI implementations that are fault
tolerant, providing a high level of availability. These JNDI implementations
are intended to integrate with the other Java EE services, such as RMI-IIOP,
JDBC, EJB, and JMS.

JNDI Concepts
We begin our JNDI exploration with naming concepts. There are several kinds
of names in JNDI:

■■ An atomic name is a simple, basic, indivisible name. For example, in the
string /etc/fstab, etc and fstab are atomic names.

■■ A compound name is zero or more atomic names put together using a
specific syntax. In the previous example, the entire string /etc/fstab
is a compound name formed by combining two atomic names with a
slash.

Client Code

Service Provider Interface

LDAP Service
Provider

NIS Service
Provider

File System
Service Provider

JNDI Client API

RMI-IIOP and JNDI Tutorial 581

24_785415 appa.qxp 6/5/06 7:05 PM Page 581

A binding is an association of a name with an object. For example, the file
name autoexec.bat in the Windows file system has a binding to the file data
on your hard disk. Your c:\windows folder is a name that is bound to a folder
on your hard drive. Note that a compound name such as /usr/people/ed/
.cshrc consists of multiple bindings, one to usr, one to people, one to ed,
and one to .cshrc.

A context is a set of zero or more bindings. Each binding has a distinct atomic
name. So for example, in the UNIX file system, let’s consider a folder named
/etc that contains files named mtab and exports. In JNDI, the /etc folder
is a context containing bindings with atomic names mtab and exports. Each
of the mtab and exports atomic names is bound to a file on the hard disk.

To expand this further, consider a folder named /usr with subfolders
/usr/people, /usr/bin, and /usr/local. Here, the /usr folder is a con-
text that contains the people, bin, and local atomic names. Each of these
atomic names is bound to a subfolder. In JNDI terms, these subfolders are
called subcontexts. Each subcontext is a full-fledged context in its own right,
and it can contain more name-object bindings, such as other files or other fold-
ers. Figure A.11 depicts the concepts we have learned so far.

Naming Systems, Namespaces, and Composite Names

A naming system is a connected set of contexts that use the same name syntax.
For example, a branch of an LDAP tree could be considered a naming system,
as could a folder tree in a file system. Unfortunately, naming systems each
have a different syntax for accessing contexts. For example, in an LDAP tree, a
compound name is identified by a string such as cn=Benjamin Franklin,
ou=People, o=Former-Presidents.org, c=us, whereas a file system
compound name might look like c:\java\lib\tools.jar.

A namespace is the set of names contained within a naming system. Your
hard drive’s entire collection of file names and directories or folders is your
hard drive file system’s namespace. The set of all names in an LDAP direc-
tory’s tree is an LDAP server’s namespace. Naming systems and namespaces
are shown in Figure A.12. This branch of a hard disk is an example of a nam-
ing system because it’s a connected set of contexts. Within this naming system,
the namespace is every name shown.

A composite name is a name that spans multiple naming systems. For
example, on the Web, the URL http://java.sun.com/products/ejb/
index.html is composed of the following namespaces:

■■ http comes from the URL scheme-id namespace. You can use other
scheme-ids, such as ftp and telnet. This namespace defines the pro-
tocol you use to communicate.

582 Appendix A

24_785415 appa.qxp 6/5/06 7:05 PM Page 582

■■ java.sun.com uses the DNS to translate machine names into IP addresses.

■■ products, ejb, and index.html are from the file system namespace on the
Web server machine.

By linking multiple naming systems as in the preceding URL, we can arrive
at a unified composite namespace (also called a federated namespace) containing all
the bindings of each naming system.

Figure A.11 JNDI naming concepts.

• Binding with the name
usr.

• Also a context that
contains other bindings.

• Binding with the
name people.

• Also a subcontext
that contains other
bindings.

• Binding with the
name bin.

• Also a subcontext
that contains other
bindings.

• Binding with the
name local.

• Also a subcontext
that contains other
bindings.

...

...

...

RMI-IIOP and JNDI Tutorial 583

24_785415 appa.qxp 6/5/06 7:05 PM Page 583

Figure A.12 Naming systems and namespaces.

Initial Context Factories

If you are to traverse a composite namespace, how do you know which naming
system to look into first? For example, which namespace do you first look in
when traversing the string http://www.TheServerSide.com/events/
index.jsp?

The starting point of exploring a namespace is called an initial context. An
initial context simply is the first context you happen to use. Frequently, the ini-
tial context will be the root node of a naming system, but this is not necessar-
ily so. An initial context is simply a starting point for performing all naming
and directory operations.

To acquire an initial context in JNDI, you use an initial context factory. An ini-
tial context factory is responsible for churning out initial contexts and is imple-
mented by your JNDI driver. For example, there is an LDAP initial context
factory, as well as a file system initial context factory. These initial context fac-
tories know the specific semantics of a particular directory structure. They
know how to acquire an arbitrary context that you can use as an initial starting
context for traversing a directory structure.

When you acquire an initial context, you must supply the necessary informa-
tion for JNDI to acquire that initial context. For example, if you’re trying to
access a JNDI implementation that runs within a J2EE server, you might supply:

Java Context

Classes Context

ASP Context

Packages Context

InetServ Context

System32 Context

WinNT Context

CertSrv Context

IISAdmin Context

584 Appendix A

24_785415 appa.qxp 6/5/06 7:05 PM Page 584

■■ The IP address of the J2EE server

■■ The port number that the J2EE server accepts requests on

■■ The starting location within the JNDI tree

■■ Any user name and password combination necessary to use the J2EE
server

You could use this same paradigm to access an LDAP server—just substi-
tute LDAP server for J2EE server in the preceding list.

Initial contexts and composite namespaces are illustrated in Figure A.13.

Figure A.13 A federated namespace with an initial context.

File System

LDAP

Printer Service

NDS

DNS

Printers

Files

User Information

Initial context

JNDI client code

RMI-IIOP and JNDI Tutorial 585

24_785415 appa.qxp 6/5/06 7:05 PM Page 585

586 Appendix A

The naming contexts and subcontexts in Figure A.13 form a directed graph
that you can navigate. In the figure as in most practical scenarios, these nam-
ing graphs are acyclic, but this is not required. An example of a cycle in a nam-
ing graph is a symbolic link in a subdirectory of the UNIX file system that links
to a directory closer to the root. JNDI naming graphs are often referred to as
JNDI trees. Note that in fact there is no restriction in JNDI that ensures that the
graph is a tree. Naming graphs also need not have a single root node, and sub-
contexts can be bound in more than one context, so a single subcontext may be
known under more than one name.

Programming with JNDI
Now that you’ve seen the concepts behind JNDI, let’s put our theory into con-
crete use. Source A.3 shows a simple JNDI example.

package examples.jndi;

public class InitCtx {

public static void main(String args[]) throws Exception {

// Form an Initial Context

javax.naming.Context ctx =

new javax.naming.InitialContext(System.getProperties());

System.err.println(“Success!”);

}

}

Source A.3 InitCtx.java.

The code simply acquires an initial context and then the program completes.
The specific JNDI driver that we use is based on the system properties passed
in at the command line. For example, to connect to your file system, you
would use the Sun Microsystems file system JNDI service provider, which is a
driver that connects you to your own hard disk to browse the file system. You
would then run the program as follows:

java

-Djava.naming.factory.initial=

com.sun.jndi.fscontext.RefFSContextFactory

-Djava.naming.provider.url=file:c:\ examples.jndi.InitCtx

Note that the JNDI Driver (SPI) for the file system in not bundled with the
J2SE, so you will have to download it separately and place it in your Java
classpath in order to execute the previous command.

The java.naming.factory.initial parameter identifies the class of
the JNDI driver. Then we identify the starting point on the file system that we

24_785415 appa.qxp 6/5/06 7:05 PM Page 586

want to begin navigating; specifically, the c:\ folder. This starting point is
structured in the form of a Uniform Resource Locator (URL). In JNDI, it is
called the provider URL because it is a URL that the service provider accepts for
bootstrapping.

We can reuse this same code to connect to an LDAP server as follows:

java

-Djava.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory

-Djava.naming.provider.url=”ldap://ldap.funet.fi:389/c=fi”

examples.jndi.InitCtx

As you can see, this data-driven mechanism of performing JNDI has its
advantages. It enables you to avoid recompiling your Java code, which is
important if you ship your products only as .class files.

RMI-IIOP and JNDI Tutorial 587

OTHER JNDI OPERATIONS

After acquiring the initial context, you could begin to execute JNDI operations,
such as reading or writing data to and from the JNDI tree by using the other API
calls available in JNDI. Here is a brief list of available operations that you can
call on the context:

◆ list() retrieves a list of bindings available in the current context. This
typically includes names of objects bound in the JNDI graph, as well as
subcontexts. In a file system, this might be a list of file names and folder
names. If you’re connecting to a proprietary J2EE server’s JNDI imple-
mentation, you might see a list of bound objects as well as subcontexts
to which you can navigate.

◆ lookup() resolves a name binding in the context, meaning that the op-
eration returns the object bound to a given name in the context. The op-
eration can also be used to move from one context to another context,
such as going from c:\ to c:\ windows. The return type of lookup() is
JNDI driver specific. For example, if you’re looking up RMI-IIOP objects,
you would receive a java.rmi.Remote object; if you’re looking up a file
in a file system, you would receive a java.io.File.

◆ rename() gives a context a new name, such as renaming c:\ temp to
c:\ tmp.

◆ createSubcontext() creates a subcontext from the current context,
such as creating c:\ foo\ bar from the folder c:\ foo.

◆ destroySubcontext() destroys a subcontext from the current context,
such as destroying c:\ foo\ bar from the folder c:\ foo.

◆ bind() creates a new name binding in the current context. As with
lookup(), JNDI drivers accept different parameters to bind().

◆ rebind() is the same operation as bind, except that it forces a bind
even if there is already something in the JNDI tree with the same name.

24_785415 appa.qxp 6/5/06 7:05 PM Page 587

Integrating RMI-IIOP and JNDI

Now that you’ve seen both RMI-IIOP and JNDI, let’s see how to combine them
and complete the RMI-IIOP example. There are essentially two uses of JNDI
with RMI-IIOP:

■■ An RMI-IIOP server first binds a reference to one or more of its object in
a JNDI context using the JNDI API.

■■ A client then uses JNDI to look up an RMI-IIOP server.

This process is shown in Figure A.14.
Your JNDI implementation is typically bundled with the Java EE server run-

time. Therefore, when you start up your Java EE server, the JNDI service runs
in-process to the Java EE server and starts up as well. Java EE servers also ship
with a JNDI driver that can connect to that JNDI implementation, which
clients call.

Figure A.14 Bootstrapping with JNDI.

Machine #1

Machine #2

Machine #3

Initial
Context

2: Lookup Object in Well-Known JNDI Tree Location

1: Create name
 binding for

 remote object

3: Return Stub

4: Call Business Method

RMI-IIOP
Remote Object

RMI-IIOP
Skeleton

RMI-IIOP
Stub

5: Delegate

6: Delegate

Client Code

588 Appendix A

24_785415 appa.qxp 6/5/06 7:05 PM Page 588

Binding an RMI-IIOP Server to a JNDI Name
The source code for binding the RMI-IIOP server to a JNDI name is in Source
A.4.

package examples.jndi;

import javax.naming.*;

/**

* A helper class which starts our RMI-IIOP server

*/

public class Startup {

/**

* Our main() method starts things up

*/

public static void main(String args[]) throws Exception {

/*

* Start up our PKGenerator remote object. It will

* automatically export itself.

*/

PrimaryKeyGeneratorImpl generator =

new PrimaryKeyGeneratorImpl();

/*

* Bind our PKGenerator remote object to the JNDI tree

*/

Context ctx = new InitialContext(System.getProperties());

ctx.rebind(“PKGenerator”, generator);

System.out.println(“PKGenerator bound to JNDI tree.”);

// wait for clients

synchronized (generator) {

generator.wait();

}

}

}

Source A.4 Startup.java.

The Startup class instantiates a remote object, acquires an initial context,
binds the remote object to a name in the context, and then waits for a client to
call. It assumes that your JavaEE server’s JNDI implementation is already up
and running. Note that you must supply your Java EE server’s JNDI driver
initialization parameters via the command line, as we showed earlier in this
chapter when we ran our JNDI initial context example. Check your server’s
documentation or see the book’s accompanying source code for this.

RMI-IIOP and JNDI Tutorial 589

24_785415 appa.qxp 6/5/06 7:05 PM Page 589

Looking Up an RMI-IIOP Server with JNDI
Our client code that looks up the RMI-IIOP object via JNDI is shown in
Source A.5.

package examples.jndi;

import javax.naming.*;

import javax.rmi.*;

public class Client {

public static void main (String[] args) throws Exception {

// Lookup the remote object via JNDI

Context ctx = new InitialContext(System.getProperties());

Object remoteObject = ctx.lookup(“PKGenerator”);

// Cast the remote object, RMI-IIOP style

PrimaryKeyGenerator generator = (PrimaryKeyGenerator)

PortableRemoteObject.narrow(

remoteObject, PrimaryKeyGenerator.class);

// Generate a PK by calling the RMI-IIOP stub

System.err.println(generator.generate());

}

}

Source A.5 Client.java.

The client code is self-explanatory, with one exception. After looking up
the remote object, we perform the operation javax.rmi.PortableRemote
Object.narrow(). This is a static method on an RMI-IIOP class called
PortableRemoteObject. This method casts the generic object that we
looked up via JNDI to our RMI-IIOP interface type. This narrow() operation
is required whenever you look up an RMI-IIOP object via JNDI. Why do we
need it, and why don’t we just cast it using a regular Java cast? The short
answer is that the networking layer needs a chance to sneak in and create the
necessary stub objects. Obviously, the code for these stubs must be available at
this time. In most cases, that requires that the rmic command has been run pre-
viously to generate them.

As with the server, to run the client, you must supply your Java EE server’s
JNDI driver initialization parameters via the command line, as we showed
earlier in this chapter when we ran our JNDI initial context example. Check
your server’s documentation or see the book’s accompanying source code for
this.

590 Appendix A

24_785415 appa.qxp 6/5/06 7:05 PM Page 590

Summary

In this appendix, we’ve discussed how Java RMI-IIOP and JNDI are funda-
mental underlying technologies in an EJB deployment. We looked at the RMI-
IIOP architecture, comparing it to traditional RPCs. We examined stubs and
skeletons, parameter passing, and object serialization and pointed out the ben-
efits of CORBA interoperability in EJB. We concluded our RMI-IIOP discus-
sion by introducing a sample primary key generator RMI-IIOP server.

Next, we delved into JNDI. We looked at the basics of naming and directory
concepts, and saw how to acquire an initial context. We then investigated how
to bind and look up an RMI-IIOP object using JNDI.

RMI-IIOP and JNDI Tutorial 591

24_785415 appa.qxp 6/5/06 7:05 PM Page 591

24_785415 appa.qxp 6/5/06 7:05 PM Page 592

593

The use of metadata annotations is one of the most important new features in
the EJB 3.0 specification. Annotations were added to the Java language in JSR-
175 and have been generally available since the release of the Java 5 platform.

Annotations provide the syntax to write the required metadata for EJBs
inside your source files. They can be used as an alternative to the standard
XML deployment descriptor files. Annotations can also be combined with
descriptor files. We have used annotations extensively throughout the book
because they are mostly easier to read and closer to the actual code that devel-
opers write. You should not, however, think of annotations as the superior
approach: there are cases when deployment descriptors are better suited.

This appendix gives a short, general introduction to programming with Java
metadata annotations and explains when annotations should be used and
when you should use descriptor files. We also provide a complete reference to
the annotations used in EJB 3.

Introduction to Annotations

An annotation is a piece of text (a note) with which you can adorn your code.
Annotations let you express information about code in the code.

Annotations are compiled and type-checked. If the appropriate retention
policy is chosen, they can be accessed at runtime using Java reflection, but they

Annotations

A P P E N D I X

B

25_785415 appb.qxp 6/5/06 7:06 PM Page 593

Click here to purchase this book.

http://www.amazon.com/gp/product/0471785415/ref=sr_11_1/103-1174895-6545420?%5Fencoding=UTF8
jpiscitelli
cover

cannot perform computations. While they are more expressive than a com-
ment, annotations are still only descriptive.

Let’s start with a quick example before we explain things in more detail.
Imagine that we want to enforce some special development process rules
within our company’s build environment. We could do that based on letting
developers categorize their classes to describe a class’s test coverage, review
stage, and suitability for outside publication. With annotations, we can attach
that information to a class like this:

@CodeCategory(visibility = Visibility.PUBLIC,

isUnitTested = true,

isReviewed = true)

static class ClassTwo {

// ...

}

Source B.1 A first annotation.

We could then write and use custom compile-time tools to check that no code
goes into a final production build that was not previously reviewed and unit
tested. We could even write code within our own classes that checks code cat-
egories at runtime, and we could output different logging information based
on the code categorization.

If you haven’t used annotations before, you will note the occurrence of the
@-symbol outside a comment block. The @-sign is always a marker for annota-
tions when used this way. Here, it marks the name CodeCategory as an
annotation type name.

Where does this type come from? It was defined and compiled just like a Java
interface or class. Here’s the declaration of the annotation type CodeCategory:

package examples.annotations;

import java.lang.annotation.*;

enum Visibility {

INTERNAL, PUBLIC

}

@Retention(RetentionPolicy.RUNTIME)

@Target(ElementType.TYPE)

public @interface CodeCategory {

Visibility visibility() default Visibility.INTERNAL;

boolean isUnitTested() default false;

boolean isReviewed() default false;

}

Source B.2 Annotation type CodeCategory.

594 Appendix B

25_785415 appb.qxp 6/5/06 7:06 PM Page 594

There are a few things that we can observe here:

■■ CodeCategory is marked with an @-sign before the keyword interface:
this syntax declares that CodeCategory is an annotation type rather
than a normal interface type.

■■ The annotation type has three members, each with a default value.

■■ The annotation type declaration is itself annotated with two annota-
tions: @RETENTION and @TARGET. These annotations come from the
java.lang.annotation package and are called meta-annotation types.
Meta-annotations restrict the use of the types that they annotate:

■■ The @RETENTION annotation determines if the target annotation
should be visible only on the source code (SOURCE), compiled into
the class file (CLASS), or even made available at runtime by the JVM
(RUNTIME). The default retention policy for annotation types that
are not explicitly marked is CLASS.

■■ The @TARGET annotation specifies which code elements can be
annotated with the new CodeCategory annotation type. The avail-
able options are types (including classes, interfaces, and enums),
packages, methods, fields, or even annotation types. Without the
@TARGET meta-annotation, an annotation type can be used on any
kind of target.

The @TARGET annotation is sometimes also used to mark types that
can occur only in annotation type declarations, such as member
types. To prevent the independent use of an annotation type, you
may sometimes see the empty target annotation @TARGET({}).

■■ To access annotations at runtime, the Java reflection API has been
extended. We can use the new getAnnotation() method on classes:

public static void printConvention(Object obj) {

System.out.println(obj.getClass().

getAnnotation(CodeCategory.class));

}

Remember that we can access the CodeCategory this way only if the
annotation type was marked with @Retention(RetentionPolicy
.RUNTIME).

Annotations 595

25_785415 appb.qxp 6/5/06 7:06 PM Page 595

Annotations for EJB
For EJBs, annotations are an alternative to the sometimes tedious and error-
prone task of specifying the required metadata in XML descriptor files. You
have already seen many examples of EJB annotations throughout this book.

As a quick reminder, here’s the simple annotation that we used to describe
a bean class as a stateful session bean with a remote interface and a life-cycle
callback listener class:

@Stateful

@Remote(Count.class)

@Interceptors(CountCallbacks.class)

public class CountBean implements Count {

public int count() {

...

}

...

}

Source B.3 Annotated CountBean.java.

To outline the main differences, here’s the equivalent XML descriptor file:

<?xml version=”1.0” encoding=”UTF-8” ?>

<ejb-jar

xmlns=”http://java.sun.com/xml/ns/j2ee”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-

instance”xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/ejb-jar_3_0.xsd”

version=”3.0”>

<enterprise-beans>

<session>

<ejb-name>examples.session.stateful_dd.Count</ejb-name>

<remote>examples.session.stateful_dd.Count</remote>

<ejb-class>examples.session.stateful_dd.CountBean</ejb-class>

<session-type>Stateful</session-type>

<transaction-type>Container</transaction-type>

<lifecycle-callbacks>

<callback-listener>

examples.session.stateful_dd.CountCallbacks

</callback-listener>

</session>

</enterprise-beans>

</ejb-jar>

Source B.4 Ejb-jar file for CountBean.java.

596 Appendix B

25_785415 appb.qxp 6/5/06 7:06 PM Page 596

As you can see, the three Java annotations in the source B.3 replace 16 lines
of XML in source B.4. The main difference between the two files is that the
annotations are directly expressed in the source file and attached to the code.
They describe the EJB from within whereas the XML is external to the code and
describes it from without. Both approaches have their place in EJB develop-
ment. We will come back to this in a minute.

The remainder of this section briefly puts annotations in the context of other
approaches for providing metadata and explains the advantages and disad-
vantages of this approach.

Background
Adding meta-information to Java program code has been done since Java
exists. The earliest examples were the Javadoc tags (@author, @return, and
so on) in comments that are used to generated API documentation in HTML
format. The idea is to provide metadata in special source comments and let
customized compilers or separate tools extract and handle the information.
This approach was also used in many research implementations of early Java
language extensions.

XDoclet

The most prominent example of this technique is the popular XDoclet tool that
can, for example, be used to generate EJB deployment descriptor files in XML
from EJB-specific source code comments provided by developers. Here’s the
session bean example in XDoclet syntax:

/**

* @ejb.bean

* type=”Stateful”

* name=”Count”

* view-type=”remote”

*/

public class Count ... {

}

Source B.5 XDoclet annotations in CountBean.java.

The main point to remember about the Javadoc/XDoclet approach is that the
metadata is placed in comments. This means that it is not processed by the Java
compiler. The metadata is not compiled to a regular class file and is available
only at compile time. It is not accessible for runtime reflection unless mapped
to custom-generated Java code that somehow represents the same information
in standard Java.

Annotations 597

25_785415 appb.qxp 6/5/06 7:06 PM Page 597

Since the metadata syntax and semantics are not checked by the Java com-
piler, there must be specialized tools written for the custom metalanguage.
This approach is very flexible and also easy to use and extend, but it means
that the metadata itself is typically unstructured and untyped; that is, it will be
error-prone to write.

NOTE There is no reason why a custom metalanguage could not rely on
structured and typed artifacts or even on external Java classes. It just means
someone must define and implement the proper language syntax and
semantics in a compiler.

Annotations in Java

The metadata facility in Java 5 defines an annotation language that is part of
the language itself. This has the following advantages when compared with
the XDoclet approach:

■■ Ease of use. Annotations are checked and compiled by the Java lan-
guage compiler, so no external tool is needed.

■■ Portability. Because the metadata facility is standardized, annotations
are as portable as the rest of the code.

■■ Type checking. Annotations are instances of annotation types, which are
compiled in their own class files.

■■ Runtime reflection. Annotations on a class can be kept in the class file
and retained for runtime access.

Pros and Cons

With all these nifty features, annotations look like they might be used just
about everywhere. However, the Java annotation facility in its current form
also has its shortcomings:

■■ Unlike interfaces classes and exceptions, annotation types cannot form
an inheritance hierarchy.

■■ Annotation member types are restricted to primitive types, String,
Class, enum types, annotation types, and arrays of the preceding types.

■■ To annotate existing code, you must have access to the source code.

■■ Many developers have expressed their dislike of a syntax that leads to
source code cluttered with @-signs. Of course, this is a matter of taste.

598 Appendix B

25_785415 appb.qxp 6/5/06 7:06 PM Page 598

Having mentioned the more general criticism, we should also be clear about
the pros and cons of annotations for EJBs. Here are the pros:

■■ Keeping the code and the metadata that describes it in sync is much
easier with annotations directly on the source code.

■■ Compile-time checking on typed source code annotations helps you
catch errors earlier than the XML compiler because it cannot detect
semantic mismatches with the Java code. This must be checked by addi-
tional verifiers at or before deployment time.

For EJB, the one main argument against using annotations exclusively has
already been mentioned: to work with the metadata for beans that you didn’t
write yourself, you would still need access to the source code. Adding metadata
to beans that come in an Ejb-jar file without code is not going to work well
unless you are allowed to disassemble the code, which is usually not much fun.

Fortunately, the EJB specification defines how annotations and XML
descriptors can be combined: To give you full authority even over beans with-
out source code, the specification requires that containers give descriptor files
precedence over source code annotations. Thus, you can always overrule and
redefine the metadata that comes embedded in a .jar file. In a process that
requires different individuals to incrementally modify metadata, you should
still consider using external XML descriptor files rather than annotations
embedded in the source code.

EJB Annotation Reference

This section provides a complete reference of all annotation types used in the
EJB 3 specification. In many cases, the absence of an annotation implies a rea-
sonable default, so you only need to annotate if you want to deviate. The reten-
tion policy for EJB annotations is generally RUNTIME, so we don’t list it
separately for each annotation type.

Bean Type Annotations
This section lists annotations by the bean types to which they apply.

Annotations 599

25_785415 appb.qxp 6/5/06 7:06 PM Page 599

Se
ss

io
n

B
ea

n
An

no
ta

tio
ns

N
A

M
E

U
S

E
TA

R
G

ET
M

E
M

B
E

R
S

D
E

FA
U

LT
M

E
M

B
E

R
 D

ES
C

R
IP

TI
O

N

@
S
t
a
t
e
l
e
s
s

M
ar

ks
 a

 b
ea

n
cl

as
s

TY
PE

St
ri

ng
 n

am
e(

)
“”

D
ef

au
lts

 to
 th

e
un

qu
al

ifi
ed

as

 a
 s

ta
te

le
ss

na

m
e

of
 th

e
be

an
 c

la
ss

.
se

ss
io

n
be

an
.

St
ri

ng
 m

ap
pe

dN
am

e(
)

“”
A

pr
od

uc
t-

sp
ec

ifi
c

na
m

e
th

at

th
e

se
ss

io
n

be
an

 s
ho

ul
d

be

St
ri

ng
 d

es
cr

ip
tio

n(
)

“”
m

ap
pe

d
to

.

@
S
t
a
t
e
f
u
l

M
ar

ks
 a

 b
ea

n
cl

as
s

TY
PE

St
ri

ng
 n

am
e(

)
“”

D
ef

au
lts

 to
 th

e
un

qu
al

ifi
ed

as

 a
 s

ta
te

fu
l

na
m

e
of

 th
e

be
an

 c
la

ss
.

se
ss

io
n

be
an

.
St

ri
ng

 m
ap

pe
dN

am
e(

)
“”

A
pr

od
uc

t-
sp

ec
ifi

c
na

m
e

th
at

th

e
se

ss
io

n
be

an
 s

ho
ul

d
be

St

ri
ng

 d
es

cr
ip

tio
n(

)
“”

m
ap

pe
d

to
.

@
I
n
i
t

Sp
ec

ifi
es

 th
at

 a

M
ET

H
O

D
St

ri
ng

 v
al

ue
()

{}

Sp
ec

ifi
es

 th
e

na
m

e
of

 th
e

m
et

ho
d

on
 th

e
co

rr
es

po
nd

in
g

be
an

 c
la

ss

c
r
e
a
t
e
<
M
E
T
H
O
D
>

m
et

ho
d

of

co
rr

es
po

nd
s

to
 a

th

e
ad

ap
te

d
ho

m
e.

 It
 m

us
t b

e
c
r
e
a
t
e
<
M
E
T
H
O
D
>

sp
ec

ifi
ed

 w
he

n
th

e
In

it
m

et
ho

d
fo

r
an

an

no
ta

tio
n

is
 u

se
d

in

ad
ap

te
d

EJ
B

 2
.1

as

so
ci

at
io

n
w

ith
 a

n
ad

ap
te

d
EJ

B
H

om
e

an
d/

or

ho
m

e
in

te
rf

ac
e

of
 a

 s
ta

te
fu

l
EJ

B
Lo

ca
lH

om
e

se
ss

io
n

be
an

 th
at

 h
as

 m
or

e
cl

ie
nt

 v
ie

w
.

th
an

 o
ne

 c
re

at
e

m
et

ho
d.

Th
e

In
it

m
et

ho
d

is
 o

nl
y

re
qu

ire
d

fo
r

st
at

ef
ul

 s
es

si
on

be
an

s
th

at
 p

ro
vi

de
 a

R
e
m
o
t
e
H
o
m
e

or
 L
o
c
a
l
H
o
m
e

in
te

rf
ac

e.
 T

he
 n

am
e

of
 th

e
ad

ap
te

d
cr

ea
te

 m
et

ho
d

of
 th

e
H
o
m
e

or
 L
o
c
a
l
H
o
m
e

in
te

rf
ac

e
m

us
t b

e
sp

ec
ifi

ed
 if

 th
er

e
is

an
y

am
bi

gu
ity

.

25_785415 appb.qxp 6/5/06 7:06 PM Page 600

(c
on

tin
ue

d)

N
A

M
E

U
S

E
TA

R
G

ET
M

E
M

B
E

R
S

D
E

FA
U

LT
M

E
M

B
E

R
 D

ES
C

R
IP

TI
O

N

@
R
e
m
o
v
e

D
en

ot
es

 a
 r

em
ov

e
M

ET
H

O
D

b
oo

le
an

 r
et

ai
nI

f
fa

ls
e

Al
lo

w
s

th
e

re
m

ov
al

 to
 b

e
m

et
ho

d
of

 a

Ex
ce

pt
io

n(
)

pr
ev

en
te

d
if

th
e

m
et

ho
d

st
at

ef
ul

 s
es

si
on

te

rm
in

at
es

 a
bn

or
m

al
ly

.
be

an
. C

om
pl

et
io

n
of

 th
is

 m
et

ho
d

ca
us

es
 th

e
co

nt
ai

ne
r

to

re
m

ov
e

th
e

st
at

ef
ul

 s
es

si
on

be

an
, f

irs
t i

nv
ok

in
g

th
e

be
an

’s
 P

re
D

es
tr

oy

m
et

ho
d,

 if
 a

ny
.

@
L
o
c
a
l
,
@
R
e
m
o
t
e

W
he

n
ap

pl
ie

d
to

TY

PE
C

la
ss

[]
 v

al
ue

()
{}

An
 a

rr
ay

 o
f b

us
in

es
s

th
e

be
an

 c
la

ss
,

in
te

rf
ac

es
 a

nd
 s

pe
ci

fie
d

on
ly

th

is
 a

nn
ot

at
io

n
w

he
n

th
e

an
no

ta
tio

n
is

lis

ts
 th

e
re

m
ot

e
ap

pl
ie

d
to

 th
e

be
an

 c
la

ss
. I

t i
s

or
 lo

ca
l b

us
in

es
s

on
ly

 r
eq

ui
re

d
if

th
e

be
an

 c
la

ss

in
te

rf
ac

es
 o

f t
he

im

pl
em

en
ts

 m
or

e
th

an
 o

ne

be
an

 in
 th

e
va

lu
e

in
te

rf
ac

e
(e

xc
lu

di
ng

m

em
be

r.
ja

va
.io

.S
er

ia
liz

ab
le

,
W

he
n

ap
pl

ie
d

to
 a

ja

va
.io

.E
xt

er
na

liz
ab

le
, a

nd

bu
si

ne
ss

 in
te

rf
ac

e,

an
y

of
 th

e
in

te
rf

ac
es

 in
 th

e
th

e
in

te
rf

ac
e

its
el

f
ja

va
x.

ej
b

pa
ck

ag
e)

.
is

 m
ar

ke
d

as
 lo

ca
l

or
 r

em
ot

e.

25_785415 appb.qxp 6/5/06 7:06 PM Page 601

M
es

sa
ge

-D
riv

en
 B

ea
n

An
no

ta
tio

ns

N
A

M
E

U
S

E
TA

R
G

ET
M

E
M

B
E

R
S

D
E

FA
U

LT
M

E
M

B
E

R
 D

ES
C

R
IP

TI
O

N

@
M
e
s
s
a
g
e
D
r
i
v
e
n

M
ar

ks
 a

 b
ea

n
cl

as
s

TY
PE

St
ri

ng
 n

am
e(

)
“”

D
ef

au
lts

 to
 th

e
un

qu
al

ifi
ed

as

 a
 m

es
sa

ge
-d

riv
en

na

m
e

of
 th

e
be

an
 c

la
ss

.
be

an
.

C
la

ss
 m

es
sa

ge
O

bj
ec

t.c
la

ss
Sp

ec
ifi

es
 th

e
m

es
sa

ge
 li

st
en

er

Li
st

en
er

In
te

rf
ac

e(
)

in
te

rf
ac

e
of

 th
e

be
an

. I
t m

us
t

be
 s

pe
ci

fie
d

if
th

e
be

an
 c

la
ss

do

es
 n

ot
 im

pl
em

en
t i

ts

m
es

sa
ge

 li
st

en
er

 in
te

rf
ac

e
or

im

pl
em

en
ts

 m
or

e
th

an
 o

ne

in
te

rf
ac

e
ot

he
r

th
an

ja

va
.io

.S
er

ia
liz

ab
le

,
ja

va
.io

.E
xt

er
na

liz
ab

le
, o

r
an

y
of

 th
e

in
te

rf
ac

es
 d

ef
in

ed
 b

y
th

e
ja

va
x.

ej
b

pa
ck

ag
e.

Ac
tiv

at
io

nC
on

fig
{}

Pr
op

er
ty

[]
 a

ct
iv

at
io

n
C

on
fig

()

St
ri

ng
 m

ap
pe

dN
am

e(
)

“”
A

pr
od

uc
t-

sp
ec

ifi
c

na
m

e
th

at

th
e

se
ss

io
n

be
an

 s
ho

ul
d

be

St
ri

ng
 d

es
cr

ip
tio

n(
)

“”
m

ap
pe

d
to

.

25_785415 appb.qxp 6/5/06 7:06 PM Page 602

Common Annotations for Session and Message-Driven Beans

This section lists annotation types that are common to both session beans and
message-driven Beans. The table below organizes these annotations according
to their use.

Annotations 603

25_785415 appb.qxp 6/5/06 7:06 PM Page 603

N
A

M
E

U
S

E
TA

R
G

ET
M

E
M

B
E

R
S

D
E

FA
U

LT
D

ES
C

R
IP

TI
O

N

Tr
an

sa
ct

io
n

s

@
T
r
a
n
s
a
c
t
i
o
n

Sp
ec

ifi
es

 th
e

tr
an

sa
ct

io
n

TY
PE

Tr
an

sa
ct

io
n

Tr
an

sa
ct

io
n

Th
e

de
m

ar
ca

tio
n

ty
pe

 c
an

 b
e

M
a
n
a
g
e
m
e
n
t

m
an

ag
em

en
t d

em
ar

ca
tio

n
M

an
ag

em
en

tT
yp

e
M

an
ag

em
en

t
ei

th
er

 C
O

N
TA

IN
ER

or
 B

EA
N

ty
pe

 o
f a

 s
es

si
on

 b
ea

n
or

va

lu
e(

)
Ty

pe
.

Se
e

C
ha

pt
er

 1
0

on

m
es

sa
ge

-d
riv

en
 b

ea
n.

 If
 th

is

C
O

N
TA

IN
ER

tr
an

sa
ct

io
ns

 fo
r

de
ta

ils
.

an
no

ta
tio

n
is

 n
ot

 p
re

se
nt

, t
he

be

an
 h

as
 c

on
ta

in
er

-m
an

ag
ed

tr

an
sa

ct
io

n
de

m
ar

ca
tio

n.

@
T
r
a
n
s
a
c
t
i
o
n

Sp
ec

ifi
es

 th
at

 a
 b

us
in

es
s

M
ET

H
O

D
,

Tr
an

sa
ct

io
n

Tr
an

sa
ct

io
n

Th
e

tr
an

sa
ct

io
n

at
tr

ib
ut

e
ty

pe

A
t
t
r
i
b
u
t
e

m
et

ho
d

is
 in

vo
ke

d
w

ith
in

 a

TY
PE

A
ttr

ib
ut

eT
yp

e
A

ttr
ib

ut
eT

yp
e

ca
n

be
 o

ne
 o

f
tr

an
sa

ct
io

n
co

nt
ex

t b
y

th
e

va
lu

e(
)

.R
EQ

U
IR

ED
M
A
N
D
A
T
O
R
Y

,
co

nt
ai

ne
r.

Th
is

 a
nn

ot
at

io
n

R
E
Q
U
I
R
E
D

,
ca

n
on

ly
 b

e
sp

ec
ifi

ed
 if

R
E
Q
U
I
R
E
S
_
N
E
W

,
co

nt
ai

ne
r-

m
an

ag
ed

 tr
an

sa
ct

io
n

S
U
P
P
O
R
T
S

,
de

m
ar

ca
tio

n
is

 u
se

d.
 It

 c
an

 b
e

N
O
T
_
S
U
P
P
O
R
T
E
D

,
sp

ec
ifi

ed
 o

n
th

e
be

an
 c

la
ss

N
E
V
E
R

.
an

d/
or

 o
n

m
et

ho
ds

 o
f t

he

Se
e

C
ha

pt
er

 1
0

on

cl
as

s
th

at
 a

re
 m

et
ho

ds
 o

f
tr

an
sa

ct
io

ns
 fo

r
de

ta
ils

.
th

e
bu

si
ne

ss
 in

te
rf

ac
e.

*

O
n

th
e

be
an

 c
la

ss
, i

t a
pp

lie
s

to
 a

ll
bu

si
ne

ss
 in

te
rf

ac
e

m
et

ho
ds

 o
f t

he
 c

la
ss

.
*

O
n

a
m

et
ho

d,
 it

 a
pp

lie
s

it
to

 th
at

 m
et

ho
d

on
ly

.
*

If
ap

pl
ie

d
at

 b
ot

h
th

e
cl

as
s

an
d

th
e

m
et

ho
d

le
ve

l,
th

e
m

et
ho

d
va

lu
e

ov
er

rid
es

 if

th
e

tw
o

di
sa

gr
ee

.
If

no
t p

re
se

nt
, a

nd
 th

e
be

an

us
es

 c
on

ta
in

er
-m

an
ag

ed

tr
an

sa
ct

io
n

de
m

ar
ca

tio
n,

 th
e

se
m

an
tic

s
of

 th
e

R
EQ

U
IR

ED

tr
an

sa
ct

io
n

at
tr

ib
ut

e
ar

e
as

su
m

ed
.

25_785415 appb.qxp 6/5/06 7:06 PM Page 604

(c
on

tin
ue

d)

N
A

M
E

U
S

E
TA

R
G

ET
M

E
M

B
E

R
S

D
E

FA
U

LT
D

ES
C

R
IP

TI
O

N

In
te

rc
ep

to
rs

 a
n

d
 L

if
e-

Cy
cl

e
ca

ll
b

ac
ks

@
I
n
t
e
r
c
e
p
t
o
r
s

D
es

ig
na

te
s

on
e

or
 m

or
e

TY
PE

C
la

ss
[]

 v
al

ue
()

Li
st

s
al

l i
nt

er
ce

pt
or

 c
la

ss
es

in

te
rc

ep
to

r
cl

as
se

s
as

so
ci

at
ed

th

at
 a

re
 to

 b
e

as
so

ci
at

ed
 w

ith

w
ith

 a
 b

ea
n.

th

e
be

an
.

C
an

 b
e

ap
pl

ie
d

to
 th

e
be

an

cl
as

s
or

 to
 a

 b
us

in
es

s
m

et
ho

d
of

 th
e

be
an

.

@
A
r
o
u
n
d
I
n
v
o
k
e

D
es

ig
na

te
s

an
 in

te
rc

ep
to

r
M

ET
H

O
D

Se
e

C
ha

pt
er

 8
 fo

r
de

ta
ils

 o
n

m
et

ho
d

in
te

rc
ep

to
rs

.

@
E
x
c
l
u
d
e

W
he

n
ap

pl
ie

d
to

 a
 b

ea
n

cl
as

s,

TY
PE

,
Se

e
C

ha
pt

er
 8

 fo
r

de
ta

ils
 o

n
D
e
f
a
u
l
t

th
is

 a
nn

ot
at

io
n

ex
cl

ud
es

 th
e

M
ET

H
O

D
in

te
rc

ep
to

rs
.

I
n
t
e
r
c
e
p
t
o
r
s

in
vo

ca
tio

n
of

 d
ef

au
lt

in
te

rc
ep

to
rs

 fo
r

al
l b

us
in

es
s

m
et

ho
ds

 o
f t

he
 b

ea
n.

W

he
n

ap
pl

ie
d

to
 a

 b
us

in
es

s
m

et
ho

d,
 it

 e
xc

lu
de

s
th

e
in

vo
ca

tio
n

of
 d

ef
au

lt
in

te
rc

ep
to

rs
 fo

r
th

at
 m

et
ho

d.

@
E
x
c
l
u
d
e

Ex
cl

ud
es

 th
e

in
vo

ca
tio

n
of

M

ET
H

O
D

Se
e

C
ha

pt
er

 8
 fo

r
de

ta
ils

 o
n

C
l
a
s
s

cl
as

s-
le

ve
l i

nt
er

ce
pt

or
s

(b
ut

in

te
rc

ep
to

rs
.

I
n
t
e
r
c
e
p
t
o
r
s

no
t d

ef
au

lt
in

te
rc

ep
to

rs
)

fo
r

th
e

gi
ve

n
m

et
ho

d.

@
P
o
s
t
C
o
n
s
t
r
u
c
t

D
es

ig
na

te
s

a
lif

e-
cy

cl
e

M
ET

H
O

D
ca

llb
ac

k
m

et
ho

d.

@
P
r
e
D
e
s
t
r
o
y

D
es

ig
na

te
s

a
lif

e-
cy

cl
e

M
ET

H
O

D
ca

llb
ac

k
m

et
ho

d.

(c
on

tin
ue

d)

25_785415 appb.qxp 6/5/06 7:06 PM Page 605

(c
on

tin
ue

d)

N
A

M
E

U
S

E
TA

R
G

ET
M

E
M

B
E

R
S

D
E

FA
U

LT
D

ES
C

R
IP

TI
O

N

@
P
o
s
t
A
c
t
i
v
a
t
e

D
es

ig
na

te
s

a
lif

e-
cy

cl
e

M
ET

H
O

D
ca

llb
ac

k
m

et
ho

d.
 N

ot

ap
pl

ic
ab

le
 to

 m
es

sa
ge

-
dr

iv
en

 b
ea

ns
.

@
P
r
e
P
a
s
s
i
v
a
t
e

D
es

ig
na

te
s

a
lif

e-
cy

cl
e

M
ET

H
O

D
ca

llb
ac

k
m

et
ho

d.
 N

ot

ap
pl

ic
ab

le
 to

 m
es

sa
ge

-
dr

iv
en

 b
ea

ns
.

Sc
h

ed
u

li
n

g

@
T
i
m
e
o
u
t

D
es

ig
na

te
s

a
tim

eo
ut

M

ET
H

O
D

Se
e

C
ha

pt
er

 1
2

on
 s

ch
ed

ul
in

g
m

et
ho

d
fo

r
de

ta
ils

 o
n

tim
eo

ut
s.

Ex
ce

p
ti

on
s

@
A
p
p
l
i
c
a
t
i
o
n

Ap
pl

ie
d

to
 a

n
ex

ce
pt

io
n

TY
PE

E
x
c
e
p
t
i
o
n

to
 d

en
ot

e
th

at
 it

 is
 a

n
ap

pl
ic

at
io

n
ex

ce
pt

io
n

an
d

sh
ou

ld
 n

ot
 b

e
w

ra
pp

ed

bu
t r

ep
or

te
d

to
 th

e
cl

ie
nt

di

re
ct

ly
.

M
ay

 b
e

ap
pl

ie
d

to
 b

ot
h

ch
ec

ke
d

an
d

un
ch

ec
ke

d
ex

ce
pt

io
ns

.

Se
cu

ri
ty

@
D
e
c
l
a
r
e
R
o
l
e
s

D
ec

la
re

s
th

e
se

cu
rit

y
ro

le
s

TY
PE

St
ri

ng
[]

 v
al

ue
()

Se
e

C
ha

pt
er

 1
1

on
 s

ec
ur

ity

th
at

 a
re

 u
se

d
th

e
be

an
.

fo
r

de
ta

ils
.

25_785415 appb.qxp 6/5/06 7:06 PM Page 606

(c
on

tin
ue

d)

N
A

M
E

U
S

E
TA

R
G

ET
M

E
M

B
E

R
S

D
E

FA
U

LT
D

ES
C

R
IP

TI
O

N

@
R
o
l
e
s
A
l
l
o
w
e
d

Sp
ec

ifi
es

 th
e

se
cu

rit
y

ro
le

s
TY

PE
,

St
ri

ng
[]

 v
al

ue
()

A
lis

t o
f s

ec
ur

ity
 r

ol
e

na
m

es
.

th
at

 a
re

 a
llo

w
ed

 to
 in

vo
ke

M

ET
H

O
D

th
e

m
et

ho
ds

 o
f t

he
 b

ea
n.

C
an

 b
e

sp
ec

ifi
ed

 o
n

th
e

be
an

 c
la

ss
 a

nd
/o

r
on

m

et
ho

ds
 o

f t
he

 c
la

ss
 th

at

ar
e

m
et

ho
ds

 o
f t

he
 b

us
in

es
s

in
te

rf
ac

e:

*
O

n
th

e
be

an
 c

la
ss

, i
t

ap
pl

ie
s

to
 a

ll
ap

pl
ic

ab
le

in

te
rf

ac
e

m
et

ho
ds

 o
f

th
e

cl
as

s.

*
O

n
a

m
et

ho
d,

 it
 a

pp
lie

s
it

to
 th

at
 m

et
ho

d
on

ly
.

*
If

th
e

an
no

ta
tio

n
is

 a
pp

lie
d

at
 b

ot
h

th
e

cl
as

s
an

d
th

e
m

et
ho

d
le

ve
l,

th
e

m
et

ho
d

va
lu

e
w

in
s

(i
f t

he
 tw

o
di

sa
gr

ee
).

If

th
e

@
Pe

rm
itA

ll
an

no
ta

tio
n

is
 a

pp
lie

d
to

 th
e

be
an

 c
la

ss
,

an
d

@
R

ol
es

A
llo

w
ed

is

sp
ec

ifi
ed

 o
n

an
 in

di
vi

du
al

m

et
ho

d,
 th

e
va

lu
e

of
 th

e
R

ol
es

A
llo

w
ed

an
no

ta
tio

n
ov

er
rid

es
 fo

r
th

e
gi

ve
n

m
et

ho
d.

(c
on

tin
ue

d)

25_785415 appb.qxp 6/5/06 7:06 PM Page 607

(c
on

tin
ue

d)

N
A

M
E

U
S

E
TA

R
G

ET
M

E
M

B
E

R
S

D
E

FA
U

LT
D

ES
C

R
IP

TI
O

N

@
P
e
r
m
i
t
A
l
l

Sp
ec

ifi
es

 th
at

 th
e

sp
ec

ifi
ed

TY

PE
,

m
et

ho
d(

s)
 a

re
 u

nc
he

ck
ed

M

ET
H

O
D

an
d

m
ay

 b
e

ca
lle

d
by

 a
ll

se
cu

rit
y

ro
le

s.

Th
is

 a
nn

ot
at

io
n

ca
n

be

sp
ec

ifi
ed

 o
n

th
e

be
an

 c
la

ss

an
d/

or
 o

n
th

e
bu

si
ne

ss

m
et

ho
ds

 o
f t

he
 c

la
ss

.
O

n
th

e
be

an
 c

la
ss

, i
t a

pp
lie

s
to

 a
ll

ap
pl

ic
ab

le
 b

us
in

es
s

m
et

ho
ds

 o
f t

he
 c

la
ss

.
O

n
a

m
et

ho
d

it
ap

pl
ie

s
to

th

at
 m

et
ho

d
on

ly
, o

ve
rr

id
in

g
an

y
cl

as
s-

le
ve

l s
et

tin
g

fo
r

th
e

pa
rt

ic
ul

ar
 m

et
ho

d.

@
D
e
n
y
A
l
l

O
pp

os
ite

 o
f @

Pe
rm

itA
ll.

M

ET
H

O
D

Sp
ec

ifi
es

 th
at

 a
 p

ar
tic

ul
ar

m

et
ho

d
m

ay
 n

ot
 b

e
in

vo
ke

d
at

 a
ll.

@
R
u
n
A
s

Se
ts

 th
e

be
an

’s
 r

un
-a

s
TY

PE
St

ri
ng

 v
al

ue
()

Th
e

na
m

e
of

 a
 s

ec
ur

ity
 r

ol
e.

pr
op

er
ty

. T
hi

s
an

no
ta

tio
n

is

ap
pl

ie
d

to
 th

e
be

an
 c

la
ss

.

25_785415 appb.qxp 6/5/06 7:06 PM Page 608

(c
on

tin
ue

d)

N
A

M
E

U
S

E
TA

R
G

ET
M

E
M

B
E

R
S

D
E

FA
U

LT
D

ES
C

R
IP

TI
O

N

R
ef

er
en

ce
s

an
d

 I
n

je
ct

io
n

@
E
J
B

D
en

ot
es

 a
 r

ef
er

en
ce

 to

TY
PE

,
St

ri
ng

 n
am

e(
)

“”
Re

fe
rs

 to
 th

e
na

m
e

by
 w

hi
ch

an

 E
JB

 b
us

in
es

s
in

te
rf

ac
e.

M
ET

H
O

D
,

th
e

re
so

ur
ce

 is
 to

 b
e

lo
ok

ed

FI
EL

D
up

 in
 th

e
en

vi
ro

nm
en

t.
C

la
ss

 b
ea

nI
nt

er
fa

ce
()

O
bj

ec
t.c

la
ss

Th
e

re
fe

re
nc

ed
 in

te
rf

ac
e

ty
pe

.
St

ri
ng

 b
ea

nN
am

e(
)

“”
Th

e
va

lu
e

of
 th

e
na

m
e

m
em

be
r

of
 th

e
re

fe
re

nc
e

be
an

’s
 @

St
at

ef
ul

or

@
St

at
el

es
s

an
no

ta
tio

n
(o

r
ej

b-
na

m
e

el
em

en
t,

if
th

e
de

pl
oy

m
en

t d
es

cr
ip

to
r

w
as

us

ed
).

 T
he

 b
ea

nN
am

e
al

lo
w

s
di

sa
m

bi
gu

at
io

n
if

th
er

e
ar

e
m

ul
tip

le
 b

ea
ns

 in
 th

e
Ej

b-
ja

r
th

at
 im

pl
em

en
t t

he
 s

am
e

be
an

In
te

rf
ac

e.
St

rin
g

m
ap

pe
dN

am
e(

)
“”

A
pr

od
uc

t-
sp

ec
ifi

c
na

m
e

th
at

th
e

be
an

 r
ef

er
en

ce
 s

ho
ul

d
be

m
ap

pe
d

to
. A

pp
lic

at
io

ns
 th

at
us

e
m

ap
pe

d
na

m
es

 m
ay

 n
ot

be
 p

or
ta

bl
e.

@
E
J
B
s

D
ec

la
re

s
re

fe
re

nc
es

 to
 E

JB

TY
PE

EJ
B

[]
 v

al
ue

()
bu

si
ne

ss
 in

te
rf

ac
es

.

(c
on

tin
ue

d)

25_785415 appb.qxp 6/5/06 7:06 PM Page 609

(c
on

tin
ue

d)

N
A

M
E

U
S

E
TA

R
G

ET
M

E
M

B
E

R
S

D
E

FA
U

LT
D

ES
C

R
IP

TI
O

N

@
R
e
s
o
u
r
c
e

Sp
ec

ifi
es

 a
 d

ep
en

de
nc

y
on

 a

TY
PE

,
St

ri
ng

 n
am

e(
)

“”
Th

e
na

m
e

by
 w

hi
ch

 th
e

re
so

ur
ce

 in
 th

e
be

an
’s

M

ET
H

O
D

,
re

so
ur

ce
 is

 k
no

w
n

in
 th

e
en

vi
ro

nm
en

t.
FI

EL
D

C
la

ss
 t

yp
e(

)
O

bj
ec

t.c
la

ss
en

vi
ro

nm
en

t
th

e
re

so
ur

ce
 m

an
ag

er

co
nn

ec
tio

n
fa

ct
or

y
ty

pe
.

A
ut

he
nt

ic
at

io
nT

yp
e

Au
th

en
tic

at
io

n
Sp

ec
ifi

es
 w

he
th

er
 th

e
au

th
en

tic
at

io
nT

yp
e(

)
Ty

pe
co

nt
ai

ne
r

or
 b

ea
n

is
 to

.C

O
N

TA
IN

ER
pe

rf
or

m
 a

ut
he

nt
ic

at
io

n.
bo

ol
ea

n
sh

ar
ea

bl
e(

)
tr

ue
Re

fe
rs

 to
 th

e
sh

ar
ab

ili
ty

 o
f

re
so

ur
ce

 m
an

ag
er

co

nn
ec

tio
ns

.
St

ri
ng

 m
ap

pe
dN

am
e(

)
“”

A
pr

od
uc

t-
sp

ec
ifi

c
na

m
e

th
at

th

e
re

so
ur

ce
 s

ho
ul

d
be

m

ap
pe

d
to

.
St

ri
ng

 d
es

cr
ip

tio
n(

)
“”

@
R
e
s
o
u
r
c
e
s

Ac
ts

 a
s

a
co

nt
ai

ne
r

fo
r

TY
PE

R
es

ou
rc

e[
]

va
lu

e
m

ul
tip

le
 r

es
ou

rc
e

de
cl

ar
at

io
ns

be

ca
us

e
re

pe
at

ed
 a

nn
ot

at
io

ns

ar
e

no
t a

llo
w

ed
.

25_785415 appb.qxp 6/5/06 7:06 PM Page 610

Annotations 611

Entity Annotations

As we pointed out earlier in this book, entities are not EJBs. We still list their
annotations here.

25_785415 appb.qxp 6/5/06 7:06 PM Page 611

(c
on

tin
ue

d)

N
A

M
E

U
S

E
TA

R
G

ET
M

E
M

B
E

R
S

D
E

FA
U

LT
D

ES
C

R
IP

TI
O

N

@
E
n
t
i
t
y

M
ar

ks
 a

 c
la

ss
 a

s
an

TY

PE
St

ri
ng

 n
am

e(
)

“”
D

ef
au

lts
 to

 th
e

un
qu

al
ifi

ed

en
tit

y
cl

as
s

na
m

e
of

 e
nt

ity
 c

la
ss

. I
t i

s
us

ed
 to

 r
ef

er
 to

 th
e

en
tit

y
in

qu
er

ie
s.

Li
fe

-C
yc

le
 C

al
lb

ac
ks

@
E
n
t
i
t
y

Sp
ec

ifi
es

 th
e

ca
llb

ac
k

TY
PE

C
la

ss
[]

 v
al

ue
()

L
i
s
t
e
n
e
r
s

lis
te

ne
r

cl
as

se
s

to
 b

e
us

ed
 fo

r
an

 e
nt

ity

@
E
x
c
l
u
d
e

Sp
ec

ifi
es

 th
at

 th
e

in
vo

ca
tio

n
TY

PE
S
u
p
e
r
c
l
a
s
s

of
 s

up
er

cl
as

s
lis

te
ne

rs
 is

 to

L
i
s
t
e
n
e
r
s

be
 e

xc
lu

de
d

fo
r

th
e

en
tit

y
cl

as
s

(a
nd

 it
s

su
bc

la
ss

es
)

@
E
x
c
l
u
d
e

Sp
ec

ifi
es

 th
at

 th
e

in
vo

ca
tio

n
TY

PE
D
e
f
a
u
l
t

of
 d

ef
au

lt
lis

te
ne

rs
 is

 to
 b

e
L
i
s
t
e
n
e
r
s

ex
cl

ud
ed

 fo
r

th
e

en
tit

y
cl

as
s

(a
nd

 it
s

su
bc

la
ss

es
)

@
P
r
e
P
e
r
s
i
s
t

Sp
ec

ifi
es

 a
 c

al
lb

ac
k

lis
te

ne
r

M
ET

H
O

D
m

et
ho

d
an

d
m

ay
 b

e
ap

pl
ie

d
to

 m
et

ho
ds

 o
n

th
e

en
tit

y
cl

as
s

or
 m

et
ho

ds
 o

f
an

 E
n
t
i
t
y
L
i
s
t
e
n
e
r

cl
as

s

@
P
o
s
t
P
e
r
s
i
s
t

Sp
ec

ifi
es

 a
 c

al
lb

ac
k

lis
te

ne
r

M
ET

H
O

D
m

et
ho

d
an

d
m

ay
 b

e
ap

pl
ie

d
to

 m
et

ho
ds

 o
n

th
e

en
tit

y
cl

as
s

or
 m

et
ho

ds
 o

f
an

 E
n
t
i
t
y
L
i
s
t
e
n
e
r

cl
as

s

25_785415 appb.qxp 6/5/06 7:06 PM Page 612

(c
on

tin
ue

d)

N
A

M
E

U
S

E
TA

R
G

ET
M

E
M

B
E

R
S

D
E

FA
U

LT
D

ES
C

R
IP

TI
O

N

@
P
r
e
R
e
m
o
v
e

Sp
ec

ifi
es

 a
 c

al
lb

ac
k

lis
te

ne
r

M
ET

H
O

D
m

et
ho

d
an

d
m

ay
 b

e
ap

pl
ie

d
to

 m
et

ho
ds

 o
n

th
e

en
tit

y
cl

as
s

or
 m

et
ho

ds
 o

f a
n

E
n
t
i
t
y
L
i
s
t
e
n
e
r

cl
as

s

@
P
o
s
t
R
e
m
o
v
e

Sp
ec

ifi
es

 a
 c

al
lb

ac
k

lis
te

ne
r

M
ET

H
O

D
m

et
ho

d
an

d
m

ay
 b

e
ap

pl
ie

d
to

 m
et

ho
ds

 o
n

th
e

en
tit

y
cl

as
s

or
 m

et
ho

ds
 o

f a
n

E
n
t
i
t
y
L
i
s
t
e
n
e
r

cl
as

s

@
P
r
e
U
p
d
a
t
e

Sp
ec

ifi
es

 a
 c

al
lb

ac
k

lis
te

ne
r

m
et

ho
d

an
d

m
ay

 b
e

ap
pl

ie
d

to
 m

et
ho

ds
 o

n
th

e
en

tit
y

cl
as

s
or

 m
et

ho
ds

 o
f a

n
E
n
t
i
t
y
L
i
s
t
e
n
e
r

cl
as

s
M

ET
H

O
D

@
P
o
s
t
U
p
d
a
t
e

Sp
ec

ifi
es

 a
 c

al
lb

ac
k

lis
te

ne
r

M
ET

H
O

D
m

et
ho

d
an

d
m

ay
 b

e
ap

pl
ie

d
to

 m
et

ho
ds

 o
n

th
e

en
tit

y
cl

as
s

or
 m

et
ho

ds
 o

f a
n

E
n
t
i
t
y
L
i
s
t
e
n
e
r

cl
as

s

@
P
o
s
t
L
o
a
d

Sp
ec

ifi
es

 a
 c

al
lb

ac
k

lis
te

ne
r

M
ET

H
O

D
m

et
ho

d
an

d
m

ay
 b

e
ap

pl
ie

d
to

 m
et

ho
ds

 o
n

th
e

en
tit

y
cl

as
s

or
 m

et
ho

ds
 o

f a
n

E
n
t
i
t
y
L
i
s
t
e
n
e
r

cl
as

s

(c
on

tin
ue

d)

25_785415 appb.qxp 6/5/06 7:06 PM Page 613

(c
on

tin
ue

d)

N
A

M
E

U
S

E
TA

R
G

ET
M

E
M

B
E

R
S

D
E

FA
U

LT
D

ES
C

R
IP

TI
O

N

Q
u

er
ie

s
an

d
 Q

u
er

y
R

es
u

lt
 M

ap
p

in
g

@
F
l
u
s
h
M
o
d
e

D
es

ig
na

te
s

th
e

po
in

ts
 a

t
M

ET
H

O
D

Fl

us
hM

od
e

Ty
pe

Fl

us
hM

od
e

If
se

t t
o
A
U
T
O

, f
lu

sh
es

 c
an

w

hi
ch

 e
nt

iti
es

 a
re

 to
 b

e
FI

EL
D

va
lu

e(
)

Ty
pe

.A
U

TO
oc

cu
r

at
 c

om
m

it
an

d
be

fo
re

flu

sh
ed

 to
 th

e
da

ta
ba

se
qu

er
y

ex
ec

ut
io

n
w

he
n

a
tr

an
sa

ct
io

n
is

 a
ct

iv
e.

 If
 s

et
 to

C
O
M
M
I
T

, f
lu

sh
in

g
w

ill
 o

cc
ur

on
ly

 a
t t

ra
ns

ac
tio

n
co

m
m

it.

@
N
a
m
e
d

Q
u
e
r
y

Sp
ec

ifi
es

 a
 n

am
ed

 E
JB

TY

PE
St

ri
ng

 n
am

e(
)

Th
e

na
m

e
as

si
gn

ed
 to

 th
e

Q
L

qu
er

y
qu

er
y

an
d

is
 u

se
d

w
he

n
cr

ea
tin

g
a

qu
er

y
ob

je
ct

 u
si

ng

E
nt

it
yM

an
ag

er
op

er
at

io
ns

.
St

ri
ng

 q
ue

ry
()

C
on

ta
in

s
th

e
EJ

B
 Q

L
qu

er
y

st
rin

g.

Q
ue

ry
H

in
t[

]
hi

nt
s(

)
{}

A
se

t o
f Q

ue
ry

H
in

ts
:

@
T
a
r
g
e
t
(
{
}
)

@
R
e
t
e
n
t
i
o
n
(
R
U
N
T
I
M
E
)

p
u
b
l
i
c

@
i
n
t
e
r
f
a
c
e

Q
u
e
r
y
H
i
n
t

{

S
t
r
i
n
g

n
a
m
e
(
)
;

S
t
r
i
n
g

v
a
l
u
e
(
)
;

}

@
N
a
m
e
d
Q
u
e
r
i
e
s

Sp
ec

ifi
es

 a
 s

et
 o

f
TY

PE
N

am
ed

Q
ue

ry
[]

 v
al

ue
 (

)
@
N
a
m
e
d

Q
ue

ry

25_785415 appb.qxp 6/5/06 7:06 PM Page 614

(c
on

tin
ue

d)

N
A

M
E

U
S

E
TA

R
G

ET
M

E
M

B
E

R
S

D
E

FA
U

LT
D

ES
C

R
IP

TI
O

N

@
N
a
m
e
d
N
a
t
i
v
e

Sp
ec

ifi
es

 a
 n

at
iv

e
TY

PE
St

ri
ng

 n
am

e(
)

Th
e

na
m

e
as

si
gn

ed
 to

 th
e

Q
u
e
r
y

SQ
L

na
m

ed
 q

ue
ry

qu
er

y
an

d
is

 u
se

d
w

he
n

cr
ea

tin
g

a
qu

er
y

ob
je

ct
 u

si
ng

En

tit
yM

an
ag

er
op

er
at

io
ns

.
St

ri
ng

 q
ue

ry
()

C
on

ta
in

s
th

e
SQ

L
qu

er
y

st
rin

g.

Q
ue

ry
H

in
t[

]
hi

nt
s(

)
{}

As
 a

bo
ve

C
la

ss
 r

es
ul

tC
la

ss
()

vo
id

.c
la

ss
Re

fe
rs

 to
 th

e
cl

as
s

of
 th

e
re

su
lt.

St

ri
ng

()
 r

es
ul

tS
et

“”
Th

e
na

m
e

of
 a

M

ap
pi

ng
()

SQ
LR

es
ul

tS
et

M
ap

pi
ng

, a
s

de
fin

ed
 in

 m
et

ad
at

a.

@
N
a
m
e
d
N
a
t
i
v
e

Sp
ec

ifi
es

 a
 s

et
 o

f
TY

PE
N

am
ed

N
at

iv
eQ

ue
ry

[]

Q
u
e
r
i
e
s

@
N
a
m
e
d
N
a
t
i
v
e
Q
u
e
r
i
e
s

va
lu

e
()

(c
on

tin
ue

d)

25_785415 appb.qxp 6/5/06 7:06 PM Page 615

(c
on

tin
ue

d)

N
A

M
E

U
S

E
TA

R
G

ET
M

E
M

B
E

R
S

D
E

FA
U

LT
D

ES
C

R
IP

TI
O

N

@
S
q
l
R
e
s
u
l
t

Sp
ec

ifi
es

 th
e

m
ap

pi
ng

TY

PE
,

St
ri

ng
 n

am
e(

)
Th

e
na

m
e

as
si

gn
ed

 to
 th

e
S
e
t
M
a
p
p
i
n
g

of
 th

e
re

su
lt

of
 a

 n
at

iv
e

M
ET

H
O

D
m

ap
pi

ng
 a

nd
 is

 u
se

d
to

SQ

L
qu

er
y

to
 e

nt
iti

es

re
fe

r
to

 it
 in

 th
e

m
et

ho
ds

 o
f

an
d/

or
 b

as
ic

 ty
pe

s
th

e
Q

ue
ry

 A
PI

.
En

tit
yR

es
ul

t[
]

{}
En

tit
ie

s
an

d
co

lu
m

ns
 a

re

en
tit

ie
s(

)
{}

us
ed

 to
 s

pe
ci

fy
 th

e
m

ap
pi

ng

C
ol

um
nR

es
ul

t[
]

to
 e

nt
iti

es
 a

nd
 to

 b
as

ic

co
lu

m
ns

()
va

lu
es

, r
es

pe
ct

iv
el

y.
@
T
a
r
g
e
t
(
{
}
)

@
R
e
t
e
n
t
i
o
n
(
R
U
N
T
I
M
E
)

p
u
b
l
i
c

@
i
n
t
e
r
f
a
c
e

E
n
t
i
t
y
R
e
s
u
l
t
{

C
l
a
s
s

e
n
t
i
t
y
C
l
a
s
s
(
)
;

F
i
e
l
d
R
e
s
u
l
t
[
]

f
i
e
l
d
s
(
)

d
e
f
a
u
l
t

{
}
;

S
t
r
i
n
g

d
i
s
c
r
i
m
i
n
a
t
o
r
C
o
l
u
m
n
(
)

d
e
f
a
u
l
t

“
”
;

} @
T
a
r
g
e
t
(
{
}
)

@
R
e
t
e
n
t
i
o
n
(
R
U
N
T
I
M
E
)

p
u
b
l
i
c

@
i
n
t
e
r
f
a
c
e

F
i
e
l
d
R
e
s
u
l
t

{

S
t
r
i
n
g

n
a
m
e
(
)
;

S
t
r
i
n
g

c
o
l
u
m
n
(
)
;

} @
T
a
r
g
e
t
(
{
}
)

@
R
e
t
e
n
t
i
o
n
(
R
U
N
T
I
M
E
)

p
u
b
l
i
c

@
i
n
t
e
r
f
a
c
e

C
o
l
u
m
n
R
e
s
u
l
t

{

S
t
r
i
n
g

n
a
m
e
(
)
;

}

25_785415 appb.qxp 6/5/06 7:06 PM Page 616

(c
on

tin
ue

d)

N
A

M
E

U
S

E
TA

R
G

ET
M

E
M

B
E

R
S

D
E

FA
U

LT
D

ES
C

R
IP

TI
O

N

R
ef

er
en

ce
s

to
 t

h
e

En
ti

ty
M

an
ag

er
 a

n
d

 t
h

e
En

ti
ty

M
an

ag
er

Fa
ct

or
y

@
P
e
r
s
i
s
t
e
n
c
e

Ex
pr

es
se

s
a

de
pe

nd
en

cy
 o

n
TY

PE
,

St
ri

ng
 n

am
e(

)
“”

C
o
n
t
e
x
t

a
co

nt
ai

ne
r-

m
an

ag
ed

M

ET
H

O
D

,
En

tit
yM

an
ag

er
 p

er
si

st
en

ce

FI
EL

D
co

nt
ex

t
St

ri
ng

 u
ni

tN
am

e(
)

“”

Pe
rs

is
te

nc
e

TR
A

N
SA

C
TI

O
N

Th
e

na
m

e
by

C

on
te

xt
Ty

pe
 t

yp
e

w
hi

ch
 th

e
En

tit
yM

an
ag

er
 is

kn
ow

n
in

 th
e

en
vi

ro
nm

en
t.

It
is

 n
ot

 n
ee

de
d

w
he

n
de

pe
nd

en
cy

 in
je

ct
io

n
is

 u
se

d.
Th

e
na

m
e

of
 th

e
pe

rs
is

te
nc

e
un

it.
 It

 m
us

t b
e

sp
ec

ifi
ed

 if
th

er
e

is
 m

or
e

th
an

 o
ne

pe
rs

is
te

nc
e

un
it

w
ith

in
 th

e
re

fe
re

nc
in

g
sc

op
e.

Sp
ec

ifi
es

 w
he

th
er

 a
tr

an
sa

ct
io

n-
sc

op
ed

 o
r

ex
te

nd
ed

 p
er

si
st

en
ce

co
nt

ex
t i

s
to

 b
e

us
ed

. T
he

se
tt

in
g

fo
r

th
e

la
tt

er
 is

E
X
T
E
N
D
E
D

.

@
P
e
r
s
i
s
t
e
n
c
e

Ex
pr

es
se

s
a

de
pe

nd
en

cy
 o

n
TY

PE
Pe

rs
is

te
nc

e
C
o
n
t
e
x
t
s

m
ul

tip
le

 c
on

ta
in

er
-m

an
ag

ed

C
on

te
xt

[]
 v

al
ue

()
En

tit
yM

an
ag

er
 p

er
si

st
en

ce

co
nt

ex
ts

(c
on

tin
ue

d)

25_785415 appb.qxp 6/5/06 7:06 PM Page 617

(c
on

tin
ue

d)

N
A

M
E

U
S

E
TA

R
G

ET
M

E
M

B
E

R
S

D
E

FA
U

LT
D

ES
C

R
IP

TI
O

N

@
P
e
r
s
i
s
t
e
n
c
e

Ex
pr

es
se

s
a

de
pe

nd
en

cy

TY
PE

,
St

ri
ng

 n
am

e(
)

“”
U
n
i
t

on
 a

n
E
n
t
i
t
y
M
a
n
a
g
e
r

M
ET

H
O

D
,

F
a
c
t
o
r
y

FI
EL

D
St

ri
ng

 u
ni

tN
am

e(
)

“”
Th

e
na

m
e

of
 th

e
En

tit
y

M
an

ag
er

Fa
ct

or
y

in
 th

e
en

vi
ro

nm
en

t.
It

is
 n

ot
ne

ed
ed

 w
he

n
de

pe
nd

en
cy

in
je

ct
io

n
is

 u
se

d.
Th

e
na

m
e

of
 th

e
pe

rs
is

te
nc

e
un

it
as

 d
ef

in
ed

 in
 th

e
p
e
r
s
i
s
t
e
n
c
e
.
x
m
l

fil
e.

It

m
us

t b
e

sp
ec

ifi
ed

 if
 th

er
e

is
 m

or
e

th
an

 o
ne

pe
rs

is
te

nc
e

un
it

in
 th

e
re

fe
re

nc
in

g
sc

op
e.

25_785415 appb.qxp 6/5/06 7:06 PM Page 618

(c
on

tin
ue

d)

N
A

M
E

U
S

E
TA

R
G

ET
M

E
M

B
E

R
S

D
E

FA
U

LT
D

ES
C

R
IP

TI
O

N

O
b

je
ct

/R
el

at
io

n
al

 M
ap

p
in

g

@
T
a
b
l
e

Sp
ec

ifi
es

 th
e

pr
im

ar
y

ta
bl

e
TY

PE
St

ri
ng

 n
am

e(
)

“”
Th

e
ta

bl
e

na
m

e,
 d

ef
au

lts

fo
r

th
e

en
tit

y.
 A

dd
iti

on
al

to

 th
e

en
tit

y
na

m
e,

 if
 u

ns
et

.
ta

bl
es

 m
ay

 b
e

sp
ec

ifi
ed

us

in
g

Se
co

nd
ar

yT
ab

le
 o

r
St

ri
ng

 c
at

al
og

()
“”

Th
e

ta
bl

e’
s

ca
ta

lo
g

na
m

e
Se

co
nd

ar
yT

ab
le

s
an

no
ta

tio
n.

an

d
de

fa
ul

ts
 to

 th
e

de
fa

ul
t

If
no

 T
ab

le
 a

nn
ot

at
io

n
is

ca

ta
lo

g.
sp

ec
ifi

ed
 fo

r
an

 e
nt

ity
 c

la
ss

,
th

e
de

fa
ul

t v
al

ue
s

ap
pl

y.
St

ri
ng

 s
ch

em
a(

)
“”

Th
e

na
m

e
of

 th
e

ta
bl

e’
s

sc
he

m
a

an
d

de
fa

ul
ts

 to
 th

e
us

er
’s

 d
ef

au
lt

sc
he

m
a.

U
ni

qu
eC

on
st

ra
in

t[
]

{}
U

ni
qu

e
co

ns
tr

ai
nt

s
th

at
 a

re

un
iq

ue
C

on
st

ra
in

ts
()

to
 b

e
pl

ac
ed

 o
n

th
e

ta
bl

e,
on

ly
 u

se
d

if
ta

bl
e

ge
ne

ra
tio

n
is

 in
 e

ffe
ct

. T
he

se
 c

on
st

ra
in

ts
ap

pl
y

in
 a

dd
iti

on
 to

 a
ny

co
ns

tr
ai

nt
s

sp
ec

ifi
ed

 b
y

th
e

C
ol

um
n

an
d

Jo
in

C
ol

um
n

an
no

ta
tio

ns
 a

nd
 c

on
st

ra
in

ts
en

ta
ile

d
by

 p
rim

ar
y

ke
y

m
ap

pi
ng

s.

(c
on

tin
ue

d)

25_785415 appb.qxp 6/5/06 7:06 PM Page 619

(c
on

tin
ue

d)

N
A

M
E

U
S

E
TA

R
G

ET
M

E
M

B
E

R
S

D
E

FA
U

LT
D

ES
C

R
IP

TI
O

N

@
S
e
c
o
n
d
a
r
y

Sp
ec

ifi
es

 a
 s

ec
on

da
ry

 ta
bl

e
TY

PE
St

ri
ng

 n
am

e(
)

“”
Th

e
ta

bl
e

na
m

e.
T
a
b
l
e

fo
r

th
e

an
no

ta
te

d
en

tit
y

cl
as

s,

St
ri

ng
 c

at
al

og
()

Th
e

ta
bl

e’
s

ca
ta

lo
g

na
m

e
in

di
ca

tin
g

th
at

 th
e

da
ta

 fo
r

an
d

de
fa

ul
ts

 to
 th

e
de

fa
ul

t
th

e
en

tit
y

cl
as

s
is

 s
to

re
d

ca
ta

lo
g.

ac
ro

ss
 m

ul
tip

le
 ta

bl
es

.
St

ri
ng

 s
ch

em
a(

)
{}

Th
e

na
m

e
of

 th
e

ta
bl

e’
s

If
no

 S
e
c
o
n
d
a
r
y
T
a
b
l
e

sc
he

m
a

an
d

de
fa

ul
ts

 to
 th

e
an

no
ta

tio
n

is
 s

pe
ci

fie
d,

 a
ll

us
er

’s
 d

ef
au

lt
sc

he
m

a.
pe

rs
is

te
nt

 fi
el

ds
 o

r
pr

op
er

tie
s

of
 th

e
en

tit
y

ar
e

m
ap

pe
d

to

Pr
im

ar
yK

ey

{}
Th

e
co

lu
m

ns
 th

at
 a

re
 u

se
d

th
e

pr
im

ar
y

ta
bl

e.
Jo

in
C

ol
um

n[
]

to
 jo

in
 w

ith
 th

e
pr

im
ar

y
pk

Jo
in

C
ol

um
ns

()
ta

bl
e.

 If
 n

ot
 s

pe
ci

fie
d,

 th
e

jo
in

 c
ol

um
ns

 r
ef

er
en

ce
 th

e
pr

im
ar

y
ke

y
co

lu
m

ns
 o

f t
he

pr

im
ar

y
ta

bl
e,

 a
nd

 h
av

e
th

e
sa

m
e

na
m

es
 a

nd
 ty

pe
s

as

th
e

re
fe

re
nc

ed
 p

rim
ar

y
ke

y
co

lu
m

ns
 o

f t
he

 p
rim

ar
y

ta
bl

e.

U
ni

qu
e

C
on

st
ra

in
t[

]
U

ni
qu

e
co

ns
tr

ai
nt

s
th

at
 a

re

un
iq

ue
 C

on
st

ra
in

ts
()

to
 b

e
pl

ac
ed

 o
n

th
e

ta
bl

e,

ty
pi

ca
lly

 o
nl

y
us

ed
 if

 ta
bl

e
ge

ne
ra

tio
n

is
 in

 e
ffe

ct
. T

he
y

ap
pl

y
in

 a
dd

iti
on

 to
 a

ny
co

ns
tr

ai
nt

s
sp

ec
ifi

ed
 b

y
th

e
C
o
l
u
m
n

an
d
J
o
i
n
-
C
o
l
u
m
n

an
no

ta
tio

ns
 a

nd
 c

on
st

ra
in

ts
en

ta
ile

d
by

 p
rim

ar
y

ke
y

m
ap

pi
ng

s.

25_785415 appb.qxp 6/5/06 7:06 PM Page 620

(c
on

tin
ue

d)

N
A

M
E

U
S

E
TA

R
G

ET
M

E
M

B
E

R
S

D
E

FA
U

LT
D

ES
C

R
IP

TI
O

N

@
S
e
c
o
n
d
a
r
y

Sp
ec

ifi
es

 m
ul

tip
le

 s
ec

on
da

ry

TY
PE

Se
co

nd
ar

y
Ta

bl
e[

]
T
a
b
l
e
s

ta
bl

es
 fo

r
an

 e
nt

ity
.

va
lu

e(
)

@
U
n
i
q
u
e

Sp
ec

ifi
es

 th
at

 a
 u

ni
qu

e
{}

St
ri

ng
[]

An

 a
rr

ay
 o

f c
ol

um
n

na
m

es

C
o
n
s
t
r
a
i
n
t
s

co
ns

tr
ai

nt
 is

 to
 b

e
in

cl
ud

ed
 in

co

lu
m

nN
am

es
()

th
at

 m
ak

e
up

 th
e

co
ns

tr
ai

nt
.

th
e

ge
ne

ra
te

d
D

D
L

fo
r

a
pr

im
ar

y
or

 s
ec

on
da

ry
 ta

bl
e.

@
C
o
l
u
m
n

Sp
ec

ifi
es

 a
 m

ap
pe

d
co

lu
m

n
M

ET
H

O
D

,
St

ri
ng

 n
am

e(
)

“”
Th

e
na

m
e

of
 th

e
co

lu
m

n.
fo

r
a

pe
rs

is
te

nt
 p

ro
pe

rt
y

or

FI
EL

D
b

oo
le

an
 u

ni
qu

e(
)

fa
ls

e
W

he
th

er
 th

e
pr

op
er

ty
 is

 a

fie
ld

.
un

iq
ue

 k
ey

. T
hi

s
is

 a

sh
or

tc
ut

 fo
r

th
e

U
ni

qu
eC

on
st

ra
in

t
an

no
ta

tio
n

at
 th

e
ta

bl
e

le
ve

l
an

d
us

ef
ul

 w
he

n
th

e
un

iq
ue

ke

y
co

ns
tr

ai
nt

 is
 o

nl
y

a
si

ng
le

 fi
el

d.
 A

pp
lie

s
in

ad

di
tio

n
to

 a
ny

 c
on

st
ra

in
t

en
ta

ile
d

by
 p

rim
ar

y
ke

y
m

ap
pi

ng
 a

nd
 to

 c
on

st
ra

in
ts

sp

ec
ifi

ed
 a

t t
he

 ta
bl

e
le

ve
l.

(c
on

tin
ue

d)

25_785415 appb.qxp 6/5/06 7:06 PM Page 621

(c
on

tin
ue

d)

N
A

M
E

U
S

E
TA

R
G

ET
M

E
M

B
E

R
S

D
E

FA
U

LT
D

ES
C

R
IP

TI
O

N

@
C
o
l
u
m
n

b
oo

le
an

 n
ul

la
bl

e(
)

tr
ue

W
he

th
er

 th
e

da
ta

ba
se

co

lu
m

n
is

 n
ul

la
bl

e.
b

oo
le

an
 in

se
rt

ab
le

()

tr
ue

W
he

th
er

 th
e

co
lu

m
n

is

in
cl

ud
ed

 in
 S

Q
L
I
N
S
E
R
T

st
at

em
en

ts
 g

en
er

at
ed

 b
y

th
e

pe
rs

is
te

nc
e

pr
ov

id
er

.
b

oo
le

an
 u

pd
at

ab
le

()
tr

ue
W

he
th

er
 th

e
co

lu
m

n
is

in

cl
ud

ed
 in

 S
Q

L
U
P
D
A
T
E

st
at

em
en

ts
 g

en
er

at
ed

 b
y

th
e

pe
rs

is
te

nc
e

pr
ov

id
er

.
St

ri
ng

 c
ol

um
n

“”
Th

e
SQ

L
fr

ag
m

en
t t

ha
t i

s
D

ef
in

iti
on

()
us

ed
 w

he
n

ge
ne

ra
tin

g
th

e
D

D
L

fo
r

th
e

co
lu

m
n.

St
ri

ng
 ta

bl
e(

)
“”

Th
e

na
m

e
of

 th
e

ta
bl

e
th

at

co
nt

ai
ns

 th
e

co
lu

m
n.

 If

ab
se

nt
 th

e
co

lu
m

n
is

as

su
m

ed
 to

 b
e

in
 th

e
pr

im
ar

y
ta

bl
e.

in
t l

en
gt

h(
)

25
5

Th
e

co
lu

m
n

le
ng

th
. (

Ap
pl

ie
s

on
ly

 if
 a

 s
tr

in
g-

va
lu

ed

co
lu

m
n

is
 u

se
d.

)
in

t p
re

ci
si

on
()

0

Th
e

pr
ec

is
io

n
fo

r
a

de
ci

m
al

(e

xa
ct

 n
um

er
ic

)
co

lu
m

n.

(A
pp

lie
s

on
ly

 if
 a

 d
ec

im
al

co

lu
m

n
is

 u
se

d.
)

in
t s

ca
le

()
0

Th
e

sc
al

e
fo

r
a

de
ci

m
al

(e

xa
ct

 n
um

er
ic

)
co

lu
m

n.

(A
pp

lie
s

on
ly

 if
 a

 d
ec

im
al

co

lu
m

n
is

 u
se

d.
)

25_785415 appb.qxp 6/5/06 7:06 PM Page 622

(c
on

tin
ue

d)

N
A

M
E

U
S

E
TA

R
G

ET
M

E
M

B
E

R
S

D
E

FA
U

LT
D

ES
C

R
IP

TI
O

N

@
J
o
i
n
C
o
l
u
m
n

Sp
ec

ifi
es

 a
 m

ap
pe

d
co

lu
m

n
TY

PE
,

St
ri

ng
 n

am
e(

)
“”

Th
e

na
m

e
of

 th
e

fo
re

ig
n

ke
y

fo
r

jo
in

in
g

an
 e

nt
ity

 a
ss

oc
i-

M
ET

H
O

D
,

co
lu

m
n.

 If
 th

e
jo

in
 is

 fo
r

a
at

io
n.

 If
 n

o
@
J
o
i
n
C
o
l
u
m
n

FI
EL

D
O
n
e
T
o
O
n
e

or
 M
a
n
y
T
o
O
n
e

an
no

ta
tio

n
is

 s
pe

ci
fie

d,
 a

m

ap
pi

ng
, t

he
 fo

re
ig

n
ke

y
si

ng
le

 jo
in

 c
ol

um
n

is

co
lu

m
n

is
 in

 th
e

ta
bl

e
of

 th
e

as
su

m
ed

 a
nd

 th
e

de
fa

ul
t

so
ur

ce
 e

nt
ity

. I
f t

he
 jo

in
 is

va

lu
es

 a
pp

ly
.

fo
r

a
M
a
n
y
T
o
M
a
n
y

, t
he

fo

re
ig

n
ke

y
is

 in
 a

 jo
in

 ta
bl

e.
St

ri
ng

 r
ef

er
en

ce
d

“”
Th

e
na

m
e

of
 th

e
co

lu
m

n
C

ol
um

nN
am

e(
)

re
fe

re
nc

ed
 b

y
th

is
 fo

re
ig

n
ke

y
co

lu
m

n.
 W

he
n

us
ed

w

ith
 r

el
at

io
ns

hi
p

m
ap

pi
ng

s,

th
e

re
fe

re
nc

ed
 c

ol
um

n
is

 in

th
e

ta
bl

e
of

 th
e

ta
rg

et
 e

nt
ity

.
W

he
n

us
ed

 in
si

de
 a

J
o
i
n
T
a
b
l
e

an
no

ta
tio

n,
 th

e
re

fe
re

nc
ed

 k
ey

 c
ol

um
n

is
 in

th

e
en

tit
y

ta
bl

e
of

 th
e

ow
ni

ng
 e

nt
ity

, o
r

in
ve

rs
e

en
tit

y
if

th
e

jo
in

 is
 p

ar
t o

f
th

e
in

ve
rs

e
jo

in
 d

ef
in

iti
on

.
b

oo
le

an
 u

ni
qu

e(
)

fa
ls

e
W

he
th

er
 th

e
pr

op
er

ty
 is

 a

un
iq

ue
 k

ey
. (

cf
. a

bo
ve

)
b

oo
le

an
 n

ul
la

bl
e(

)
tr

ue
W

he
th

er
 th

e
da

ta
ba

se

co
lu

m
n

is
 n

ul
la

bl
e.

b
oo

le
an

 in
se

rt
ab

le
()

tr
ue

W
he

th
er

 th
e

co
lu

m
n

is

in
cl

ud
ed

 in
 S

Q
L
I
N
S
E
R
T

st
at

em
en

ts
 g

en
er

at
ed

 b
y

th
e

pe
rs

is
te

nc
e

pr
ov

id
er

. (c
on

tin
ue

d)

25_785415 appb.qxp 6/5/06 7:06 PM Page 623

(c
on

tin
ue

d)

N
A

M
E

U
S

E
TA

R
G

ET
M

E
M

B
E

R
S

D
E

FA
U

LT
D

ES
C

R
IP

TI
O

N

@
J
o
i
n
C
o
l
u
m
n

b
oo

le
an

 u
pd

at
ab

le
()

tr
ue

W
he

th
er

 th
e

co
lu

m
n

is

in
cl

ud
ed

 in
 S

Q
L
U
P
D
A
T
E

st
at

em
en

ts
 g

en
er

at
ed

 b
y

th
e

pe
rs

is
te

nc
e

pr
ov

id
er

.
St

ri
ng

 c
ol

um
n

“”
Th

e
SQ

L
fr

ag
m

en
t t

ha
t i

s
D

ef
in

iti
on

()
us

ed
 w

he
n

ge
ne

ra
tin

g
th

e
D

D
L

fo
r

th
e

co
lu

m
n.

St
ri

ng
 ta

bl
e(

)
“”

Th
e

na
m

e
of

 th
e

ta
bl

e
th

at

co
nt

ai
ns

 th
e

co
lu

m
n.

 If

ab
se

nt
, t

he
 c

ol
um

n
is

as

su
m

ed
 to

 b
e

in
 th

e
pr

im
ar

y
ta

bl
e.

@
J
o
i
n
C
o
l
u
m
n
s

Su
pp

or
ts

 c
om

po
si

te
 fo

re
ig

n
M

ET
H

O
D

,
Jo

in
C

ol
um

n[
]

va
lu

e(
)

ke
ys

. G
ro

up
s
J
o
i
n
C
o
l
u
m
n

FI
EL

D
an

no
ta

tio
ns

 fo
r

th
e

sa
m

e
re

la
tio

ns
hi

p
or

 ta
bl

e
as

so
ci

at
io

n.
 W

he
n

th
e

J
o
i
n
C
o
l
u
m
n
s

an
no

ta
tio

n
is

us

ed
, b

ot
h

th
e

na
m

e
an

d
th

e
r
e
f
e
r
e
n
c
e
d
C
o
l
u
m
n
N
a
m
e

el
em

en
ts

 m
us

t b
e

sp
ec

ifi
ed

in

 e
ac

h
su

ch
 J
o
i
n
C
o
l
u
m
n

an
no

ta
tio

n.

25_785415 appb.qxp 6/5/06 7:06 PM Page 624

(c
on

tin
ue

d)

N
A

M
E

U
S

E
TA

R
G

ET
M

E
M

B
E

R
S

D
E

FA
U

LT
D

ES
C

R
IP

TI
O

N

@
I
d

Sp
ec

ifi
es

 th
e

pr
im

ar
y

ke
y

M
ET

H
O

D
,

pr
op

er
ty

 o
r f

ie
ld

 o
f a

n
en

tit
y.

FI

EL
D

Th
e

Id
 a

nn
ot

at
io

n
m

ay
 b

e
ap

pl
ie

d
in

 a
n

en
tit

y
or

m

ap
pe

d
su

pe
rc

la
ss

. B
y

de
fa

ul
t,

th
e

m
ap

pe
d

co
lu

m
n

fo
r

th
e

pr
im

ar
y

ke
y

of
 th

e
en

tit
y

is
 a

ss
um

ed
 to

 b
e

th
e

pr
im

ar
y

ke
y

of
 th

e
pr

im
ar

y
ta

bl
e.

 If
 n

o
C

ol
um

n
an

no
-

ta
tio

n
is

 s
pe

ci
fie

d,
 th

e
pr

im
ar

y
ke

y
co

lu
m

n
na

m
e

is
 a

ss
um

ed
 to

 b
e

th
e

na
m

e
of

 th
e

pr
im

ar
y

ke
y

pr
op

er
ty

or

 fi
el

d.

@
G
e
n
e
r
a
t
e
d

Sp
ec

ifi
es

 g
en

er
at

io
n

st
ra

te
-

M
ET

H
O

D
,

G
en

er
at

io
n

Ty
pe

AU

TO
Th

e
st

ra
te

gy
 to

 g
en

er
at

e
th

e
V
a
l
u
e

gi
es

 fo
r

pr
im

ar
y

ke
ys

. M
ay

FI

EL
D

st
ra

te
gy

()
an

no
ta

te
d

en
tit

y
pr

im
ar

y
ke

y.
be

 a
pp

lie
d

to
 a

 p
rim

ar
y

ke
y

pr
op

er
ty

 o
r

fie
ld

 o
f a

n
en

tit
y

St
ri

ng
 g

en
er

at
or

()
“”

Th
e

na
m

e
of

 th
e

pr
im

ar
y

ke
y

or
 m

ap
pe

d
su

pe
rc

la
ss

 in

ge
ne

ra
to

r
to

 u
se

. D
ef

au
lt

ID

co
nj

un
ct

io
n

w
ith

 th
e
I
d

ge
ne

ra
to

r
su

pp
lie

d
by

an

no
ta

tio
n.

pe
rs

is
te

nc
e

pr
ov

id
er

. (c
on

tin
ue

d)

25_785415 appb.qxp 6/5/06 7:06 PM Page 625

(c
on

tin
ue

d)

N
A

M
E

U
S

E
TA

R
G

ET
M

E
M

B
E

R
S

D
E

FA
U

LT
D

ES
C

R
IP

TI
O

N

@
A
t
t
r
i
b
u
t
e

O
ve

rr
id

es
 th

e
m

ap
pi

ng
 o

f a

TY
PE

,
St

ri
ng

 n
am

e(
)

Th
e

na
m

e
of

 th
e

m
ap

pe
d

O
v
e
r
r
i
d
e

pr
op

er
ty

 o
r

fie
ld

. M
ay

 b
e

M
ET

H
O

D
,

pr
op

er
ty

 o
r

fie
ld

.
ap

pl
ie

d
to

 a
n

en
tit

y
th

at

FI
EL

D
C

ol
um

n
co

lu
m

n(
)

Th
e

co
lu

m
n

th
at

 is
 b

ei
ng

ex

te
nd

s
a

m
ap

pe
d

su
pe

r-
m

ap
pe

d
to

 th
e

pe
rs

is
te

nt

cl
as

s
or

 to
 a

n
em

be
dd

ed

at
tr

ib
ut

e.
 T

he
 m

ap
pi

ng
 ty

pe

fie
ld

 o
r

pr
op

er
ty

 to
 o

ve
rr

id
e

w
ill

 r
em

ai
n

th
e

sa
m

e
as

 is

a
m

ap
pi

ng
 d

ef
in

ed
 b

y
th

e
de

fin
ed

 in
 th

e
em

be
dd

ab
le

m

ap
pe

d
su

pe
rc

la
ss

 o
r

cl
as

s
or

 m
ap

pe
d

su
pe

rc
la

ss
.

em
be

dd
ab

le
 c

la
ss

.
If

no
t s

pe
ci

fie
d,

 th
e

co
lu

m
n

is
 m

ap
pe

d
as

 in
 th

e
or

ig
in

al

m
ap

pi
ng

.

@
A
t
t
r
i
b
u
t
e

O
ve

rr
id

es
 th

e
m

ap
pi

ng
s

of

TY
PE

,
A

ttr
ib

ut
eO

ve
rr

id
e[

]
O
v
e
r
r
i
d
e
s

m
ul

tip
le

 p
ro

pe
rt

ie
s

or
 fi

el
ds

.
M

ET
H

O
D

,
va

lu
e(

)
FI

EL
D

@
E
m
b
e
d
d
e
d
I
d

D
en

ot
es

 a
 c

om
po

si
te

 p
rim

ar
y

M
ET

H
O

D
,

ke
y

th
at

 is
 a

n
em

be
dd

ab
le

FI

EL
D

cl
as

s.
 M

ay
 b

e
ap

pl
ie

d
to

 a

pe
rs

is
te

nt
 fi

el
d

or
 p

ro
pe

rt
y

of
 a

n
en

tit
y

cl
as

s
or

 m
ap

pe
d

su
pe

rc
la

ss
.

Th
er

e
m

us
t b

e
on

ly
 o

ne

Em
be

dd
ed

Id
 a

nn
ot

at
io

n
an

d
no

 Id
 a

nn
ot

at
io

n
w

he
n

th
e

Em
be

dd
ed

Id
 a

nn
ot

at
io

n
is

 u
se

d.

25_785415 appb.qxp 6/5/06 7:06 PM Page 626

(c
on

tin
ue

d)

N
A

M
E

U
S

E
TA

R
G

ET
M

E
M

B
E

R
S

D
E

FA
U

LT
D

ES
C

R
IP

TI
O

N

@
I
d
C
l
a
s
s

Sp
ec

ifi
es

 a
 c

om
po

si
te

TY

PE
C

la
ss

 v
al

ue
()

Th
e

na
m

es
 o

f t
he

 fi
el

ds
 o

r
pr

op
er

tie
s

in
 th

e
pr

im
ar

y
ke

y
cl

as
s

an
d

th
e

pr
im

ar
y

ke
y

fie
ld

s
or

 p
ro

pe
rt

ie
s

of

th
e

en
tit

y
m

us
t c

or
re

sp
on

d
an

d
th

ei
r

ty
pe

s
m

us
t b

e
th

e
sa

m
e.

pr
im

ar
y

ke
y

cl
as

s
th

at

is
 m

ap
pe

d
to

 m
ul

tip
le

 fi
el

ds

or
 p

ro
pe

rt
ie

s
of

 th
e

en
tit

y.

Ap
pl

ie
d

to
 a

n
en

tit
y

cl
as

s
or

a

m
ap

pe
d

su
pe

rc
la

ss
.

@
T
r
a
n
s
i
e
n
t

Sp
ec

ifi
es

 th
at

 a
 p

ro
pe

rt
y

or

M
ET

H
O

D
,

fie
ld

 o
f a

n
en

tit
y

cl
as

s
is

 n
ot

FI

EL
D

pe
rs

is
te

nt
.

(c
on

tin
ue

d)

25_785415 appb.qxp 6/5/06 7:06 PM Page 627

(c
on

tin
ue

d)

N
A

M
E

U
S

E
TA

R
G

ET
M

E
M

B
E

R
S

D
E

FA
U

LT
D

ES
C

R
IP

TI
O

N

@
V
e
r
s
i
o
n

Sp
ec

ifi
es

 a
 fi

el
d

or
 p

ro
pe

rt
y

M
ET

H
O

D
,

of
 a

n
en

tit
y

cl
as

s
th

at
 s

er
ve

s
FI

EL
D

as
 it

s
op

tim
is

tic
 lo

ck
 v

al
ue

.
Th

e
ty

pe
 o

f t
ha

t f
ie

ld
 o

r
pr

op
er

ty
 s

ho
ul

d
be

 o
ne

 o
f:

i
n
t

, I
nt

eg
er

; s
h
o
r
t

, S
ho

rt
;

l
o
n
g

, L
on

g;
 T
i
m
e
s
t
a
m
p

.
O

nl
y

a
si

ng
le

 V
e
r
s
i
o
n

pr
op

-
er

ty
 o

r
fie

ld
 s

ho
ul

d
be

 u
se

d
pe

r
cl

as
s.

 T
he

 V
e
r
s
i
o
n

pr
op

-
er

ty
 s

ho
ul

d
be

 m
ap

pe
d

to
 th

e
pr

im
ar

y
ta

bl
e

fo
r t

he
 e

nt
ity

 c
la

ss
.

Fi
el

ds
 o

r
pr

op
er

tie
s

th
at

 a
re

sp

ec
ifi

ed
 w

ith
 th

e
Ve

rs
io

n
an

no
ta

tio
n

sh
ou

ld
 n

ot
 b

e
up

da
te

d
by

 th
e

ap
pl

ic
at

io
n.

@
B
a
s
i
c

Im
pl

ic
it

m
ap

pi
ng

 d
ef

au
lt

fo
r

M
ET

H
O

D
,

Fe
tc

hT
yp

e
fe

tc
h(

)
EA

G
ER

W
he

th
er

 th
e

va
lu

e
of

 th
e

ba
si

c
ty

pe
s.

 C
an

 b
e

ap
pl

ie
d

FI
EL

D
fie

ld
 o

r
pr

op
er

ty
 s

ho
ul

d
be

to

 a
 p

er
si

st
en

t p
ro

pe
rt

y
or

la

zi
ly

 lo
ad

ed
 o

r
m

us
t b

e
in

st
an

ce
 v

ar
ia

bl
e

of
 a

ny
 o

f
ea

ge
rly

 fe
tc

he
d.

 T
he

 E
A
G
E
R

th
e

fo
llo

w
in

g
ty

pe
s:

 J
av

a
st

ra
te

gy
 is

 a
 r

eq
ui

re
m

en
t,

pr
im

iti
ve

 ty
pe

s,
 w

ra
pp

er
s

of

th
e
L
A
Z
Y

st
ra

te
gy

 is
 a

 h
in

t
th

e
pr

im
iti

ve
 ty

pe
s,

 ja
va

.la
ng

to
 th

e
pe

rs
is

te
nc

e
pr

ov
id

er

.S
tr

in
g,

 ja
va

.m
at

h.
B

ig
In

te
ge

r,
ru

nt
im

e.
ja

va
.m

at
h.

B
ig

D
ec

im
al

, j
av

a
b

oo
le

an
 o

pt
io

na
l(

)
tr

ue
A

hi
nt

 a
s

to
 w

he
th

er
 th

e
.u

til
.D

at
e,

 ja
va

.u
til

.C
al

en
da

r,
va

lu
e

of
 th

e
fie

ld
 o

r
pr

op
er

ty

ja
va

.s
ql

.D
at

e,
 ja

va
.s

ql
.T

im
e,

m

ay
 b

e
nu

ll.
 It

 is

ja
va

.s
ql

.T
im

es
ta

m
p,

 b
yt

e[
],

di
sr

eg
ar

de
d

fo
r

pr
im

iti
ve

B

yt
e[

],
ch

ar
[]

, C
ha

ra
ct

er
[]

,
ty

pe
s,

 w
hi

ch
 a

re
 c

on
si

de
re

d
en

um
s,

 a
nd

 a
ny

 o
th

er
 ty

pe

no
no

pt
io

na
l.

th
at

 im
pl

em
en

ts
 S

er
ia

liz
ab

le
.

25_785415 appb.qxp 6/5/06 7:06 PM Page 628

(c
on

tin
ue

d)

N
A

M
E

U
S

E
TA

R
G

ET
M

E
M

B
E

R
S

D
E

FA
U

LT
D

ES
C

R
IP

TI
O

N

@
L
o
b

Sp
ec

ifi
es

 th
at

 a
 p

er
si

st
en

t
M

ET
H

O
D

,
pr

op
er

ty
 o

r
fie

ld
 s

ho
ul

d
be

FI

EL
D

pe
rs

is
te

d
as

 a
 la

rg
e

ob
je

ct

to
 a

 d
at

ab
as

e-
su

pp
or

te
d

la
rg

e
ob

je
ct

 ty
pe

. M
ay

 b
e

us
ed

 in
 c

on
ju

nc
tio

n
w

ith

th
e
B
a
s
i
c

an
no

ta
tio

n.

A
L
o
b

m
ay

 b
e

ei
th

er
 a

 b
in

ar
y

or
 c

ha
ra

ct
er

 ty
pe

. T
he

 L
o
b

ty
pe

 is
 in

fe
rr

ed
 fr

om
 th

e
ty

pe

of
 th

e
pe

rs
is

te
nt

 fi
el

d
or

pr

op
er

ty
, a

nd
 e

xc
ep

t f
or

st

rin
g

an
d

ch
ar

ac
te

r-
ba

se
d

ty
pe

s
de

fa
ul

ts
 to

 B
l
o
b

.

@
T
e
m
p
o
r
a
l

Sp
ec

ifi
es

 th
at

 a
 p

er
si

st
en

t
M

ET
H

O
D

,
Te

m
po

ra
lT

yp
e

va
lu

e(
)

TI
M

ES
TA

M
P

Th
e

ty
pe

 u
se

d
in

 m
ap

pi
ng

 a

pr
op

er
ty

 o
r

fie
ld

 s
ho

ul
d

be

FI
EL

D
te

m
po

ra
l t

yp
e.

 P
os

si
bl

e
pe

rs
is

te
d

as
 a

 te
m

po
ra

l t
yp

e.

va
lu

es
 a

re
 D

AT
E,

 T
IM

E,

M
ay

 b
e

us
ed

 in
 c

on
ju

nc
tio

n
TI

M
ES

TA
M

P.
w

ith
 th

e
B
a
s
i
c

an
no

ta
tio

n.
Th

e
te

m
po

ra
l t

yp
e

m
us

t b
e

sp
ec

ifi
ed

 fo
r

pe
rs

is
te

nt
 fi

el
ds

or

 p
ro

pe
rt

ie
s

of
 ty

pe
 j
a
v
a

.
u
t
i
l
.
D
a
t
e

an
d
j
a
v
a

.
u
t
i
l
.
C
a
l
e
n
d
a
r

.
If

th
e

te
m

po
ra

l t
yp

e
is

 n
ot

sp

ec
ifi

ed
 o

r
th

e
T
e
m
p
o
r
a
l

an
no

ta
tio

n
is

 n
ot

 u
se

d,
 th

e
te

m
po

ra
l t

yp
e

is
 a

ss
um

ed
 to

be

 T
I
M
E
S
T
A
M
P

.

(c
on

tin
ue

d)

25_785415 appb.qxp 6/5/06 7:06 PM Page 629

(c
on

tin
ue

d)

N
A

M
E

U
S

E
TA

R
G

ET
M

E
M

B
E

R
S

D
E

FA
U

LT
D

ES
C

R
IP

TI
O

N

@
E
n
u
m
e
r
a
t
e
d

Sp
ec

ifi
es

 th
at

 a
 p

er
si

st
en

t
M

ET
H

O
D

,
En

um
Ty

pe
 v

al
ue

()
O

R
D

IN
A

L
Th

e
ty

pe
 u

se
d

in
 m

ap
pi

ng

pr
op

er
ty

 o
r

fie
ld

 s
ho

ul
d

be

FI
EL

D
an

 e
nu

m
 ty

pe
. P

os
si

bl
e

pe
rs

is
te

d
as

 a
n

en
um

er
at

ed

va
lu

es
 a

re
:O

R
D

IN
A

L,

ty
pe

. M
ay

 b
e

us
ed

 in

ST
R

IN
G

.
co

nj
un

ct
io

n
w

ith
 th

e
B
a
s
i
c

an
no

ta
tio

n.
If

th
e

en
um

er
at

ed
 ty

pe
 is

 n
ot

sp

ec
ifi

ed
 o

r
th

e
En

um
er

at
ed

an

no
ta

tio
n

is
 n

ot
 u

se
d,

 th
e

en
um

er
at

ed
 ty

pe
 is

 a
ss

um
ed

to

 b
e
O
R
D
I
N
A
L

.

@
M
a
n
y
T
o
O
n
e

D
ef

in
es

 a
 s

in
gl

e-
va

lu
ed

M

ET
H

O
D

,
C

la
ss

 ta
rg

et
En

tit
y(

)
vo

id
.c

la
ss

Th
e

en
tit

y
cl

as
s

th
at

 is
 th

e
as

so
ci

at
io

n
to

 a
no

th
er

 e
nt

ity

FI
EL

D
ta

rg
et

 o
f t

he
 a

ss
oc

ia
tio

n.
cl

as
s

th
at

 h
as

 m
an

y-
to

-o
ne

C

as
ca

de
Ty

pe
[]

{}

Th
e

op
er

at
io

ns
 th

at
 m

us
t b

e
m

ul
tip

lic
ity

.
ca

sc
ad

e(
)

ca
sc

ad
ed

 to
 th

e
ta

rg
et

 o
f t

he

It
is

 n
ot

 n
or

m
al

ly
 n

ec
es

sa
ry

as

so
ci

at
io

n.
 P

os
si

bl
e

va
lu

es

to
 s

pe
ci

fy
 th

e
ta

rg
et

 e
nt

ity

ar
e:

 A
LL

, P
ER

SI
ST

, M
ER

G
E,

ex

pl
ic

itl
y,

 s
in

ce
 it

 c
an

 u
su

al
ly

R

EM
O

VE
, R

EF
R

ES
H

. A
L
L

is

be
 in

fe
rr

ed
 fr

om
 th

e
ty

pe
 o

f
eq

ui
va

le
nt

 to
 th

e
co

nj
un

ct
io

n
th

e
ob

je
ct

 b
ei

ng
 r

ef
er

en
ce

d.
of

 P
E
R
S
I
S
T

, M
E
R
G
E

,
R
E
M
O
V
E

, a
nd

 R
E
F
R
E
S
H

.
Fe

tc
hT

yp
e

fe
tc

h(
)

EA
G

ER
W

he
th

er
 th

e
va

lu
e

of
 th

e
fie

ld
 o

r
pr

op
er

ty
 s

ho
ul

d
be

la

zi
ly

 lo
ad

ed
 o

r
m

us
t b

e
ea

ge
rly

 fe
tc

he
d.

 T
he

 E
A
G
E
R

st
ra

te
gy

 is
 a

 r
eq

ui
re

m
en

t,
th

e
L
A
Z
Y

st
ra

te
gy

 is
 a

 h
in

t t
o

th
e

pe
rs

is
te

nc
e

pr
ov

id
er

ru

nt
im

e.
b

oo
le

an
 o

pt
io

na
l(

)
tr

ue
W

he
th

er
 th

e
as

so
ci

at
io

n
is

op

tio
na

l.
If

fa
ls

e
th

en
 a

 n
on

-
nu

ll
re

la
tio

ns
hi

p
m

us
t

al
w

ay
s

ex
is

t.

25_785415 appb.qxp 6/5/06 7:06 PM Page 630

(c
on

tin
ue

d)

N
A

M
E

U
S

E
TA

R
G

ET
M

E
M

B
E

R
S

D
E

FA
U

LT
D

ES
C

R
IP

TI
O

N

@
O
n
e
T
o
O
n
e

D
ef

in
es

 a
 s

in
gl

e-
va

lu
ed

M

ET
H

O
D

,
C

la
ss

 ta
rg

et
En

tit
y(

)
vo

id
.c

la
ss

Th
e

en
tit

y
cl

as
s

th
at

 is
 th

e
as

so
ci

at
io

n
to

 a
no

th
er

FI

EL
D

ta
rg

et
 o

f t
he

 a
ss

oc
ia

tio
n.

en
tit

y
th

at
 h

as
 o

ne
-t

o-
on

e
C

as
ca

de
Ty

pe
[]

{}

Th
e

op
er

at
io

ns
 th

at
 m

us
t b

e
m

ul
tip

lic
ity

.
ca

sc
ad

e(
)

ca
sc

ad
ed

 to
 th

e
ta

rg
et

 o
f t

he

It
is

 n
ot

 n
or

m
al

ly
 n

ec
es

sa
ry

as

so
ci

at
io

n.
 P

os
si

bl
e

va
lu

es

to
 s

pe
ci

fy
 th

e
as

so
ci

at
ed

ar

e:
 A

LL
, P

ER
SI

ST
, M

ER
G

E,

ta
rg

et
 e

nt
ity

 e
xp

lic
itl

y,
 s

in
ce

R

EM
O

VE
, R

EF
R

ES
H

. A
L
L

is

it
ca

n
us

ua
lly

 b
e

in
fe

rr
ed

eq

ui
va

le
nt

 to
 th

e
co

nj
un

ct
io

n
fr

om
 th

e
ty

pe
 o

f t
he

 o
bj

ec
t

of
 P
E
R
S
I
S
T

, M
E
R
G
E

,
be

in
g

re
fe

re
nc

ed
.

R
E
M
O
V
E

, a
nd

 R
E
F
R
E
S
H

.
Fe

tc
hT

yp
e

fe
tc

h(
)

EA
G

ER
W

he
th

er
 th

e
va

lu
e

of
 th

e
fie

ld
 o

r
pr

op
er

ty
 s

ho
ul

d
be

la

zi
ly

 lo
ad

ed
 o

r
m

us
t b

e
ea

ge
rly

 fe
tc

he
d.

 T
he

 E
A
G
E
R

st
ra

te
gy

 is
 a

 r
eq

ui
re

m
en

t,
th

e
L
A
Z
Y

st
ra

te
gy

 is
 a

 h
in

t t
o

th
e

pe
rs

is
te

nc
e

pr
ov

id
er

ru

nt
im

e.
b

oo
le

an
 o

pt
io

na
l(

)
tr

ue
W

he
th

er
 th

e
as

so
ci

at
io

n
is

op

tio
na

l.
If

fa
ls

e
th

en
 a

 n
on

-
nu

ll
re

la
tio

ns
hi

p
m

us
t

al
w

ay
s

ex
is

t.
St

ri
ng

 m
ap

pe
dB

y(
)

Th
e

fie
ld

 th
at

 o
w

ns
 th

e
re

la
tio

ns
hi

p.
 O

nl
y

sp
ec

ifi
ed

on

 th
e

in
ve

rs
e

(n
on

ow
ni

ng
)

si
de

 o
f t

he
 a

ss
oc

ia
tio

n. (c
on

tin
ue

d)

25_785415 appb.qxp 6/5/06 7:06 PM Page 631

(c
on

tin
ue

d)

N
A

M
E

U
S

E
TA

R
G

ET
M

E
M

B
E

R
S

D
E

FA
U

LT
D

ES
C

R
IP

TI
O

N

@
O
n
e
T
o
M
a
n
y

D
ef

in
es

 a
 m

an
y-

va
lu

ed

M
ET

H
O

D
,

C
la

ss
 ta

rg
et

En
tit

y(
)

vo
id

.c
la

ss
Th

e
en

tit
y

cl
as

s
th

at
 is

 th
e

as
so

ci
at

io
n

w
ith

 o
ne

-t
o-

FI
EL

D
ta

rg
et

 o
f t

he
 a

ss
oc

ia
tio

n.

m
an

y
m

ul
tip

lic
ity

.
(T

he
 p

ar
am

et
er

iz
ed

 ty
pe

 o
f

th
e
C
o
l
l
e
c
t
i
o
n

w
he

n
de

fin
ed

 u
si

ng
 g

en
er

ic
s.

)
C

as
ca

de
Ty

pe
[]

{}

Th
e

op
er

at
io

ns
 th

at
 m

us
t b

e
ca

sc
ad

e(
)

ca
sc

ad
ed

 to
 th

e
ta

rg
et

 o
f t

he

as
so

ci
at

io
n.

 P
os

si
bl

e
va

lu
es

ar

e:
 A

LL
, P

ER
SI

ST
, M

ER
G

E,

R
EM

O
VE

, R
EF

R
ES

H
. A
L
L

is

eq
ui

va
le

nt
 to

 th
e

co
nj

un
ct

io
n

of
 P
E
R
S
I
S
T

, M
E
R
G
E

,
R
E
M
O
V
E

, a
nd

 R
E
F
R
E
S
H

.
Fe

tc
hT

yp
e

fe
tc

h(
)

LA
ZY

W
he

th
er

 th
e

va
lu

e
of

 th
e

fie
ld

 o
r

pr
op

er
ty

 s
ho

ul
d

be

la
zi

ly
 lo

ad
ed

 o
r

m
us

t b
e

ea
ge

rly
 fe

tc
he

d.
 T

he
 E
A
G
E
R

st
ra

te
gy

 is
 a

 r
eq

ui
re

m
en

t,
th

e
L
A
Z
Y

st
ra

te
gy

 is
 a

 h
in

t t
o

th
e

pe
rs

is
te

nc
e

pr
ov

id
er

ru

nt
im

e.
St

ri
ng

 m
ap

pe
dB

y(
)

“”
Th

e
fie

ld
 th

at
 o

w
ns

 th
e

re
la

tio
ns

hi
p.

 R
eq

ui
re

d
un

le
ss

 th
e

re
la

tio
ns

hi
p

is

un
id

ire
ct

io
na

l.

25_785415 appb.qxp 6/5/06 7:06 PM Page 632

(c
on

tin
ue

d)

N
A

M
E

U
S

E
TA

R
G

ET
M

E
M

B
E

R
S

D
E

FA
U

LT
D

ES
C

R
IP

TI
O

N

@
J
o
i
n
T
a
b
l
e

U
se

d
in

 th
e

m
ap

pi
ng

 o
f

M
ET

H
O

D
,

St
ri

ng
 n

am
e(

)
“”

Th
e

na
m

e
of

 th
e

jo
in

 ta
bl

e.
as

so
ci

at
io

ns
 a

nd
 s

pe
ci

fie
d

on

FI
EL

D
th

e
ow

ni
ng

 s
id

e
of

 a
 m

an
y-

to
-

St
ri

ng
 c

at
al

og
()

“”

Th
e

ca
ta

lo
g

of
 th

e
ta

bl
e.

m
an

y
as

so
ci

at
io

n,
 o

r
in

 a

St
ri

ng
 s

ch
em

a(
)

“”
Th

e
sc

he
m

a
of

 th
e

ta
bl

e.
un

id
ire

ct
io

na
l o

ne
-t

o-
m

an
y

Jo
in

C
ol

um
n[

]
{}

Th
e

fo
re

ig
n

ke
y

co
lu

m
ns

 o
f

as
so

ci
at

io
n.

jo

in
C

ol
um

ns
()

th
e

jo
in

 ta
bl

e
w

hi
ch

If

th
e
J
o
i
n
T
a
b
l
e

an
no

ta
tio

n
re

fe
re

nc
e

th
e

pr
im

ar
y

ta
bl

e
is

 m
is

si
ng

, t
he

 d
ef

au
lt

va
lu

es

of
 th

e
en

tit
y

ow
ni

ng
 th

e
of

 th
e

an
no

ta
tio

n
el

em
en

ts

as
so

ci
at

io
n

(i
.e

.,
th

e
ow

ni
ng

ap

pl
y.

si
de

 o
f t

he
 a

ss
oc

ia
tio

n)
.

Jo
in

C
ol

um
n[

]
{}

Th
e

fo
re

ig
n

ke
y

co
lu

m
ns

 o
f

in
ve

rs
eJ

oi
nC

ol
um

ns
()

th
e

jo
in

 ta
bl

e
w

hi
ch

 r
ef

er
-

en
ce

 th
e

pr
im

ar
y

ta
bl

e
of

 th
e

en
tit

y
th

at
 d

oe
s

no
t o

w
n

th
e

as
so

ci
at

io
n

(i
.e

.,
Th

e
in

ve
rs

e
si

de
 o

f t
he

 a
ss

oc
ia

tio
n)

.
U

ni
qu

eC
on

st
ra

in
t[

]
{}

U
ni

qu
e

co
ns

tr
ai

nt
s

th
at

 a
re

un

iq
ue

C
on

st
ra

in
ts

to
 b

e
pl

ac
ed

 o
n

th
e

ta
bl

e.

Th
es

e
ar

e
on

ly
 u

se
d

if
ta

bl
e

ge
ne

ra
tio

n
is

 in
 e

ffe
ct

.

(c
on

tin
ue

d)

25_785415 appb.qxp 6/5/06 7:06 PM Page 633

(c
on

tin
ue

d)

N
A

M
E

U
S

E
TA

R
G

ET
M

E
M

B
E

R
S

D
E

FA
U

LT
D

ES
C

R
IP

TI
O

N

@
M
a
n
y
T
o
M
a
n
y

D
ef

in
es

 a
 m

an
y-

va
lu

ed

M
ET

H
O

D
,

C
la

ss
 ta

rg
et

En
tit

y(
)

vo
id

.c
la

ss
Th

e
en

tit
y

cl
as

s
th

at
 is

 th
e

as
so

ci
at

io
n

w
ith

 m
an

y-
to

-
FI

EL
D

ta
rg

et
 o

f t
he

 a
ss

oc
ia

tio
n.

m

an
y

m
ul

tip
lic

ity
.

(T
he

 p
ar

am
et

er
iz

ed
 ty

pe
 o

f
If

th
e
C
o
l
l
e
c
t
i
o
n

is
 d

ef
in

ed

th
e

C
ol

le
ct

io
n

w
he

n
de

fin
ed

us

in
g

ge
ne

ric
s

to
 s

pe
ci

fy
 th

e
us

in
g

ge
ne

ric
s.

)
el

em
en

t t
yp

e,
 th

e
as

so
ci

at
ed

C

as
ca

de
Ty

pe
[]

{}

Th
e

op
er

at
io

ns
 th

at
 m

us
t b

e
ta

rg
et

 e
nt

ity
 c

la
ss

 d
oe

s
no

t
ca

sc
ad

e(
)

ca
sc

ad
ed

 to
 th

e
ta

rg
et

 o
f t

he

ne
ed

 to
 b

e
sp

ec
ifi

ed
; o

th
er

-
as

so
ci

at
io

n.
 P

os
si

bl
e

va
lu

es

w
is

e
it

m
us

t b
e

sp
ec

ifi
ed

.
ar

e:
 A

LL
, P

ER
SI

ST
, M

ER
G

E,

Ev
er

y
m

an
y-

to
-m

an
y

as
so

ci
a-

R
EM

O
VE

, R
EF

R
ES

H
. A

LL
 is

tio

n
ha

s
tw

o
si

de
s,

 th
e

ow
ni

ng

eq
ui

va
le

nt
 to

 th
e

co
nj

un
ct

io
n

si
de

 a
nd

 th
e

no
no

w
ni

ng
, o

r
of

 P
E
R
S
I
S
T

, M
E
R
G
E

,
in

ve
rs

e,
 s

id
e.

 T
he

 jo
in

 ta
bl

e
is

R
E
M
O
V
E

, a
nd

 R
E
F
R
E
S
H

.
sp

ec
ifi

ed
 o

n
th

e
ow

ni
ng

 s
id

e.

Fe
tc

hT
yp

e
fe

tc
h(

)
LA

ZY
W

he
th

er
 th

e
va

lu
e

of
 th

e
If

th
e

as
so

ci
at

io
n

is
 b

id
ire

c-
fie

ld
 o

r
pr

op
er

ty
 s

ho
ul

d
be

tio

na
l,

ei
th

er
 s

id
e

m
ay

 b
e

la
zi

ly
 lo

ad
ed

 o
r

m
us

t b
e

de
si

gn
at

ed
 a

s
th

e
ow

ni
ng

ea

ge
rly

 fe
tc

he
d.

 T
he

 E
A
G
E
R

si
de

.
st

ra
te

gy
 is

 a
 r

eq
ui

re
m

en
t,

th
e
L
A
Z
Y

st
ra

te
gy

 is
 a

 h
in

t
to

 th
e

pe
rs

is
te

nc
e

pr
ov

id
er

ru

nt
im

e.
St

ri
ng

 m
ap

pe
dB

y(
)

“”
Th

e
fie

ld
 th

at
 o

w
ns

 th
e

re
la

tio
ns

hi
p.

 R
eq

ui
re

d
un

le
ss

 th
e

re
la

tio
ns

hi
p

is

un
id

ire
ct

io
na

l.

25_785415 appb.qxp 6/5/06 7:06 PM Page 634

(c
on

tin
ue

d)

N
A

M
E

U
S

E
TA

R
G

ET
M

E
M

B
E

R
S

D
E

FA
U

LT
D

ES
C

R
IP

TI
O

N

@
M
a
p
K
e
y

Sp
ec

ifi
es

 th
e

m
ap

 k
ey

 fo
r

M
ET

H
O

D
,

St
ri

ng
 n

am
e(

)
“”

D
es

ig
na

te
s

th
e

na
m

e
of

 th
e

as
so

ci
at

io
ns

 o
f t

yp
e
j
a
v
a

FI
EL

D
pe

rs
is

te
nt

 fi
el

d
or

 p
ro

pe
rt

y
.
u
t
i
l
.
M
a
p

.
of

 th
e

as
so

ci
at

ed
 e

nt
ity

 th
at

is
 u

se
d

as
 th

e
m

ap
 k

ey
.

If
na

m
e

is
 n

ot
 s

pe
ci

fie
d,

 th
e

pr
im

ar
y

ke
y

of
 th

e
as

so
ci

at
ed

en
tit

y
is

 u
se

d
as

 th
e

m
ap

ke
y.

 If
 th

e
pr

im
ar

y
ke

y
is

 a
co

m
po

si
te

 p
rim

ar
y

ke
y

an
d

is
 m

ap
pe

d
as

 I
d
C
l
a
s
s

, a
n

in
st

an
ce

 o
f t

he
 p

rim
ar

y
ke

y
cl

as
s

is
 u

se
d

as
 th

e
ke

y.
If

a
pe

rs
is

te
nt

 fi
el

d
or

pr
op

er
ty

 o
th

er
 th

an
 th

e
pr

im
ar

y
ke

y
is

 u
se

d
as

 a
m

ap
 k

ey
, t

he
n

it
is

 e
xp

ec
te

d
to

 h
av

e
a

un
iq

ue
ne

ss
co

ns
tr

ai
nt

 a
ss

oc
ia

te
d

w
ith

 it
.

(c
on

tin
ue

d)

25_785415 appb.qxp 6/5/06 7:06 PM Page 635

(c
on

tin
ue

d)

N
A

M
E

U
S

E
TA

R
G

ET
M

E
M

B
E

R
S

D
E

FA
U

LT
D

ES
C

R
IP

TI
O

N

@
O
r
d
e
r
B
y

Sp
ec

ifi
es

 th
e

or
de

rin
g

of
 th

e
M

ET
H

O
D

,
St

ri
ng

 v
al

ue
()

“”
Th

e
sy

nt
ax

 o
f v

al
ue

 is
:

el
em

en
ts

 o
f a

 c
ol

le
ct

io
n-

FI
EL

D
o
r
d
e
r
b
y
:
:
=

va
lu

ed
 a

ss
oc

ia
tio

n
at

 th
e

o
r
d
e
r
b
y
_
i
t
e
m

po
in

t w
he

n
th

e
as

so
ci

at
io

n
[
,
o
r
d
e
r
b
y
_
i
t
e
m
]
*

is
 r

et
rie

ve
d.

o
r
d
e
r
b
y
_
i
t
e
m
:
:
=

p
r
o
p
e
r
t
y
_
o
r
_
f
i
e
l
d
_
n
a
m

e
[
A
S
C
|
D
E
S
C
]

If
A
S
C

or
 D
E
S
C

is
 n

ot
sp

ec
ifi

ed
, A
S
C

(a
sc

en
di

ng
or

de
r)

 is
 a

ss
um

ed
.

If
th

e
or

de
rin

g
el

em
en

t i
s

no
t s

pe
ci

fie
d,

 o
rd

er
in

g
by

th
e

pr
im

ar
y

ke
y

of
 th

e
as

so
ci

at
ed

 e
nt

ity
 is

as
su

m
ed

. T
he

 p
ro

pe
rt

y
or

fie
ld

 n
am

e
m

us
t c

or
re

sp
on

d
to

 th
at

 o
f a

 p
er

si
st

en
t

pr
op

er
ty

 o
r

fie
ld

 o
f t

he
as

so
ci

at
ed

 c
la

ss
. T

he
pr

op
er

tie
s

or
 fi

el
ds

 u
se

d
in

th
e

or
de

rin
g

m
us

t
co

rr
es

po
nd

 to
 c

ol
um

ns
 fo

r
w

hi
ch

 c
om

pa
ris

on
 o

pe
ra

to
rs

ar
e

su
pp

or
te

d.

25_785415 appb.qxp 6/5/06 7:06 PM Page 636

(c
on

tin
ue

d)

N
A

M
E

U
S

E
TA

R
G

ET
M

E
M

B
E

R
S

D
E

FA
U

LT
D

ES
C

R
IP

TI
O

N

@
I
n
h
e
r
i
t
a
n
c
e

D
ef

in
es

 th
e

in
he

rit
an

ce

TY
PE

In
he

ri
ta

nc
eT

yp
e

SI
N

G
LE

_
Th

e
in

he
rit

an
ce

 s
tr

at
eg

y
to

st

ra
te

gy
 fo

r
an

 e
nt

ity
 c

la
ss

st

ra
te

gy
()

TA

B
LE

us
e

fo
r

th
e

en
tit

y
in

he
rit

an
ce

hi

er
ar

ch
y.

 S
pe

ci
fie

d
on

 th
e

hi
er

ar
ch

y.
 P

os
si

bl
e

va
lu

es

en
tit

y
cl

as
s

th
at

 is
 th

e
ro

ot

ar
e:

 S
IN

G
LE

_T
A

B
LE

, J
O

IN
ED

,
of

 h
ie

ra
rc

hy
.

TA
B

LE
_P

ER
_C

LA
SS

An
 in

he
rit

an
ce

 s
tr

at
eg

y
sp

ec
ifi

ed
 b

y
an

 e
nt

ity
 c

la
ss

re

m
ai

ns
 in

 e
ffe

ct
 fo

r t
he

 e
nt

i-
tie

s
th

at
 a

re
 it

s
su

bc
la

ss
es

un

le
ss

 a
no

th
er

 e
nt

ity
 c

la
ss

fu

rt
he

r
do

w
n

in
 th

e
cl

as
s

hi
er

ar
ch

y
sp

ec
ifi

es
 a

 d
iff

er
en

t
in

he
rit

an
ce

 s
tr

at
eg

y.
If

no
 in

he
rit

an
ce

 ty
pe

 is
 s

pe
c-

ifi
ed

, t
he

 S
I
N
G
L
E
_
T
A
B
L
E

m
ap

pi
ng

 s
tr

at
eg

y
is

 u
se

d.

(c
on

tin
ue

d)

25_785415 appb.qxp 6/5/06 7:06 PM Page 637

(c
on

tin
ue

d)

N
A

M
E

U
S

E
TA

R
G

ET
M

E
M

B
E

R
S

D
E

FA
U

LT
D

ES
C

R
IP

TI
O

N

@
D
i
s
c
r
i
m
i
n
a
t
o
r

D
ef

in
es

 th
e

di
sc

rim
in

at
or

TY

PE
St

ri
ng

 n
am

e(
)

“”
Th

e
na

m
e

of
 c

ol
um

n
to

 b
e

C
o
l
u
m
n

co
lu

m
n

fo
r

th
e
S
I
N
G
L
E
_

us
ed

 fo
r

th
e

di
sc

rim
in

at
or

,
T
A
B
L
E

an
d
J
O
I
N
E
D

in
he

ri-
de

fa
ul

ts
 to

 “
D
T
Y
P
E
”

.
ta

nc
e

m
ap

pi
ng

 s
tr

at
eg

ie
s.

D
is

cr
im

in
at

or
Ty

pe

ST
R

IN
G

Th
e

ty
pe

 o
f o

bj
ec

t/
co

lu
m

n
to

Th

e
st

ra
te

gy
 a

nd
 th

e
di

s-
us

e
as

 a
 c

la
ss

 d
is

cr
im

in
at

or
.

cr
im

in
at

or
 c

ol
um

n
ar

e
on

ly

St
ri

ng
 c

ol
um

n
“”

Th
e

SQ
L

fr
ag

m
en

t t
ha

t i
s

sp
ec

ifi
ed

 in
 th

e
ro

ot
 o

f a
n

D
ef

in
iti

on
()

us

ed
 w

he
n

ge
ne

ra
tin

g
th

e
en

tit
y

cl
as

s
hi

er
ar

ch
y

or

D
D

L
fo

r
th

e
di

sc
rim

in
at

or

su
bh

ie
ra

rc
hy

 in
 w

hi
ch

 a

co
lu

m
n.

di

ffe
re

nt
 in

he
rit

an
ce

 s
tr

at
eg

y
in

t l
en

gt
h(

)
31

Th
e

co
lu

m
n

le
ng

th
 fo

r
is

 a
pp

lie
d.

st

rin
g-

ba
se

d
di

sc
rim

in
at

or

Th
e
D
i
s
c
r
i
m
i
n
a
t
o
r
C
o
l
u
m
n

ty
pe

s.
 Ig

no
re

d
fo

r
ot

he
r

an
no

ta
tio

n
ca

n
be

 s
pe

ci
fie

d
di

sc
rim

in
at

or
 ty

pe
s.

on
 a

n
en

tit
y

cl
as

s
(i

nc
lu

di
ng

on

 a
n

ab
st

ra
ct

 e
nt

ity
 c

la
ss

).
 .

If
th

e
an

no
ta

tio
n

is
 m

is
si

ng
,

an
d

a
di

sc
rim

in
at

or
 c

ol
um

n
is

 r
eq

ui
re

d,
 th

e
na

m
e

of
 th

e
di

sc
rim

in
at

or
 c

ol
um

n
de

fa
ul

ts
 to

 “
D
T
Y
P
E
”

an
d

th
e

di
sc

rim
in

at
or

 ty
pe

 to
 S
T
R
I
N
G

.

25_785415 appb.qxp 6/5/06 7:06 PM Page 638

(c
on

tin
ue

d)

N
A

M
E

U
S

E
TA

R
G

ET
M

E
M

B
E

R
S

D
E

FA
U

LT
D

ES
C

R
IP

TI
O

N

@
D
i
s
c
r
i
m
i
n
a
t
o
r

Sp
ec

ifi
es

 th
e

va
lu

e
of

 th
e

TY
PE

St
ri

ng
 v

al
ue

()
Th

e
va

lu
e

th
at

 in
di

ca
te

s
V
a
l
u
e

di
sc

rim
in

at
or

 c
ol

um
n

fo
r

th
at

 th
e

ro
w

 is
 a

n
en

tit
y

of

en
tit

ie
s

of
 th

e
gi

ve
n

ty
pe

.
th

e
an

no
ta

te
d

en
tit

y
ty

pe
.

Th
e
D
i
s
c
r
i
m
i
n
a
t
o
r
V
a
l
u
e

an
no

ta
tio

n
ca

n
on

ly
 b

e
sp

ec
ifi

ed
 o

n
a

co
nc

re
te

en

tit
y

cl
as

s.

If
th

e
D
i
s
c
r
i
m
i
n
a
t
o
r
V
a
l
u
e

an
no

ta
tio

n
is

 n
ot

 s
pe

ci
fie

d
an

d
a

di
sc

rim
in

at
or

 c
ol

um
n

is
 u

se
d,

 a
 p

ro
vi

de
r-

sp
ec

ifi
c

fu
nc

tio
n

w
ill

 b
e

us
ed

 to

ge
ne

ra
te

 a
 v

al
ue

 re
pr

es
en

tin
g

th
e

en
tit

y
ty

pe
.

Th
e

in
he

rit
an

ce
 s

tr
at

eg
y

an
d

th
e

di
sc

rim
in

at
or

 c
ol

um
n

ar
e

on
ly

 s
pe

ci
fie

d
in

 th
e

ro
ot

 o
f

an
 e

nt
ity

 c
la

ss
 h

ie
ra

rc
hy

 o
r

su
bh

ie
ra

rc
hy

 in
 w

hi
ch

 a

di
ffe

re
nt

 in
he

rit
an

ce
 s

tr
at

eg
y

is
 a

pp
lie

d.
 T

he
 d

is
cr

im
in

at
or

va

lu
e,

 if
 n

ot
 d

ef
au

lte
d,

 s
ho

ul
d

be
 s

pe
ci

fie
d

fo
r

ea
ch

 e
nt

ity

cl
as

s
in

 th
e

hi
er

ar
ch

y.

(c
on

tin
ue

d)

25_785415 appb.qxp 6/5/06 7:06 PM Page 639

(c
on

tin
ue

d)

N
A

M
E

U
S

E
TA

R
G

ET
M

E
M

B
E

R
S

D
E

FA
U

LT
D

ES
C

R
IP

TI
O

N

@
P
r
i
m
a
r
y
K
e
y

Sp
ec

ifi
es

 a
 p

rim
ar

y
ke

y
TY

PE
,

St
ri

ng
 n

am
e(

)
“”

Th
e

na
m

e
of

 th
e

pr
im

ar
y

ke
y

J
o
i
n
C
o
l
u
m
n

co
lu

m
n

th
at

 is
 u

se
d

as
 a

M

ET
H

O
D

,
co

lu
m

n
of

 th
e

cu
rr

en
t t

ab
le

.
fo

re
ig

n
ke

y
to

 jo
in

 to
 a

no
th

er

FI
EL

D
St

ri
ng

 r
ef

er
en

ce
d

“”
Th

e
na

m
e

of
 th

e
pr

im
ar

y
ke

y
ta

bl
e.

C
ol

um
nN

am
e(

)
co

lu
m

n
of

 th
e

ta
bl

e
be

in
g

Th
e
P
r
i
m
a
r
y
K
e
y
J
o
i
n

jo
in

ed
 to

.
C
o
l
u
m
n

an
no

ta
tio

n
is

 u
se

d
St

ri
ng

 c
ol

um
n

“”
Th

e
SQ

L
fr

ag
m

en
t t

ha
t i

s
to

 jo
in

 th
e

pr
im

ar
y

ta
bl

e
of

D

ef
in

iti
on

()
us

ed
 w

he
n

ge
ne

ra
tin

g
th

e
an

 e
nt

ity
 s

ub
cl

as
s

in
 th

e
D

D
L

fo
r

th
e

co
lu

m
n.

 T
hi

s
J
O
I
N
E
D

m
ap

pi
ng

 s
tr

at
eg

y
sh

ou
ld

 n
ot

 b
e

sp
ec

ifi
ed

 fo
r

a
to

 th
e

pr
im

ar
y

ta
bl

e
of

 it
s

O
n
e
T
o
O
n
e

pr
im

ar
y

ke
y

su
pe

rc
la

ss
; i

t i
s

us
ed

 w
ith

 a

as
so

ci
at

io
n.

S
e
c
o
n
d
a
r
y
T
a
b
l
e

an
no

ta
-

tio
n

to
 jo

in
 a

 s
ec

on
da

ry
 ta

bl
e

to
 a

 p
rim

ar
y

ta
bl

e;
 a

nd
 it

m

ay
 b

e
us

ed
 in

 a
 O
n
e
T
o
O
n
e

m
ap

pi
ng

 in
 w

hi
ch

 th
e

pr
i-

m
ar

y
ke

y
of

 th
e

re
fe

re
nc

in
g

en
tit

y
is

 u
se

d
as

 a
 fo

re
ig

n
ke

y
to

 th
e

re
fe

re
nc

ed
 e

nt
ity

.
If

no
 P
r
i
m
a
r
y
K
e
y
J
o
i
n

C
o
l
u
m
n

an
no

ta
tio

n
is

sp

ec
ifi

ed
 fo

r a
 s

ub
cl

as
s

in
 th

e
J
O
I
N
E
D

m
ap

pi
ng

 s
tr

at
eg

y,

th
e

fo
re

ig
n

ke
y

co
lu

m
ns

 a
re

as

su
m

ed
 to

 h
av

e
th

e
sa

m
e

na
m

es
 a

s
th

e
pr

im
ar

y
ke

y
co

lu
m

ns
 o

f t
he

 p
rim

ar
y

ta
bl

e
of

 th
e

su
pe

rc
la

ss
.

@
P
r
i
m
a
r
y
K
e
y

G
ro

up
s
P
r
i
m
a
r
y
K
e
y
J
o
i
n

TY
PE

Pr
im

ar
yK

ey
Jo

in
J
o
i
n
C
o
l
u
m
n
s

C
o
l
u
m
n

an
no

ta
tio

ns
.

C
ol

um
n[

]
va

lu
e(

)

25_785415 appb.qxp 6/5/06 7:06 PM Page 640

(c
on

tin
ue

d)

N
A

M
E

U
S

E
TA

R
G

ET
M

E
M

B
E

R
S

D
E

FA
U

LT
D

ES
C

R
IP

TI
O

N

@
E
m
b
e
d
d
a
b
l
e

Sp
ec

ifi
es

 a
 c

la
ss

 w
ho

se

TY
PE

in
st

an
ce

s
ar

e
st

or
ed

 a
s

an

in
tr

in
si

c
pa

rt
 o

f a
n

ow
ni

ng

en
tit

y
an

d
sh

ar
e

th
e

id
en

tit
y

of
 th

e
en

tit
y.

 E
ac

h
of

 th
e

pe
rs

is
te

nt
 p

ro
pe

rt
ie

s
or

 fi
el

ds

of
 th

e
em

be
dd

ed
 o

bj
ec

t i
s

m
ap

pe
d

to
 th

e
da

ta
ba

se

ta
bl

e
fo

r
th

e
en

tit
y.

O

nl
y
B
a
s
i
c

, C
o
l
u
m
n

, L
o
b

,
T
e
m
p
o
r
a
l

, a
nd

 E
n
u
m
e
r
a
t
e
d

m
ap

pi
ng

 a
nn

ot
at

io
ns

 m
ay

po

rt
ab

ly
 b

e
us

ed
 to

 m
ap

 th
e

pe
rs

is
te

nt
 fi

el
ds

 o
r

pr
op

er
tie

s
of

 c
la

ss
es

 a
nn

ot
at

ed
 a

s
E
m
b
e
d
d
a
b
l
e

.

@
E
m
b
e
d
d
e
d

Sp
ec

ifi
es

 a
 p

er
si

st
en

t f
ie

ld
 o

r
M

ET
H

O
D

,
pr

op
er

ty
 o

f a
n

en
tit

y
w

ho
se

FI

EL
D

va
lu

e
is

 a
n

in
st

an
ce

 o
f a

n
em

be
dd

ab
le

 c
la

ss
.

Th
e
A
t
t
r
i
b
u
t
e
O
v
e
r
r
i
d
e

an
d/

 o
r
A
t
t
r
i
b
u
t
e

O
v
e
r
r
i
d
e
s

an
no

ta
tio

ns

m
ay

 b
e

us
ed

 to
 o

ve
rr

id
e

th
e

co
lu

m
n

m
ap

pi
ng

s
de

cl
ar

ed

w
ith

in
 th

e
em

be
dd

ab
le

 c
la

ss
,

w
hi

ch
 a

re
 m

ap
pe

d
to

 th
e

en
tit

y
ta

bl
e.

(c
on

tin
ue

d)

25_785415 appb.qxp 6/5/06 7:06 PM Page 641

(c
on

tin
ue

d)

N
A

M
E

U
S

E
TA

R
G

ET
M

E
M

B
E

R
S

D
E

FA
U

LT
D

ES
C

R
IP

TI
O

N

@
M
a
p
p
e
d

D
es

ig
na

te
s

a
cl

as
s

w
ho

se

TY
PE

S
u
p
e
r
c
l
a
s
s

m
ap

pi
ng

 in
fo

rm
at

io
n

is

ap
pl

ie
d

to
 th

e
en

tit
ie

s
th

at

in
he

rit
 fr

om
 it

. A
 m

ap
pe

d
su

pe
rc

la
ss

 h
as

 n
o

se
pa

ra
te

ta

bl
e

de
fin

ed
 fo

r
it.

A
cl

as
s

de
si

gn
at

ed
 w

ith
 th

is

an
no

ta
tio

n
ca

n
be

 m
ap

pe
d

in
 th

e
sa

m
e

w
ay

 a
s

an
 e

nt
ity

ex

ce
pt

 th
at

 th
e

m
ap

pi
ng

s
w

ill
 a

pp
ly

 o
nl

y
to

 it
s

su
b-

cl
as

se
s,

 s
in

ce
 n

o
ta

bl
e

ex
is

ts

fo
r

th
e

m
ap

pe
d

su
pe

rc
la

ss

its
el

f.
W

he
n

ap
pl

ie
d

to
 th

e
su

b-
cl

as
se

s
th

e
in

he
rit

ed

m
ap

pi
ng

s
w

ill
 a

pp
ly

 in
 th

e
co

nt
ex

t o
f t

he
 s

ub
cl

as
s

ta
bl

es
. M

ap
pi

ng
 in

fo
rm

at
io

n
m

ay
 b

e
ov

er
rid

de
n

in
 s

uc
h

su
bc

la
ss

es
 b

y
us

in
g

th
e

At
tr

ib
ut

eO
ve

rr
id

e
an

no
ta

tio
n.

25_785415 appb.qxp 6/5/06 7:06 PM Page 642

(c
on

tin
ue

d)

N
A

M
E

U
S

E
TA

R
G

ET
M

E
M

B
E

R
S

D
E

FA
U

LT
D

ES
C

R
IP

TI
O

N

@
S
e
q
u
e
n
c
e

D
ef

in
es

 a
 p

rim
ar

y
ke

y
ge

ne
r-

TY
PE

,
St

ri
ng

 n
am

e(
)

“”
Th

e
ge

ne
ra

to
r

na
m

e
G
e
n
e
r
a
t
o
r

at
or

 th
at

 m
ay

 b
e

re
fe

re
nc

ed

M
ET

H
O

D
,

St
ri

ng
 s

eq
ue

nc
e

Th
e

na
m

e
of

 th
e

da
ta

ba
se

by

 n
am

e
w

he
n

a
ge

ne
ra

to
r

FI
EL

D
N

am
e(

)
se

qu
en

ce
 o

bj
ec

t f
ro

m
 w

hi
ch

el

em
en

t i
s

sp
ec

ifi
ed

 fo
r

th
e

to
 o

bt
ai

n
pr

im
ar

y
ke

y
va

lu
es

.
G
e
n
e
r
a
t
e
d
V
a
l
u
e

in
t i

ni
tia

lV
al

ue
()

0
Th

e
va

lu
e

fr
om

 w
hi

ch
 th

e
an

no
ta

tio
n.

se

qu
en

ce
 o

bj
ec

t i
s

to
 s

ta
rt

A

se
qu

en
ce

 g
en

er
at

or
 m

ay

ge
ne

ra
tin

g.

be
 s

pe
ci

fie
d

on
 th

e
en

tit
y

in
t a

llo
ca

tio
nS

iz
e(

)
50

Th
e

am
ou

nt
 to

 in
cr

em
en

t b
y

cl
as

s
or

 o
n

th
e

pr
im

ar
y

ke
y

w
he

n
al

lo
ca

tin
g

se
qu

en
ce

fie

ld
 o

r
pr

op
er

ty
. T

he
 s

co
pe

nu

m
be

rs
 fr

om
 th

e
of

 th
e

ge
ne

ra
to

r
na

m
e

is

se
qu

en
ce

.
gl

ob
al

 to
 th

e
pe

rs
is

te
nc

e
un

it
(a

cr
os

s
al

l g
en

er
at

or

ty
pe

s)
.

(c
on

tin
ue

d)

25_785415 appb.qxp 6/5/06 7:06 PM Page 643

(c
on

tin
ue

d)

N
A

M
E

U
S

E
TA

R
G

ET
M

E
M

B
E

R
S

D
E

FA
U

LT
D

ES
C

R
IP

TI
O

N

@
T
a
b
l
e

D
ef

in
es

 a
 p

rim
ar

y
ke

y
TY

PE
,

St
ri

ng
 n

am
e(

)
“”

A
un

iq
ue

 g
en

er
at

or
 n

am
e

G
e
n
e
r
a
t
o
r

ge
ne

ra
to

r
th

at
 m

ay
 b

e
M

ET
H

O
D

,
th

at
 c

an
 b

e
re

fe
re

nc
ed

 b
y

re
fe

re
nc

ed
 b

y
na

m
e

w
he

n
a

FI
EL

D
on

e
or

 m
or

e
cl

as
se

s
to

 b
e

ge
ne

ra
to

r e
le

m
en

t i
s

sp
ec

ifi
ed

th
e

ge
ne

ra
to

r
fo

r
ID

 v
al

ue
s.

fo
r

th
e
G
e
n
e
r
a
t
e
d
V
a
l
u
e

St
ri

ng
 ta

bl
e(

)
“”

N
am

e
of

 ta
bl

e
th

at
 s

to
re

s
an

no
ta

tio
n.

th

e
ge

ne
ra

te
d

ID
 v

al
ue

s.
A

ta
bl

e
ge

ne
ra

to
r

m
ay

 b
e

St
ri

ng
 c

at
al

og
()

Th
e

ca
ta

lo
g

of
 th

e
ta

bl
e.

sp
ec

ifi
ed

 o
n

th
e

en
tit

y
cl

as
s

St
ri

ng
 s

ch
em

a(
)

“”
Th

e
sc

he
m

a
of

 th
e

ta
bl

e.
or

 o
n

th
e

pr
im

ar
y

ke
y

fie
ld

St

ri
ng

 p
kC

ol
um

n
N

am
e

of
 th

e
pr

im
ar

y
ke

y
or

 p
ro

pe
rt

y.
 T

he
 s

co
pe

 o
f

N
am

e(
)

“”
co

lu
m

n
in

 th
e

ta
bl

e.
th

e
ge

ne
ra

to
r

na
m

e
is

 g
lo

ba
l

St
ri

ng
 v

al
ue

C
ol

um
n

N
am

e
of

 th
e

co
lu

m
n

th
at

to

 th
e

pe
rs

is
te

nc
e

un
it

N
am

e(
)

“”
st

or
es

 th
e

la
st

 v
al

ue

(a
cr

os
s

al
l g

en
er

at
or

 ty
pe

s)
.

ge
ne

ra
te

d.
St

ri
ng

 p
kC

ol
um

n
Th

e
pr

im
ar

y
ke

y
va

lu
e

in
 th

e
Va

lu
e(

)
“”

ge
ne

ra
to

r
ta

bl
e

th
at

di

st
in

gu
is

he
s

th
is

 s
et

 o
f

ge
ne

ra
te

d
va

lu
es

 fr
om

ot

he
rs

 th
at

 m
ay

 b
e

st
or

ed
 in

th
e

ta
bl

e.
in

t i
ni

tia
lV

al
ue

()

0
Th

e
in

iti
al

 v
al

ue
 to

 b
e

us
ed

w

he
n

al
lo

ca
tin

g
ID

 n
um

be
rs

fr
om

 th
e

ge
ne

ra
to

r.
in

t a
llo

ca
tio

nS
iz

e(
)

50
Th

e
am

ou
nt

 to
 in

cr
em

en
t b

y
w

he
n

al
lo

ca
tin

g
ID

 n
um

be
rs

fr
om

 th
e

ge
ne

ra
to

r.
U

ni
qu

eC
on

st
ra

in
t[

]
{}

U
ni

qu
e

co
ns

tr
ai

nt
s

th
at

 a
re

un

iq
ue

C
on

st
ra

in
ts

()

to
 b

e
pl

ac
ed

 o
n

th
e

ta
bl

e.

Th
es

e
ar

e
on

ly
 u

se
d

if
ta

bl
e

ge
ne

ra
tio

n
is

 in
 e

ffe
ct

. T
he

se
co

ns
tr

ai
nt

s
ap

pl
y

in
 a

dd
iti

on
to

 p
rim

ar
y

ke
y

co
ns

tr
ai

nt
s.

25_785415 appb.qxp 6/5/06 7:06 PM Page 644

Summary

In this appendix, we’ve given you a short introduction to Java annotations as
an alternative to writing XML descriptor files. We have also provided a com-
plete list of all annotations defined in the EJB 3.0 specification as a reference.

Annotations 645

25_785415 appb.qxp 6/5/06 7:06 PM Page 645

25_785415 appb.qxp 6/5/06 7:06 PM Page 646

647

Index

SYMBOLS
@ (at-sign marker in annotations),

594–595

A
aborting transactions, 288
abstract entities, 234
accessing

annotations, 595
entities, 138

ACID properties of transactions,
276–278

activation configuration properties
for message-driven beans,
178–182

activation of stateful beans, 95–100
Active Directory (Microsoft), 578
afterBegin() method, 317, 319
afterCompletion() method,

317–319
algorithms

just-in-time algorithm, 96
load balancers, 510
primary key generation

algorithm, 566

anatomy of enterprise beans, 68–71
Anderson, Ross (Security

Engineering), 322
annotations

accessing, 595
@ApplicationException, 606
@Around Invoke, 209, 605
@ (at-sign marker), 594–595
@AttributeOverride, 626
@AttributeOverrides, 626
backwards compatibility, 199
@Basic, 628
bean development, 77
beanInterface element, 208
beanName element, 208
business interface, 200–202
@Column, 621–622
computations, 594
@DeclareRoles, 606
defined, 593–594
@DenyAll, 348, 608
deployment descriptor files, 593,

596–597
deployment descriptors, 77–80
description element, 200, 208

26_785415 bindex.qxp 6/5/06 7:06 PM Page 647

Click here to purchase this book.

http://www.amazon.com/gp/product/0471785415/ref=sr_11_1/103-1174895-6545420?%5Fencoding=UTF8
jpiscitelli
cover

648 Index

annotations (continued)
@Discriminator, 638
@DiscriminatorColumn,

226–227
@DiscriminatorValue, 226–227,

639
@EJB, 207–208, 609
@EJBs, 609
@Embeddable, 641
@Embedded, 641
@EmbeddedId, 626
@Entity, 227, 612
@Entity Listeners, 612
@Enumerated, 630
example, 594
@ExcludeClassInterceptors,

605
@ExcludeDefaultInterceptors,

605
@ExcludeDefaultListeners,

612
@ExcludeSuperclassListeners,

612
@Flush Mode, 614
@Generated Value, 625
getAnnotation() method, 595
@Id, 625
@IdClass, 627
@Inheritance, 226, 637
@Init, 205, 600
@Interceptor, 209
@Interceptors, 209, 605
Java annotation facility, 598–599
@JoinColumn, 623–624
@JoinColumns, 624
@JoinTable, 633
@Lob, 629
@Local, 201, 601
@ManyToMany, 259, 634
@ManyToOne, 630
@MapKey, 635

mappedName element, 200
@MappedSuperclass, 232–234,

642
@MessageDriven, 176, 200, 602
message-driven beans, 602
name element, 200, 208
@NamedNativeQueries, 615
@NamedNativeQuery, 615
@NamedQueries, 614
@NamedQuery, 155, 614
@OneToMany, 247, 632
@OneToOne, 631
@OrderBy, 636
@PermitAll, 348, 608
@PersistenceContext, 208–209,

617
@PersistenceContexts, 617
@PersistenceUnit, 618
@PostActivate, 606
@PostConstruct, 605
@PostLoad, 613
@PostPersist, 612
@PostRemove, 613
@PostUpdate, 613
@PreDestroy, 605
@PrePassivate, 606
@PrePersist, 147–148, 612
@PreRemove, 613
@PreUpdate, 613
@PrimaryKeyJoinColumn, 640
@PrimaryKeyJoinColumns, 640
pros and cons, 599
@Remote, 201, 601
@Remove, 202–204, 601
@Resource, 205–207, 610
@Resources, 207, 610
@Retention, 595
@RolesAllowed, 347–348, 607
@RunAs, 608
@SecondaryTable, 620
@SecondaryTables, 621

26_785415 bindex.qxp 6/5/06 7:06 PM Page 648

Index 649

@SequenceGenerator, 643
session beans, 600–601
@SqlResultSetMapping, 616
@Stateful, 200, 600
@Stateless, 200, 600
@Table, 619
@TableGenerator, 644
@Target, 595
@Temporal, 629
@Timeout, 176, 606
@TransactionAttribute,

292, 604
@TransactionManagement, 604
@Transient, 627
@UniqueConstraints, 621
use of, 76
@Version, 628
XDoclet framework, 597–598

AOP (Aspect-Oriented
Programming), 210, 397–399

APIs (application programming
interfaces)

Common Client Interfaces (CCI),
439

Connector API
javax.resource Package,

442–443
javax.resource.cci

Package, 443–447
javax.resource.spi

Package, 443, 448–450
javax.resource.spi

.endpoint Package, 451
javax.resource.spi

.security Package,
451–452

javax.resource.spi
.work Package, 452–453

EIS-specific client interfaces,
439–440

EJB 3.0 API, 73
EntityManager API, 144–155

Java EE Deployment API (JSR-88),
402

Java Message Service API,
160, 162–166

Java Persistence API
object-relational mapping,

130–133
optimistic locking, 150–151
READ locks, 152
specification, 129
WRITE locks, 152

Java reflection API, 595
Java serialization API, 569–570
Java Timer APIs, 367
Java Transaction API (JTA),

32, 286–287
javax.ejb.EJBContext API,

80–81
Timer Service API
javax.ejb.TimedObject

interface, 368, 370–371
javax.ejb.Timer interface,

368, 370
javax.ejb.TimerHandle

interface, 368, 371
javax.ejb.TimerService

interface, 368–369
applicability of transaction

attributes to various beans,
300–302

application assembler, 19
application clients

containers, 72
defined, 13

application development, 11
application example

business problem, 529–530
login JSP, 548–549
login servlet, 549–553
Pricer Web service, 554–557
Pricer Web service interface,

553–554

26_785415 bindex.qxp 6/5/06 7:06 PM Page 649

650 Index

application example (continued)
source code, 529, 558
technical requirements

business logic tier, 534–541
data tier, 534
presentation tier, 534, 541–547

Web site functionality and features,
530–533

application integration
best practices, 502–504
defined, 434–435
infrastructure services problem,

438–439
Java EE Connector Architecture,

503
Java Message Service (JMS),

167–168, 435, 502–503
M x N integration problem, 436–438
message-driven beans, 502–503
Web services, 117, 435, 503–504

application logic components, 133
application programming interfaces.

See APIs
application servers

defined, 9–10
Java EE Connector Architecture,

440–441
@ApplicationException

annotation, 606
architecture

collocated, 512–516
distributed, 512–516
Java Authentication and

Authorization Service (JAAS),
331–333

JNDI (Java Naming and Directory
Interface), 580–581

OutboundLoanRA example, 468
@AroundInvoke annotation,

209, 605
Aspect-Oriented Programming

(AOP), 210, 397–399

asynchronous method invocation,
195

asynchronous programming, 158
asynchrony in RMI-IIOP, 158
At utility, 366
atomic name, 581
atomic operations, 272–273
atomicity of transactions, 277
at-sign (@) marker in annotations,

594–595
attacker model, 324
attribute-oriented programming, 401
@AttributeOverride annotation,

626
@AttributeOverrides

annotation, 626
auditing in distributed systems, 7
AuditorInterceptor interceptor,

214
auth-constraint element, 328
authentication

defined, 324
digest, 326–327
form-based, 326–327
HTTP basic, 326–327
HTTPS client, 326–327
Java Authentication and

Authorization Service (JAAS),
329–340

Web applications, 326–327
authorization

condition-based, 351
declarative, 327–328, 346–351
defined, 324
instance-level, 351
Java Authentication and

Authorization Service (JAAS),
329–340

programmatic, 327–328,
342–346, 351

security roles, 341
Web applications, 327–328

26_785415 bindex.qxp 6/5/06 7:06 PM Page 650

Index 651

automated task scheduling, 365
availability of large-scale systems

clustering, effect on availability,
508

defined, 506–507

B
back-end integration in distributed

systems, 7
backward compatibility

annotations, 199
pre-EJB 3.0 and EJB 3.0, 75
@Basic annotation, 628
Batch utility, 366
BEA Tuxedo/Q message-oriented

middleware, 159
bean instance pool, 416
bean provider, 19
bean-independent resources,

419–420
beanInterface element, 208
bean-managed transactions,

288–289, 291, 302–307
beanName element, 208
bean-specific resources, 419–420
Beck, Kent, original thinker of

Extreme Programming (XP), 389
beforeCompletion() method,

317, 319
begin() method, 304
beginning transactions, 304
best practices

application integration, 502–504
Aspect-Oriented Programming

(AOP), 397–399
code reuse, 404–405
debugging EJB, 402–404
Extreme Programming (XP),

389–391
integration, 502
isolation levels, 423–424
logging/tracking system, 429

messaging versus RMI-IIOP,
407–410

Model Driven Development
(MDD), 387–389

performance optimizations
capacity planning, 415–416
entities, 423–426
Java Virtual Machine (JVM),

427–429
JDBC connection pool, 429
local and remote interfaces,

418–419
message-driven beans, 426–427
partitioning resources, 419–420
performance requirements,

411–412
session façade, 416–418
stateful session beans, 421–422
stateless session beans, 420–421
statelessness, 413–415
Web applications, 430

singletons, 405–406
testing EJB, 392–395
Web application frameworks,

385–387
when to use EJB, 382–384
XML, 406–407

bidirectional relationships, 237–238
bindings

JNDI (Java Naming and Directory
Interface), 67, 582–583

Web services, 119
bit-blobs, 568–569
bootstrapping, 576
breaches in security, 323
bulk deletes, 261–265
bulk updates, 261–265
business interface

annotations, 200–202
defined, 86
enterprise beans, 83
local business interface, 74

26_785415 bindex.qxp 6/5/06 7:06 PM Page 651

652 Index

business interface (continued)
message-driven beans, 74
remote business interface, 74
role of, 204

business logic tier
catalog, 537
customer data, 535–536
defined, 534
entities, 534–535, 538
line items, 537
message-driven beans, 538
order data, 536
products, 537
session beans, 538
shopping cart, 539–541

business methods, 138
business process integration, 434–435
business tier component, 12–14

C
caching

distributed systems, 8
resources, 421

callback interceptor in stateful
session beans, 104–105

callback methods
@PostActivate, 98, 100–101
@PostConstruct, 101
@PreDestroy, 101, 113
@PrePassivate, 97–98, 100–101

calling beans from other beans,
197–199

cancel() method, 373
capacity planning, 415–416
cart, 539–541
cascade element, 241
CCI (Common Client Interfaces),

439
certified message delivery, 160
chained transactions, 281
characteristics of large-scale

systems, 506–507

Chen, Peter, “The Entity-
Relationship Model – Toward a
Unified View of Data” paper, 134

choosing
EJB server, 430–431
isolation levels, 423–424
local or remote interfaces, 418–419
Web application frameworks,

385–387
classes (entity classes)

abstract entities, 234
concrete entities, 234
defined, 135–138
deploying, 143–144
inheritance

example object model, 220–223
mapping strategies, 223–232
rules, 232
superclasses, 232–234

packaging, 143–144
persistence units, 143–144
polymorphism, 234–236
superclasses, 232–234

clean shutdown, 7
CleanDayLimitOrdersBean EJB

example, 373–379
client address space in RMI-IIOP,

562
client code

enterprise beans, 85–86
interceptors, 213
message-driven beans, 183
session beans, 91–92
stateful session beans, 107–109

client-controlled transactions,
290–292, 307

clients
application clients, 13
dynamic Web pages, 13
Web service clients, 13–14, 126–128

client-side callback functionality,
395–396

26_785415 bindex.qxp 6/5/06 7:06 PM Page 652

Index 653

clustering
availability, effect on, 508
collocated architecture, 512–516
containers, 61, 517
defined, 507
distributed architecture, 512–516
distributed systems, 7
EJB servers, 431
entities, 523–526
failovers, 510–512
first contact, 527
idempotent, 518–519
initial access logic, 527–528
JNDI (Java Naming and Directory

Interface), 516
load balancing, 509–510, 512
message-driven beans, 526
nodes, 508
redundancy, 508
reliability, effect on, 508
scalability, effect on, 509
serviceability, effect on, 508–509
single-system view, 507–508
smart stub, 517
stateful session beans, 521–523
stateless session beans, 519–521
stubs, 517

code reuse
best practices, 404–405
components, 4

collocated architecture, 512–516
@Column annotation, 621–622
commit() method, 304
committing transactions, 288, 304
Common Client Interfaces (CCI), 439
Common Secure Interoperability

version 2 (CSIv2), 353–356
Communications Resource Manager

(CRM), 286
complexity in EJB version 2.1 and

earlier, 50–55

component architectures in service-
oriented architecture (SOA), 27

component frameworks
defined, 5
Enterprise JavaBeans (EJB), 10–12
standards, 9–10

component interfaces, 74–75
component-managed sign-on,

459–460
components

application logic components, 133
defined, 4
differences from objects, 4
life cycle, 7
need for componentization, 4–5
persistent data objects, 133
reusability, 4
security, 383
software components, 4
transaction context, 285
transactional components, 276

composite name, 582–583
compound name, 581
computations in annotations, 594
concrete entities, 234
concurrency control

need for, 308–309
optimistic, 315–316
pessimistic, 315–316

concurrent access to entity data,
150–151

condition-based authorization, 351
connection management contract,

454–457
Connector API
javax.resource Package,

442–443
javax.resource.cci Package,

443–445, 447
javax.resource.spi Package,

443, 448–450

26_785415 bindex.qxp 6/5/06 7:06 PM Page 653

654 Index

Connector API (continued)
javax.resource.spi

.endpoint Package, 451
javax.resource.spi

.security Package, 451–452
javax.resource.spi.work

Package, 452–453
Connector Architecture. See Java EE

Connector Architecture
connectors, 33–34
consistency of transactions, 277
container-managed sign-on,

458–459
container-managed transactions,

289–299
containers

application clients, 72
backward and forward

compatibility for pre-EJB 3.0
and EJB 3.0, 75

clustering, 61, 517
defined, 24, 59
deployment descriptors, 79
Ejb-jar files, 82
Internet Inter-ORB Protocol

(IIOP), 65
least recently used (LRU)

passivation strategy, 96
life cycle management, 60
load balancing, 61
remote accessibility, 60–61
resource management, 60
RMI-IIOP, 65–66
security, 60
support for concurrent requests, 61
transactions, 59

context switching, 95
contexts, 582
continuous integration, 390
controls (security), 323–325
conversational states of stateful

beans, 96–97

CORBA interoperability with
RMI-IIOP, 573–575

CosTransactions interfaces, 285
CosTSPortability interface, 286
count() method, 318–319
crashes, Java Virtual Machine (JVM),

566
createTimer() method, 369–370
creating

Ejb-jar files, 81–82
message-driven beans, 173
queries

EJB-QL, 154–155
general steps, 153
SQL, 154–155

CRM (Communications Resource
Manager), 286

Cron jobs, 366
cryptography, 358
CSIv2 (Common Secure

Interoperability version 2),
353–356

D
data centers, 21
data confidentiality protection

defined, 325
Web applications, 328–329

data integrity protection
defined, 324
Web applications, 328–329

data tier, 534
databases

concurrent access, 150–151
locking, 150–151, 153, 308–309
normalized, 265
relationships

bidirectional, 237–238
defined, 237
directionality of, 237–238
many-to-many, 237, 254–260
many-to-one, 237

26_785415 bindex.qxp 6/5/06 7:06 PM Page 654

Index 655

object-relational mapping,
130–133

one-to-many, 237, 245–253
one-to-one, 237–244
unidirectional, 237–238

synchronization and entities,
148–149

debugging EJB
best practices, 402–404
EJB version 2.1 and earlier, 54–55

declarative authorization, 327–328,
346–351

@DeclareRoles annotation, 606
decoupling

messaging, 159
RMI-IIOP, 158

demarcating transactional
boundaries, 288

@DenyAll annotation, 348, 608
dependency injection, 80, 205–208
deployer, 20
deploying

EJB applications, 400–402
EJB 3.0 enterprise beans, 81–82
entity classes, 143–144
OutboundLoanRA example,

493–494
pre-EJB 3.0 enterprise beans, 41–42
Web services, 125–126

deployment descriptors
annotations, 77–80, 593, 596–597
CleanDayLimitOrdersBean EJB

example, 376–377
container-specific, 79
defined, 86
EJB version 2.1 and earlier, 39, 47
enterprise beans, 84–85
env-entry element, 207
message-driven beans, 177
OutboundLoanRA example, 494
stateful session beans, 106–107
vendor-specific deployment

descriptor, 87

description element, 200, 208
design patterns

lower-level EJB design patterns,
381, 411

session façade, 416–418
singletons, 405–406

designing transactional
conversations, 316–319

developing pre-EJB 3.0 enterprise
beans, 41–42

digest authentication, 326–327
digital signatures, 358–361
DII (dynamic invocation interface),

400
directionality of relationships,

237–238
directory services, 576–579
dirty read problem, 309–311
@Discriminator annotation, 638
@DiscriminatorColumn

annotation, 226–227
@DiscriminatorValue

annotation, 226–227, 639
distributed architecture, 512–516
distributed component, 14–15
distributed systems, 6–8
distributed transaction coordinator,

283–285
distributed transactions, 282–285, 382
distribution transparency, 15–16
Domain Name Service (DNS), 528
domains (messaging)

point-to-point messaging, 161–162
publish/subscribe messaging,

161–162
request/reply messaging,

161, 190–194
dooming transactions, 299
durability of transactions, 278, 283
durable subscriptions, 172
dynamic invocation interface (DII),

400
dynamic proxy invocation, 400

26_785415 bindex.qxp 6/5/06 7:06 PM Page 655

656 Index

dynamic queries, 154, 268
dynamic redeployment in

distributed systems, 7
dynamic Web pages, 13

E
eager fetching, 247
eager loading, 247
EasyMock utility, 394–395
ecosystem, 22–24
eDirectory Netscape Directory

Server (Novell), 578
EIS (enterprise information system),

436
EIS-specific client interfaces, 439
@EJB annotation, 207–208, 609
EJB applications

application assembler, 19
bean provider, 19
deployer, 20
deploying, 400–402
JavaBeans, 25
life cycle, 18–19

EJB containers
application clients, 72
backward and forward

compatibility for pre-EJB 3.0
and EJB 3.0, 75

clustering, 61, 517
defined, 24, 59
deployment descriptors, 79
Ejb-jar files, 82
Internet Inter-ORB Protocol

(IIOP), 65
least recently used (LRU)

passivation strategy, 96
life cycle management, 60
load balancing, 61
remote accessibility, 60–61
resource management, 60
RMI-IIOP, 65–66
security, 60

support for concurrent requests, 61
transactions, 59

EJB Design Patterns (Marinescu),
381, 411

EJB ecosystem, 22–24
EJB Expert Group, 64
EJB server

bean instance pool, 416
choosing, 430–431
clustering, 431

availability, effect on, 508
collocated architecture, 512–516
containers, 517
defined, 507
distributed architecture, 512–516
entities, 523–526
failovers, 510–512
first contact, 527
idempotent, 518–519
initial access logic, 527–528
JNDI (Java Naming and Directory

Interface), 516
load balancing, 509–510, 512
message-driven beans, 526
nodes, 508
redundancy, 508
reliability, effect on, 508
scalability, effect on, 509
serviceability, effect on, 508–509
single-system view, 507–508
smart stub, 517
stateful session beans, 521–523
stateless session beans, 519–521
stubs, 517

load balancing, 431, 509–510, 512
persistence management, 430
standby machine, 416
thread pool, 416
throttling, 416, 431
tuning, 431

EJB 3.0 API, 73
EJB 3.0 beans. See enterprise beans

26_785415 bindex.qxp 6/5/06 7:06 PM Page 656

Index 657

EJB 3.0 specifications, 60
EJB (Enterprise JavaBeans)

version 3.0
application development, 11
business tier component, 12–14
defined, 3, 10–11
interoperability, 117
Java EE (Java Platform, Enterprise

Edition), 32
Java interfaces, 11
Java language, 11–12
portability, 10
scheduling, 366–367
specification for EJB 3.0, 11
standards, 10

EJB (Enterprise JavaBeans) version
2.1 and earlier

complexity, 50–55
debugging, 54–55
deploying enterprise beans, 41–42
deployment descriptor, 39, 47
developing enterprise beans, 41
Ejb-jar file, 40, 47–48
enterprise bean, 38
enterprise bean class, 38, 45–47
entity beans, 50
HelloClient.java, 48–50
home interfaces, 39, 44–45
local home interfaces, 45
local interfaces, 39, 43–44
objects, 38
remote interfaces, 38–39, 42–43
testing, 54–55
vendor-specific files, 39–40
EJBContext API, 80–81
EJBContext interface, 80–81, 372
Ejb-jar files

containers, 82
creating, 81–82
defined, 86
EJB version 2.1 and earlier,

40, 47–48

packaging and deployment of
beans, 81–82

stateful session beans, 107
EJB-QL

bulk deletes, 261–265
bulk updates, 261–265
differences from SQL, 154
dynamic queries, 268
enhancements from the EJB 2.1

specification, 261
GROUP BY clause, 266–267
HAVING clause, 266–267
joins

defined, 265
fetch joins, 266
inner joins, 266
left joins, 266

named queries, 269
projections, 267
query creation, 155
SELECT statements, 269–270
subqueries, 268–269
ejbRemove() method, 174
@EJBs annotation, 609
ejbTimeout() method,

176, 370–371
elements
auth-constraint, 328
beanInterface, 208
beanName, 208
cascade, 241
description, 200, 208
EncryptedData, 358–359
env-entry, 207
exclude-list, 348–349
fetch, 247, 423–424
KeyInfo, 360
login-config, 327
mappedBy, 250, 259
mappedName, 200
name, 200, 208
persistence, 143

26_785415 bindex.qxp 6/5/06 7:06 PM Page 657

658 Index

elements (continued)
persistence-unit, 143–144
retainIfException, 202–205
role-mapping, 328
security-constraint, 327–328
Signature, 360
SignatureValue, 360
SignedInfo, 360
transport-guarantee, 328–329
unitName, 209
user-data-constraint, 328
@Embeddable annotation, 641
@Embedded annotation, 641
@EmbeddedId annotation, 626
EncryptedData element, 358–359
encryption, 358–361
enterprise bean class

EJB version 2.1 and earlier,
38, 45–47

EJB version 3.0, 83–84
enterprise bean instance, 86
enterprise beans

anatomy of, 68–71
annotations, 77
business interface, 83
client code, 85–86
defined, 57–59
deploying, 81–82
deployment descriptors, 84–85
EJB version 2.1 and earlier, 38
environment, 67–68
example, 82–86
home interfaces, 72
object interfaces, 72–73
packaging, 81–82
types of, 61–63

enterprise information system
(EIS), 436

Enterprise JavaBeans (EJB)
version 3.0

application development, 11
business tier component, 12–14

defined, 3, 10–11
interoperability, 117
Java EE (Java Platform, Enterprise

Edition), 32
Java interfaces, 11
Java language, 11–12
portability, 10
scheduling, 366–367
specification for EJB 3.0, 11
standards, 10

Enterprise JavaBeans (EJB) version
2.1 and earlier

complexity, 50–55
debugging, 54–55
deploying enterprise beans, 41–42
deployment descriptor, 39, 47
developing enterprise beans, 41
Ejb-jar file, 40, 47–48
enterprise bean, 38
enterprise bean class, 38, 45–47
entity beans, 50
HelloClient.java, 48–50
home interfaces, 39, 44–45
local home interfaces, 45
local interfaces, 39, 43–44
objects, 38
remote interfaces, 38–39, 42–43
testing, 54–55
vendor-specific files, 39–40

Enterprise Security with EJB and
CORBA (Hartman et al.), 322

EnterpriseBean interface, 38
entities

accessing, 138
business logic tier, 534–535, 538
business methods, 138
clustering, 523–526
concurrent access, 150–151
database synchronization, 148–149
defined, 133–134
direct entity data manipulation,

149–150

26_785415 bindex.qxp 6/5/06 7:06 PM Page 658

Index 659

entity beans, differences from, 129,
220

finding, 153–155
Java Persistence API

object-relational mapping,
130–133

optimistic locking, 150–151
READ locks, 152–153
specification, 129
WRITE locks, 152–153

lazy loading, 423–424
life cycle, 134–135, 145–147
life-cycle callbacks, 147–148
lookups, 153–155
modifying, 149–150
persistence context, 138–142
persistence provider, 135
persistent state, 138
POJOs (plain old Java objects),

133, 227
primary key, 137–138
session beans, differences from, 134
transactions, 302
tuning, 423–426
@Entity annotation, 227, 612
entity beans

defined, 62
EJB version 2.1 and earlier, 50
entities, differences from, 129, 220
future of, 64–65
maintaining legacy entity beans,

130
entity classes

abstract entities, 234
concrete entities, 234
defined, 135–138
deploying, 143–144
inheritance

example object model, 220–223
mapping strategies, 223–232
rules, 232
superclasses, 232–234

packaging, 143–144
persistence units, 143–144
polymorphism, 234–236
superclasses, 232–234
@EntityListeners annotation,

612
EntityManager API, 144–155
EntityManager object, 208–209
Entity-Relationship Model (ERM),

134
“The Entity-Relationship Model –

Toward a Unified View of Data”
paper (Chen), 134

@Enumerated annotation, 630
env-entry element, 207
environment, 67–68
@ExcludeClassInterceptors

annotation, 605
@ExcludeDefaultInterceptors

annotation, 605
@ExcludeDefaultListeners

annotation, 612
exclude-list element, 348–349
@ExcludeSuperclassListeners

annotation, 612
explicit middleware services, 16–18
extended persistence context,

140–142
extends keyword, 220
extensibility of resource adapter

(RA), 441–442
Extreme Programming (XP), 389–391

F
failovers, 7, 510–512
failure of stateful session beans, 415
fetch element, 247, 423–424
fetch joins, 247, 266
find() method, 153
finding entities, 153–155
FioranoMQ message-oriented

middleware, 159

26_785415 bindex.qxp 6/5/06 7:06 PM Page 659

660 Index

flat transactions, 278–280
flush() method, 146, 148
flush mode, 148–149
@FlushMode annotation, 614
foreign keys

join tables, 245
one-to-many relationships, 245
one-to-one relationships, 238

form-based authentication, 326–327
forward compatibility, pre-EJB 3.0

and EJB 3.0, 75
Fowler, Martin (Refactoring:

Improving the Design of Existing
Code), 391

G
generate() method, 563
@GeneratedValue annotation, 625
generating skeletons and stubs, 567
generation rules for join tables, 256
getAnnotation() method, 595
getHandle() method, 370
getInfo() method, 370
getName() method, 198
getRollbackOnly() method, 299
getStatus() method, 304–305
getTimer() method, 371
getTimers() method, 369
getTimerService() method, 372
global transaction management

contract, 461–462
GROUP BY clause, 266–267
guaranteed message delivery, 160

H
halting problem, 302
handleTimeout() method, 373
hardware proxies, 528
Hartman, Bret (Enterprise Security

with EJB and CORBA), 322
HAVING clause, 266–267
HelloClient.java, 48–50

Hibernate framework, 132, 384
home interfaces

EJB version 2.1 and earlier,
39, 44–45

elimination of, 74
purpose of, 72

HTTP basic authentication, 326–327
HTTP servlets, 542–543
HTTPS client authentication,

326–327
HttpSession object, 414

I
IBM

U.S. Justice Department vs. IBM
antitrust lawsuit, 4–5

WebSphere MQ message-oriented
middleware, 159

@Id annotation, 625
@IdClass annotation, 627
idempotent, 518–519
IDEs (integrated development

environments), 24
IIOP (Internet Inter-ORB Protocol),

65, 573
IIOP/SSL (IIOP over SSL), 353
implementing Web services, 122–124
implicit middleware services, 17–18
infinite block problem, 302
infrastructure services problem,

438–439
inheritance

example object model, 220–223
mapping strategies

separate table per subclass,
230–232

single table per class hierarchy,
223–230

single table per concrete entity
class, 232

rules, 232
superclasses, 232–234

26_785415 bindex.qxp 6/5/06 7:06 PM Page 660

Index 661

@Inheritance annotation, 226, 637
@Init annotation, 205, 600
initial contexts, 198–199, 584–586
InitialContext object, 206
initialization parameters in JNDI,

198
injection, 80, 205–208
inner joins, 266
instance-level authorization, 351
integrated development

environments (IDEs), 24
integration

application integration
best practices, 502–504
defined, 434–435
infrastructure services problem,

438–439
Java EE Connector Architecture,

503
Java Message Service (JMS),

167–168, 435, 502–503
M x N integration problem,

436–438
message-driven beans, 502–503
Web services, 117, 435, 503–504

back-end integration in distributed
systems, 7

business process integration,
434–435

continuous integration, 390
importance of, 433–434
RMI-IIOP and JNDI, 588–590
Web application frameworks, 385
@Interceptor annotation, 209
interceptors

Aspect-Oriented Programming
(AOP), 210, 398–399

AuditorInterceptor, 214
client code, 213
defined, 209
InvocationContext object,

213–214

LoggerInterceptor, 214
message-driven beans, 209
processing order, 210
session beans, 209–213
uses, 209–210
@Interceptors annotation,

209, 605
interfaces. See specific interfaces by

name
business interface

annotations, 200–202
defined, 86
enterprise beans, 83
local business interface, 74
message-driven beans, 74
remote business interface, 74
role of, 204

component interfaces, 74–75
home interfaces

EJB version 2.1 and earlier,
39, 44–45

elimination of, 74
purpose of, 72

marker interface, 568
object interfaces

elimination of, 74
purpose of, 72–73

OTS (Object Transaction Service),
285–286

X/Open XA resource manager
interface, 276

Internet Inter-ORB Protocol (IIOP),
65, 573

interoperability, 117
InvocationContext object,

213–214
invoking methods

asynchronous method invocation,
195

dynamic invocation interface (DII),
400

dynamic proxy invocation, 400

26_785415 bindex.qxp 6/5/06 7:06 PM Page 661

662 Index

invoking methods (continued)
reflective invocation, 400
static invocation, 400

isolation levels
best practices, 423–424
choosing, 423–424
dirty read problem, 309–311
phantom problem, 309, 313–314
READ COMMITTED, 309–311
READ UNCOMMITTED, 309–311
REPEATABLE READ, 309, 312–313
SERIALIZABLE, 309, 313–314
setting, 314–315
unrepeatable read problem,

309, 312–313
isolation of transactions, 277–278,

307–309
iterative development, 389–390

J
JAAS (Java Authentication and

Authorization Service),
34, 329–340

Java annotation facility, 598–599
Java API for XML Parsing

(JAXP), 34
Java API for XML Web Services

(JAX-WS), 32, 122–124
Java Architecture for XML Binding

(JAXB), 34, 124–125
Java Authentication and

Authorization Service (JAAS),
34, 329–340

Java Community Process (JCP),
29, 132, 384

Java Data Objects (JDO), 132
Java Database Connectivity (JDBC),

32, 429
Java EE (Java Platform, Enterprise

Edition), 23, 29–34
Java EE Activity Service for

Extended Transactions (JSR 095),
382

Java EE Connector API
javax.resource Package,

442–443
javax.resource.cci Package,

443–447
javax.resource.spi Package,

443, 448–450
javax.resource.spi

.endpoint Package, 451
javax.resource.spi

.security Package, 451–452
javax.resource.spi.work

Package, 452–453
Java EE Connector Architecture

alternatives, 436
application integration, 435, 503
defined, 33–34
infrastructure services problem,

438–439
M x N integration problem,

436–438
managed and nonmanaged

environments, 439
resource adapter (RA)

Common Client Interfaces (CCI),
439

defined, 436
EIS-specific client interfaces,

439–440
extensibility of, 441–442
interaction with application

server, 440–441
OutboundLoanRA example,

467–502
system contracts, 453–467
transactions, 304

Java EE Deployment API (JSR-88),
402

Java EE 5 Platform Specification, 325
Java interfaces, 11
Java language, 11–12

26_785415 bindex.qxp 6/5/06 7:06 PM Page 662

Index 663

Java Message Service (JMS). See also
message-driven beans

application integration, 167–168,
435, 502–503

client-side callback functionality,
395

defined, 33
JMS API, 160, 162–166
JMS-EJB integration, 167–168
Service Provider Interface (SPI), 160
tutorial, 167

Java Naming and Directory
Interface (JNDI)

architecture, 580–581
atomic name, 581
benefits of, 579–580
bindings, 67, 582–583
bootstrapping, 576
clustering, 516
code examples, 586–587
composite name, 582–583
compound name, 581
contexts, 582
default lookups, 198–199
defined, 32, 67, 559
initial contexts, 198–199, 584–586
initialization parameters, 198
integrating with RMI-IIOP, 588–590
namespaces, 581–584
naming systems, 581–584
security, 325
singletons, 406
specification, 559
subcontexts, 582
tutorials, 559
uses, 576

Java Native Interfaces (JNI), 436
Java Persistence API

object-relational mapping, 130–133
optimistic locking, 150–151
READ locks, 152–153
specification, 129
WRITE locks, 152–153

Java Platform, Enterprise Edition
(Java EE), 23, 29–34

Java Platform, Standard Edition
(Java SE), 23, 30

Java reflection API, 595
Java Remote Method Protocol

(JRMP), 560
Java RMI-JRMP, 560
Java serialization API, 569–570
Java Server Pages (JSP), 33, 543–547
Java Servlet Specification, 325
Java System Messaging Server, 159
Java Timer APIs, 367
Java Transaction API (JTA),

32, 286–287
Java Transaction Service (JTS),

32, 286–288
Java 2 Platform, Micro Edition

(J2ME), 30
Java Virtual Machine (JVM)

crashes, 566
defined, 12
tuning, 427–429

Java Web services. See Web services
JavaBeans, 25
JavaDocs, 76, 597
java.lang.Serializable

interface, 568–570
JavaServer Faces (JSF), 33
java.util.Timer API, 367
java.util.TimerTask API, 367
javax.ejb.EJBContext API,

80–81
javax.ejb.EnterpriseBean

interface, 38
javax.ejb.MessageDrivenBean

interface, 74–75, 173–174
javax.ejb.SessionBean

interface, 74–75
javax.ejb.TimedObject

interface, 176, 368, 370–371
javax.ejb.Timer interface,

368, 370

26_785415 bindex.qxp 6/5/06 7:06 PM Page 663

664 Index

javax.ejb.TimerHandle
interface, 368, 371

javax.ejb.TimerService
interface, 368–369

javax.jms.MessageListener
interface, 173, 176

javax.resource Package, 442–443
javax.resource.cci Package,

443–447
javax.resource.spi Package,

443, 448–450
javax.resource.spi.endpoint

Package, 451
javax.resource.spi.security

Package, 451–452
javax.resource.spi.work

Package, 452–453
javax.transaction
.UserTransaction interface,
286, 303–304

javax.transaction.xa
.XAResource interface, 286

JAXB (Java Architecture for XML
Binding), 34, 124–125

JAXP (Java API for XML Parsing), 34
JAX-WS (Java API for XML Web

Services), 32, 122–124
JCA. See Java EE Connector

Architecture
JCP (Java Community Process),

29, 132, 384
JDBC (Java Database Connectivity),

32, 429
JDO (Java Data Objects), 132
jMock utility, 394
JMS (Java Message Service). See also

message-driven beans
application integration, 167–168,

435, 502–503
client-side callback functionality,

395
defined, 33

integration, 502
JMS API, 160, 162–166
JMS-EJB integration, 167–168
Service Provider Interface (SPI), 160
tutorial, 167

JNDI (Java Naming and Directory
Interface)

architecture, 580–581
atomic name, 581
benefits of, 579–580
bindings, 67, 582–583
bootstrapping, 576
clustering, 516
code examples, 586–587
composite name, 582–583
compound name, 581
contexts, 582
default lookups, 198–199
defined, 32, 67, 559
initial contexts, 198–199, 584–586
initialization parameters, 198
integrating with RMI-IIOP, 588–590
namespaces, 581–584
naming systems, 581–584
security, 325
singletons, 406
specification, 559
subcontexts, 582
tutorials, 559
uses, 576

JNI (Java Native Interfaces), 436
join tables

generation rules, 256
many-to-many relationships, 254
one-to-many relationships, 245
@JoinColumn annotation, 623–624
@JoinColumns annotation, 624
joins

defined, 265
fetch joins, 247, 266
inner joins, 266
left joins, 266

26_785415 bindex.qxp 6/5/06 7:06 PM Page 664

Index 665

@JoinTable annotation, 633
JProbe performance-profiling tool,

429
JRMP (Java Remote Method

Protocol), 560
JSF (JavaServer Faces), 33
JSP (Java Server Pages), 33, 543–547
JSR 095 (Java EE Activity Service for

Extended Transactions), 382
JSR-88 (Java EE Deployment API),

402
JTA (Java Transaction API),

32, 286–287
JTS (Java Transaction Service),

32, 286–288
J2ME (Java 2 Platform, Micro

Edition), 30
JUnit Framework, 393–394
just-in-time algorithm, 96
just-in-time resource acquisition or

release, 420
JVM (Java Virtual Machine)

crashes, 566
defined, 12
tuning, 427–429

K
KeyInfo element, 360
keywords
extends, 220
transient, 569

L
large-scale systems

availability, 506–507
characteristics of, 506–507
clustering

defined, 507
effects on RAS, 508–509

defined, 506
reliability, 506

scalability, 507
serviceability, 507

lazy fetching, 247
lazy loading, 247, 423–424
LDAP (Lightweight Directory

Access Protocol), 579
least recently used (LRU)

passivation strategy of
containers, 96

left joins, 266
legacy entity beans, 130
life cycle

of components, 7
of EJB applications, 18–19
of entities, 134–135, 145–147
management through EJB

containers, 60
of message-driven beans, 174
of session beans, 91–92, 110–113

life cycle management contract,
453–454

life-cycle callbacks, 147–148
Lightweight Directory Access

Protocol (LDAP), 579
load balancers, 510
load balancing

clusters, 509–510
containers, 61
distributed systems, 6
Domain Name Service (DNS), 528
EJB servers, 431
failovers, 509, 512
local interfaces, 512
message-driven beans,

183–184, 187
LoanRatesClient application,

496–501
LoanRatesEJB stateless session

bean, 495–496
@Lob annotation, 629
@Local annotation, 201, 601

26_785415 bindex.qxp 6/5/06 7:06 PM Page 665

666 Index

local business interfaces, 74
local home interfaces in EJB version

2.1 and earlier, 45
local interfaces

choosing between local and remote
interfaces, 418–419

EJB version 2.1 and earlier, 39, 43–44
failovers, 512
load balancing, 512

local transaction management
contract, 460–461

local transactions, 282
local/remote transparency, 566–567
location transparency, 66
lock() method, 152
locking databases, 150–151, 153,

308–309
LoggerInterceptor interceptor,

214
logging in distributed systems, 7
logging/tracking system, 429
login JSP (application example),

548–549
login servlet (application example),

549–553
login-config element, 327
long-running transactions, 382
lookup() method, 80–81
lookups

entities, 153–155
JNDI lookups, 198–199

lost update problem, 308–309
lower-level EJB design patterns,

381, 411
LRU (least recently used)

passivation strategy of
containers, 96

M
M x N integration problem, 436–438
machine or network failure, effect

on transactions, 273–274

maintaining legacy entity beans, 130
Mandatory transaction attribute,

294
@ManyToMany annotation, 259, 634
many-to-many relationships,

237, 254–260
@ManyToOne annotation, 630
many-to-one relationships, 237
@MapKey annotation, 635
mapped superclasses, 232–234
mappedBy element, 250, 259
mappedName element, 200
@MappedSuperclass annotation,

232–234, 642
mapping data, 130–133
mapping strategies to support

inheritance
separate table per subclass, 230–232
single table per class hierarchy,

220–230
single table per concrete entity

class, 232
Marinescu, Floyd (EJB Design

Patterns), 381, 411
marker interface, 568
marshaling, 560–561
Mastering Enterprise JavaBeans, Third

Edition (Wiley), 130
MDD (Model Driven Development),

387–389
merge() method, 146–147
message inflow contract, 464–467
@MessageDriven annotation,

176, 200, 602
message-driven beans

activation configuration properties,
178–182

annotations, 602
application integration, 435, 503
asynchronous method invocation,

195
business interfaces, 74

26_785415 bindex.qxp 6/5/06 7:06 PM Page 666

Index 667

business logic tier, 538
characteristics of, 170–172
client code, 183
clustering, 526
creating, 173
defined, 62, 157, 169
deployment descriptor, 177
duplicate consumption in a cluster,

184–185
durable subscriptions, 172
example, 175–178
interceptors, 209
javax.ejb.MessageDriven

Bean interface, 173–174
javax.jms.MessageListener

interface, 173, 176
life cycle, 174
load balancing, 183–184, 187
logging/tracking system, 429
message order, 186
missed @PreDestroy calls,

186–187
nondurable subscriptions, 172
non-JMS messages, 169
poison messages, 187–190
pull model, 184
push model, 184
returning results back to message

producers, 190–194
security, 183
semantics, 173
timers, 176
transaction attributes, 301–302
transactions, 183
tuning, 426–427
MessageDrivenBean interface,

74–75, 173–174
MessageListener interface,

173, 176
message-oriented middleware

(MOM)
certified message delivery, 160
commercial products, 159

distributed systems, 7
guaranteed message delivery, 160
store and forward, 160

messaging
decoupling, 159
defined, 157
domains

point-to-point messaging, 161–162
publish/subscribe messaging,

161–162
request/reply messaging,

161, 190–194
Java Message Service (JMS)

client-side callback functionality,
395

defined, 33
JMS API, 160, 162–166
JMS-EJB integration, 167–168
Service Provider Interface (SPI),

160
tutorial, 167

limitations, 159
message consumers, 158
message producers, 158
middleman, 158–159
nonblocking request processing,

159
reliability, 159
versus RMI (remote method

invocation), 158
versus RMI-IIOP, 407–410
SOAP protocol, 120–121
support for multiple senders and

receivers, 159
metadata

annotations
accessing, 595
@ApplicationException,

606
@AroundInvoke, 209, 605
@ at-sign marker, 594–595
@AttributeOverride, 626
@AttributeOverrides, 626

26_785415 bindex.qxp 6/5/06 7:06 PM Page 667

668 Index

metadata (continued)
backwards compatibility, 199
@Basic, 628
bean development, 77
beanInterface element, 208
beanName element, 208
business interface, 200–202
@Column, 621–622
computations, 594
@DeclareRoles, 606
defined, 593–594
@DenyAll, 348, 608
deployment descriptor files,

593, 596–597
deployment descriptors, 77–80
description element, 200, 208
@Discriminator, 638
@DiscriminatorColumn,

226–227
@DiscriminatorValue,

226–227, 639
@EJB, 207–208, 609
@EJBs, 609
@Embeddable, 641
@Embedded, 641
@EmbeddedId, 626
@Entity, 227, 612
@Entity Listeners, 612
@Enumerated, 630
example, 594
@ExcludeClassInterceptors,

605
@ExcludeDefault

Interceptors, 605
@ExcludeDefaultListeners,

612
@ExcludeSuperclass

Listeners, 612
@FlushMode, 614
@GeneratedValue, 625
getAnnotation() method,

595
@Id, 625

@IdClass, 627
@Inheritance, 226, 637
@Init, 205, 600
@Interceptor, 209
@Interceptors, 209, 605
Java annotation facility, 598–599
@JoinColumn, 623–624
@JoinColumns, 624
@JoinTable, 633
@Lob, 629
@Local, 201, 601
@ManyToMany, 259, 634
@ManyToOne, 630
@MapKey, 635
mappedName element, 200
@MappedSuperclass,

232–234, 642
@MessageDriven, 176, 200, 602
message-driven beans, 602
name element, 200, 208
@NamedNativeQueries, 615
@NamedNativeQuery, 615
@NamedQueries, 614
@NamedQuery, 155, 614
@OneToMany, 247, 632
@OneToOne, 631
@OrderBy, 636
@PermitAll, 348, 608
@PersistenceContext,

208–209, 617
@PersistenceContexts,

617
@PersistenceUnit, 618
@PostActivate, 606
@PostConstruct, 605
@PostLoad, 613
@PostPersist, 612
@PostRemove, 613
@PostUpdate, 613
@PreDestroy, 605
@PrePassivate, 606
@PrePersist, 147–148, 612
@PreRemove, 613

26_785415 bindex.qxp 6/5/06 7:06 PM Page 668

Index 669

@PreUpdate, 613
@PrimaryKeyJoinColumn,

640
@PrimaryKeyJoinColumns,

640
pros and cons, 599
@Remote, 201, 601
@Remove, 202–204, 601
@Resource, 205–207, 610
@Resources, 207, 610
@Retention, 595
@RolesAllowed, 347–348, 607
@RunAs, 608
@SecondaryTable, 620
@SecondaryTables, 621
@SequenceGenerator, 643
session beans, 600–601
@SqlResultSetMapping, 616
@Stateful, 200, 600
@Stateless, 200, 600
@Table, 619
@TableGenerator, 644
@Target, 595
@Temporal, 629
@Timeout, 176, 606
@TransactionAttribute,

292, 604
@TransactionManagement,

604
@Transient, 627
@UniqueConstraints, 621
use of, 76
@Version, 628
XDoclet framework, 597–598

JavaDocs, 76, 597
methods
afterBegin(), 317, 319
afterCompletion(), 317–319
beforeCompletion(), 317, 319
begin(), 304
business methods, 138
cancel(), 373
commit(), 304

count(), 318–319
createTimer(), 369–370
ejbRemove(), 174
ejbTimeout(), 176, 370–371
find(), 153
flush(), 146, 148
generate(), 563
getAnnotation(), 595
getHandle(), 370
getInfo(), 370
getName(), 198
getRollbackOnly(), 299
getStatus(), 304–305
getTimer(), 371
getTimers(), 369
getTimerService(), 372
handleTimeout(), 373
idempotent, 518–519
interceptors

AOP (Aspect Oriented
Programming), 210

AuditorInterceptor, 214
client code, 213
defined, 209
InvocationContext object,

213–214
LoggerInterceptor, 214
message-driven beans, 209
processing order, 210
session beans, 209–213
uses, 209–210

invoking
asynchronous method invocation,

195
dynamic invocation interface

(DII), 400
dynamic proxy invocation, 400
reflective invocation, 400
static invocation, 400
lock(), 152
lookup(), 80–81
merge(), 146–147
onMessage(), 176

26_785415 bindex.qxp 6/5/06 7:06 PM Page 669

670 Index

methods (continued)
@PostActivate, 101
@PostConstruct, 101
@PreDestroy, 101, 113
@PrePassivate, 97–98, 100–101
readObject(), 568–569
refresh(), 148
remove(), 146, 203–205
Rollback(), 304
setFlushMode(), 148
setMessageDrivenContext(),

173
setRollbackOnly(), 299, 304
setTransactionTimeout(int),

304
writeObject(), 568–569

Microsoft
Active Directory, 578
MSMQ message-oriented

middleware, 159
middleman in messaging, 158–159
Middleware Dark Matter article

(Vinoski), 121
middleware services

building from scratch, 8
buying via application server

software, 9
defined, 8
explicit, 16–18
implicit, 17–18
scripting languages, 121

missed @PreDestroy calls
(message-driven beans), 186–187

mock object frameworks, 394
MockMaker utility, 394
Model Driven Development (MDD),

387–389
modifying entities, 149–150
MOM (message-oriented

middleware)
certified message delivery, 160
commercial products, 159

distributed systems, 7
guaranteed message delivery, 160
store and forward, 160

multiple users sharing data,
274–275

multithreaded beans, 167

N
name element, 200, 208
named queries, 154–155, 269
@NamedNativeQueries

annotation, 615
@NamedNativeQuery annotation,

615
@NamedQueries annotation, 614
@NamedQuery annotation, 155, 614
namespaces, 582–584
naming services, 576–579
naming systems, 582, 584
nested transactions, 278, 280–282,

382
Network Directory System (NDS),

579
Network Information System (NIS),

579
network or machine failure, effect

on transactions, 273–274
networking and RMI-IIOP, 561
Never transaction attribute, 295
nodes, 508
nonblocking request processing in

messaging, 159
nondurable subscriptions, 172
nonpersistence of session beans, 92
normalized databases, 265
NotSupported transaction

attribute, 295
Novell

eDirectory Netscape Directory
Server, 578

Network Directory System (NDS),
579

26_785415 bindex.qxp 6/5/06 7:06 PM Page 670

Index 671

O
OASIS (Organization for the

Advancement of Structured
Information Standards), 361–362

object interfaces
elimination of, 74
purpose of, 72–73

Object Management Group
(OMG), 65

object serialization
conversational states of session

beans, 96–97
defined, 568
Java serialization API, 569–570
java.lang.Serializable

interface, 568–570
recursion, 570
RMI (remote method invocation),

571–573
rules, 569

Object Transaction Service (OTS),
285–286

Object-Oriented Programming
(OOP), 399

object-relational (OR) mappers,
130, 132

object-relational mapping, 130,
132–133

objects
bit-blobs, 568–569
differences from components, 4
EJB version 2.1 and earlier, 38
EntityManager, 208–209
HttpSession, 414
InitialContext, 206
InvocationContext, 213–214
persistent data objects, 133
remote objects and RMI (remote

method invocation), 564–565
SessionContext, 206
Timer, 367
TimerTask, 367

transactional objects, 276
transient, 569–570

OMG (Object Management
Group), 65

@OneToMany annotation, 247, 632
one-to-many relationships, 237,

245–253
@OneToOne annotation, 631
one-to-one relationships, 237–244
onMessage() method, 176
OOP (Object-Oriented

Programming), 399
OpenLDAP, 578
operating systems, scheduling

mechanisms in, 366
optimistic concurrency control,

315–316
optimistic locking, 150–151
OptimizeIt performance-profiling

tool, 429
optimizing performance

capacity planning, 415–416
entities, 423–426
Java Virtual Machine (JVM),

427–429
JDBC connection pool, 429
local and remote interfaces,

418–419
message-driven beans, 426–427
partitioning resources, 419–420
performance requirements,

411–412
session façade, 416–418
stateful session beans, 421–422
stateless session beans, 420–421
statelessness, 413–415
Web applications, 430

OR (object-relational) mappers, 130,
132

Oracle TopLink object-relational
mapper, 132

@OrderBy annotation, 636

26_785415 bindex.qxp 6/5/06 7:06 PM Page 671

672 Index

Organization for the Advancement
of Structured Information
Standards (OASIS), 361–362

OTS (Object Transaction Service),
285–286

OutboundLoanRA example
architecture, 468
client contracts, 471–485
deploying, 493–494
deployment descriptor, 494
extensibility, 502
features, 467
JavaLoanApp.java class,

469–470
LoanApp.dll, 470–471
LoanRatesClient application,

496–501
LoanRatesEJB stateless session

bean, 495–496
source files, 469
system contracts, 485–493

P
packaging

EJB 3.0 enterprise beans, 81–82
entity classes, 143–144
Web services, 125–126

parameter passing, 561–562, 568,
572–573

partitioning resources, 419–420
pass-by-reference parameter,

561–562, 568, 572–573
pass-by-value parameter, 561–562,

568
passing parameters, 561–562, 568,

572
passivation of stateful beans, 95–100
performance optimizations

capacity planning, 415–416
entities, 423–426
Java Virtual Machine (JVM),

427–429

JDBC connection pool, 429
local and remote interfaces, 418–419
message-driven beans, 426–427
partitioning resources, 419–420
performance requirements, 411–412
session façade, 416–418
stateful session beans, 421–422
stateless session beans, 420–421
statelessness, 413–415
Web applications, 430

performance-profiling tools, 429
@PermitAll annotation, 348, 608
persistence

entities
accessing, 138
business methods, 138
concurrent access, 150–151
database synchronization,

148–149
defined, 133–134
differences from session beans,

134
direct entity data manipulation,

149–150
entity beans, differences from, 129
finding, 153–155
life cycle, 134–135, 145–147
life-cycle callbacks, 147–148
lookups, 153–155
modifying, 149–150
persistence context, 138–142
persistence provider, 135
persistent state, 138
plain old Java objects (POJOs),

133
primary key, 137–138
session beans, differences from,

134
tuning, 423–426

inheritance
example object model, 220–223
mapping strategies, 223–232

26_785415 bindex.qxp 6/5/06 7:06 PM Page 672

Index 673

rules, 232
superclasses, 232–234

Java Persistence API
object-relational mapping,

130–133
optimistic locking, 150–151
READ locks, 152–153
specification, 129
WRITE locks, 152–153

polymorphism, 234–236
persistence context, 138–142
persistence element, 143
persistence management, EJB server,

430
persistence provider, 135
persistence units, 143–144, 209
@PersistenceContext

annotation, 208–209, 617
@PersistenceContexts

annotation, 617
@PersistenceUnit annotation,

618
persistence-unit element,

143–144
persistent data objects, 133
pessimistic concurrency control,

315–316
phantom problem, 309, 313–314
point-to-point messaging, 161–162
poison messages, 187–190
POJOs (plain old Java objects)

defined, 133
entities, 227
Hibernate framework, 384
Spring framework, 384

polymorphism, 234–236
pooling

distributed systems, 7
stateful session beans, 95–96
stateless session beans, 93–94

port components, 122
portability, 10

ports, 119
@PostActivate annotation, 606
@PostActivate callback method,

98, 100–101
@PostConstruct annotation, 605
@PostConstruct callback method,

101
@PostLoad annotation, 613
@PostPersist annotation, 612
@PostRemove annotation, 613
@PostUpdate annotation, 613
@PreDestroy annotation, 605
@PreDestroy callback method,

101, 113
pre-EJB 3.0 and EJB 3.0

compatibility, 75
@PrePassivate annotation, 606
@PrePassivate callback method,

97–98, 100–101
@PrePersist annotation, 147–148,

612
@PreRemove annotation, 613
presentation tier

defined, 534
Java Server Pages (JSP), 543–547
servlets, 541–543
@PreUpdate annotation, 613
Pricer Web service (application

example), 554–557
Pricer Web service interface

(application example), 553–554
primary key

entities, 137–138
generation algorithm, 566
@PrimaryKeyJoinColumn

annotation, 640
@PrimaryKeyJoinColumns

annotation, 640
Princeton University WordNet

service web site, 4
Principles of Databases Systems

(Ullman), 309

26_785415 bindex.qxp 6/5/06 7:06 PM Page 673

674 Index

processing order of interceptors, 210
programmatic authorization,

327–328, 342–346, 351
projections, 267
proprietary files (stateful session

beans), 107
publish/subscribe messaging,

161–162
pull model (message-driven beans),

184
push model (message-driven beans),

184

Q
Quality of Service (QoS), 9, 22
queries

creating
EJB-QL, 154–155
general steps, 153
SQL, 154–155

dynamic queries, 154, 268
named queries, 154–155, 269
projections, 267
Query interface, 154
SELECT statements, 269–270
subqueries, 268–269

R
RA. See resource adapter
READ COMMITTED isolation level,

309–311
READ locks, 152–153
READ UNCOMMITTED isolation level,

309–311
readObject() method, 568–569
recursion in object serialization, 570
redundancy, 508
refactoring, 390–391
Refactoring: Improving the Design of

Existing Code (Fowler), 391
reflective invocation, 400
refresh() method, 148

relationships
bidirectional, 237–238
defined, 237
directionality of, 237–238
many-to-many, 237, 254–260
many-to-one, 237
object-relational mapping, 130–133
one-to-many, 237, 245–253
one-to-one, 237–244
unidirectional, 237–238

reliability
large-scale systems

clustering, effect on reliability,
508

defined, 506
messaging, 159
RMI-IIOP, 158

remote accessibility to EJB
containers, 60–61

@Remote annotation, 201, 601
remote business interfaces, 74
remote interfaces

choosing between local and remote
interfaces, 418–419

defined, 15
EJB version 2.1 and earlier, 38–39,

42–43
RMI (remote method invocation),

563–564
stateful session beans, 100, 102

remote method invocation (RMI)
client-side callback functionality,

396
defined, 32, 560
distributed systems, 6
Java Remote Method Invocation

(RMI), 32
local/remote transparency, 566–567
marshaling, 560–561
versus messaging, 158
network or machine instability, 561
object serialization, 571–573

26_785415 bindex.qxp 6/5/06 7:06 PM Page 674

Index 675

parameter passing semantics,
561–562

process overview, 14–15
remote interfaces, 563–564
remote objects, 564–565
skeletons, 566–567
stubs, 566–567
unmarshaling, 560–561

remote procedure calls (RPCs), 560
@Remove annotation, 202–204, 601
remove() method, 146, 203–205
REPEATABLE READ isolation level,

309, 312–313
replication, 511
request-level failover, 511
request/reply messaging,

161, 190–194
Required transaction attribute,

293
requirements for performance,

411–412
RequiresNew transaction attribute,

294
resource adapter (RA)

Common Client Interfaces (CCI),
439

defined, 436
EIS-specific client interfaces,

439–440
extensibility of, 441–442
interaction with application server,

440–441
OutboundLoanRA example

architecture, 468
client contracts, 471–485
deploying, 493–494
deployment descriptor, 494
extensibility, 502
features, 467
JavaLoanApp.java class,

469–470
LoanApp.dll, 470–471

LoanRatesClient application,
496–501

LoanRatesEJB stateless session
bean, 495–496

source files, 469
system contracts, 485–493

system contracts
connection management, 454–457
life cycle management, 453–454
message inflow, 464–467
security management, 458–460
transaction management, 460–463
work management, 462, 464

transactions, 304
@Resource annotation, 205–207, 610
resource manager, 276
resources

bean-independent, 419–420
bean-specific, 419–420
caching, 421
containers, 60
defined, 276
injection, 206–208
just-in-time resource acquisition or

release, 420
partitioning, 419–420
pooling, 7
references, 205–207
X/Open XA resource manager

interface, 276
@Resources annotation, 207, 610
retainIfException element,

202–205
@Retention annotation, 595
retrieving status of transactions,

304–305
returning results back to message

producers, 190–194
reusable services, 27–29
reusing code

best practices, 404–405
components, 4

26_785415 bindex.qxp 6/5/06 7:06 PM Page 675

676 Index

risk assessment, 323–324
RMI (remote method invocation)

client-side callback functionality,
396

defined, 32, 560
distributed systems, 6
Java Remote Method Invocation

(RMI), 32
local/remote transparency,

566–567
marshaling, 560–561
versus messaging, 158
network or machine instability, 561
object serialization, 571–573
parameter passing semantics,

561–562
process overview, 14–15
remote interfaces, 563–564
remote objects, 564–565
skeletons, 566–567
stubs, 566–567
unmarshaling, 560–561

rmic (RMI compiler) tool, 567
RMI-IIOP

asynchrony, 158
client address space, 562
containers, 65–66
CORBA interoperability, 573–575
decoupling, 158
defined, 32, 65, 559–560
integrating with JNDI, 588–590
limitations, 158
versus messaging, 407–410
networking, 561
primary key generation algorithm,

566
protocol specific–tuning settings,

429
reliability, 158
secure interoperability, 353–356
server address space, 562
singletons, 406

skeleton generation, 567
specification, 559
stub generation, 567
support for multiple senders and

receivers, 158
threading, 566
tutorials, 559

RMI-JRMP, 560
role-mapping element, 328
@RolesAllowed annotation,

347–348, 607
Rollback() method, 304
rollbacks (transactions), 304
RPCs (remote procedure calls), 560
rules

for inheritance, 232
for join table generation, 256
for object serialization, 569
@RunAs annotation, 608

S
sagas, 281
SAML (Security Assertion Markup

Language), 361–362
scalability of large-scale systems

clustering, effect on scalability, 509
defined, 507

scheduling
automated tasks, 365
Cron jobs, 366
Enterprise JavaBeans (EJB) version

3.0, 366–367
Java Timer APIs, 367
operating systems, 366
timers
CleanDayLimitOrdersBean

EJB example, 373–379
interaction between EJB and

Timer Service, 371–372
limitations of, 380
overview, 368
strengths of, 379–380

26_785415 bindex.qxp 6/5/06 7:06 PM Page 676

Index 677

Timer Service API, 369–371
transactions, 373

workflows, 366
scripting languages as middleware,

121
@SecondaryTable annotation, 620
@SecondaryTables annotation,

621
secure interoperability, 353–356
security

attacker model, 324
authentication

defined, 324
digest, 326–327
form-based, 326–327
HTTP basic, 326–327
HTTPS client, 326–327
Java Authentication and

Authorization Service (JAAS),
329–340

Web applications, 326–327
authorization

condition-based, 351
declarative, 327–328, 346–351
defined, 324
instance-level, 351
Java Authentication and

Authorization Service (JAAS),
329–340

programmatic, 327–328, 342–346,
351

security roles, 341
Web applications, 327–328

breaches, 323
components, 383
containers, 60
controls, 323–325
CSIv2 (Common Secure

Interoperability version 2),
353–356

data confidentiality protection
defined, 325
Web applications, 328–329

data integrity protection
defined, 324
Web applications, 328–329

defined, 322
distributed systems, 8
IIOP/SSL (IIOP over SSL), 353
JNDI (Java Naming and Directory

Interface), 325
message-driven beans, 183
risk assessment, 323–324
SAML (Security Assertion Markup

Language), 361–362
violations, 323
vulnerabilities, 323
Web applications, 325–329
Web services, 356–361
WS-Security, 362–364
XML digital signatures, 358–361
XML encryption, 358–361

Security Assertion Markup
Language (SAML), 361–362

security contexts, 351–352
Security Engineering (Anderson), 322
security management contract,

458–460
security roles, 341
security-constraint element,

327–328
SELECT statements, 269–270
semantics

message-driven beans, 173
parameter passing, 561–562,

572–573
transactions, 423
@SequenceGenerator annotation,

643
serializability of transactions, 309
SERIALIZABLE isolation level, 309,

313–314
serialization

conversational states of session
beans, 96–97

defined, 568

26_785415 bindex.qxp 6/5/06 7:06 PM Page 677

678 Index

serialization (continued)
Java serialization API, 569–570
java.lang.Serializable

interface, 568–570
recursion, 570
RMI (remote method invocation),

571–573
rules, 569

server
bean instance pool, 416
choosing, 430–431
clustering, 431

availability, effect on, 508
collocated architecture, 512–516
containers, 517
defined, 507
distributed architecture, 512–516
entities, 523–526
failovers, 510–512
first contact, 527
idempotent, 518–519
initial access logic, 527–528
JNDI (Java Naming and Directory

Interface), 516
load balancing, 509–510, 512
message-driven beans, 526
nodes, 508
redundancy, 508
reliability, effect on, 508
scalability, effect on, 509
serviceability, effect on, 508–509
single-system view, 507–508
smart stub, 517
stateful session beans, 521–523
stateless session beans, 519–521
stubs, 517

load balancing, 431, 509–510, 512
persistence management, 430
standby machine, 416
thread pool, 416
throttling, 416, 431
tuning, 431

server address space in RMI-IIOP,
562

service endpoints
servlets, 396–397
stateless session beans, 396–397

service interfaces
defined, 116
ports, 119

Service Provider Interface (SPI), 160
serviceability of large-scale systems

clustering, effect on serviceability,
508–509

defined, 507
service-oriented architecture (SOA),

25–27, 115–117
services

directory services, 576–579
middleware services

building from scratch, 8
buying via application server

software, 9
defined, 8
explicit, 16–18
implicit, 17–18
scripting languages, 121

naming services, 576–579
reusable services, 27–29
Web services

application integration, 117, 435,
503–504

bindings, 119
client-side callback functionality,

396
deploying, 125–126
examples of, 116
implementing, 122–124
interoperability, 117
Java API for XML Web Services

(JAX-WS), 122–124
Java Architecture for XML

Binding (JAXB), 124–125
packaging, 125–126

26_785415 bindex.qxp 6/5/06 7:06 PM Page 678

Index 679

port components, 122
Pricer Web service (application

example), 554–557
Pricer Web service interface

(application example), 553–554
security, 356–361
service interfaces, 116, 119
service-oriented architecture

(SOA), 26–27, 115–117
SOAP (Simple Object Access

Protocol), 26, 119–121
standards, 118–121
UDDI, 118
Web Service Description

Language (WSDL), 26–27,
117–119, 125

XML documents, 121–122
servlets

defined, 33, 541
example, 542–543
HTTP servlets, 542–543
Java Server Pages (JSP), 543–547
login servlet (application example),

549–553
service endpoints, 396–397

session beans
annotations, 600–601
business logic tier, 538
callback methods
@PostActivate, 98, 100–101
@PostConstruct, 101
@PreDestroy, 101, 113
@PrePassivate, 97–98, 100–101

client code, 91–92
defined, 61, 91
entities, differences from, 134
interceptors, 209–213
life cycle, 91–92, 110–113
nonpersistence, 92
stateful

activation, 95–100
callback interceptor, 104–105

client code, 107–109
client-side output, 109–110
clustering, 521–523
conversational states, 96–97
counter bean example, 100,

102–110
defined, 94
deployment descriptor, 106–107
Ejb-jar file, 107
failure, 415
life cycle, 113
passivation, 95–100
pooling, 95–96
proprietary files, 107
remote interfaces, 100, 102
server-side output, 110
transaction attributes, 301
tuning, 421–422

stateless
clustering, 519–521
defined, 92–93
life cycle, 110–112
LoanRatesEJB example,

495–496
pooling, 93–94
service endpoints, 396–397
transaction attributes, 301
tuning, 420–421

Web services, 125–126
session façade, 416–418
session failover, 511
session stickiness, 510
SessionBean interface, 74–75
SessionContext object, 206
setFlushMode() method, 148
setMessageDrivenContext()

method, 173
setRollbackOnly() method, 299,

304
setting isolation levels, 314–315
setTransactionTimeout(int)

method, 304

26_785415 bindex.qxp 6/5/06 7:06 PM Page 679

680 Index

shopping cart, 539–541
Signature element, 360
SignatureValue element, 360
SignedInfo element, 360
Simple Object Access Protocol

(SOAP), 26, 119–121
single-system view, 507–508
single-threaded beans, 167
singletons, 405–406
skeleton

defined, 14–15
generating, 567
RMI (remote method invocation),

566–567
small-device support in Web

application frameworks, 386
smart stub, 517
SOA (service-oriented architecture),

25–27, 115–117
SOAP (Simple Object Access

Protocol), 26, 119–121
sockets, 436
software components, 4
software proxies, 528
Sonic Software SonicMQ message-

oriented middleware, 159
SourceForge.net Tyrex project, 414
specifications

EJB 3.0, 11, 60
Java EE 5 Platform Specification,

325
Java Naming and Directory

Interface (JNDI), 559
Java Servlet Specification, 325
RMI-IIOP, 559

specifying transaction attributes,
292

SPI (Service Provider Interface), 160
Spring framework, 384
SQL, 154–155
@SqlResultSetMapping

annotation, 616

standards
component frameworks, 9–10
Enterprise JavaBeans (EJB), 10
Web application frameworks, 386
Web services, 118–121

standby machine, 416
@Stateful annotation, 200, 600
stateful session beans

activation, 95–100
callback interceptor, 104–105
client code, 107–109
client-side output, 109–110
clustering, 521–523
conversational states, 96–97
counter bean example, 100, 102–110
defined, 94
deployment descriptor, 106–107
Ejb-jar file, 107
failure, 415
life cycle, 113
passivation, 95–100
pooling, 95–96
proprietary files, 107
remote interfaces, 100, 102
server-side output, 110
transaction attributes, 301
tuning, 421–422
@Stateless annotation, 200, 600
stateless session beans

clustering, 519–521
defined, 92–93
life cycle, 110–112
LoanRatesEJB example, 495–496
pooling, 93–94
service endpoints, 396–397
transaction attributes, 301
tuning, 420–421

statelessness
performance optimizations,

413–415
workarounds, 414

static invocation, 400

26_785415 bindex.qxp 6/5/06 7:06 PM Page 680

Index 681

static queries, 154–155
status of transactions, retrieving,

304–305
store and forward, 160
stub

clustering, 517
defined, 14–15
generating, 567
remote interface, 15
RMI (remote method invocation),

566–567
smart stub, 517

styles of integration
application integration, 434
business process integration,

434–435
subcontexts, 582
subqueries, 268–269
subtransactions, 281
Sun Java System Messaging Server,

159
superclasses, 232–234
support for concurrent requests, 61
support for multiple senders and

receivers
messaging, 159
RMI-IIOP, 158
Supports transaction attribute,

294
system administrator, 20–21
system contracts

connection management, 454–457
life cycle management, 453–454
message inflow, 464–467
OutboundLoanRA example,

485–493
security management, 458–460
transaction management, 460–463
work management, 462, 464

systems management in distributed
systems, 7

T
@Table annotation, 619
@TableGenerator annotation, 644
@Target annotation, 595
technical requirements

business logic tier
catalog, 537
customer data, 535–536
defined, 534
entities, 534–535, 538
line items, 537
message-driven beans, 538
order data, 536
products, 537
session beans, 538
shopping cart, 539–541

data tier, 534
presentation tier

defined, 534
Java Server Pages (JSP), 543–547
servlets, 541–543

@Temporal annotation, 629
test-driven development, 391
testing EJB

EJB version 2.1 and earlier, 54–55
unit testing, 392–395

thread pool (EJB server), 416
threading

distributed systems, 7
multithreaded beans, 167
RMI-IIOP, 566
single-threaded beans, 167

thread-safe code, 167
throttling, 416, 431
Tibco Rendezvous message-oriented

middleware, 159
TimedObject interface, 176, 368,

370–371
@Timeout annotation, 176, 606
timeout of transactions, 304
Timer API, 367

26_785415 bindex.qxp 6/5/06 7:06 PM Page 681

682 Index

Timer interface, 368, 370
Timer object, 367
TimerHandle interface, 368, 371
timers
CleanDayLimitOrdersBean EJB

example, 373–379
interaction between EJB and Timer

Service, 371–372
limitations of, 380
message-driven beans, 176
overview, 368
strengths of, 379–380
Timer Service API
javax.ejb.TimedObject

interface, 368, 370–371
javax.ejb.Timer interface,

368, 370
javax.ejb.TimerHandle

interface, 368, 371
javax.ejb.TimerService

interface, 368–369
transactions, 373
TimerService interface, 368–369
TimerTask API, 367
TimerTask object, 367
tools

At utility, 366
Batch utility, 366
defined, 24
EasyMock utility, 394–395
Hibernate object-relational mapper,

132
jMock utility, 394
JProbe performance-profiling tool,

429
MockMaker utility, 394
Model Driven Development

(MDD), 388–389
OptimizeIt performance-profiling

tool, 429
Oracle TopLink object-relational

mapper, 132
rmic (RMI compiler), 567

Web application frameworks,
385–386

XDoclet, 394–395, 401, 597–598
TopLink object-relational mapper

(Oracle), 132
tracking/logging system, 429
transaction attributes

applicability to various beans,
300–302

comparison of, 295–296
defined, 292
Mandatory, 294
message-driven beans, 301–302
Never, 295
NotSupported, 295
Required, 293
RequiresNew, 294
session beans, 301
specifying, 292
Supports, 294

transaction context, 285
transaction coordinator, 283–285
transaction management contract,

460–463
transaction manager, 276, 278
transactional communications

protocol, 285
transactional components, 276
transactional models

chained transactions, 281
flat transactions, 278–280
nested transactions, 278, 280–282
sagas, 281

transactional objects, 276
@TransactionAttribute

annotation, 292, 604
@TransactionManagement

annotation, 604
TransactionManager interface,

286
transactions

aborting, 288
ACID properties, 276–278

26_785415 bindex.qxp 6/5/06 7:06 PM Page 682

Index 683

atomic operations, 272–273
atomicity, 277
bean-managed, 288–289, 291,

302–307
beginning, 304
benefits of, 275–276
client-controlled, 290–292, 307
committing, 288, 304
concurrency control

need for, 308–309
optimistic, 315–316
pessimistic, 315–316

consistency, 277
container-managed, 289–299
containers, 59
defined, 271
demarcating transactional

boundaries, 288
designing transactional

conversations, 316–319
distributed systems, 7
distributed transactions, 282–285,

382
dooming, 299
durability, 278, 283
entities, 302
isolation, 277–278, 307–309
isolation levels

best practices, 423–424
choosing, 423–424
dirty read problem, 309–311
phantom problem, 309, 313–314
READ COMMITTED, 309–311
READ UNCOMMITTED, 309–311
REPEATABLE READ, 309, 312–313
SERIALIZABLE, 309, 313–314
setting, 314–315
unrepeatable read problem, 309,

312–313
Java EE Connector Architecture, 304
Java Transaction API (JTA),

32, 286–287

Java Transaction Service (JTS),
32, 286–288

JSR 095 (Java EE Activity Service
for Extended Transactions), 382

local transactions, 282
long-running transactions, 382
message-driven beans, 183
multiple users sharing data,

274–275
nested transactions, 382
network or machine failure,

273–274
Object Transaction Service (OTS),

285–286
Resource Adapters (RA), 304
retrieving status of, 304–305
rollbacks, 304
semantics, 423
serializability, 309
subtransactions, 281
timeouts, 304
timers, 373
two-phase commit protocol,

283–285
transaction-scoped persistence

context, 140–141
@Transient annotation, 627
transient keyword, 569
transient objects, 569–570
transparent failover in distributed

systems, 7
transport-guarantee element,

328–329
tuning

entities, 423–426
Java Virtual Machine (JVM),

427–429
JDBC connection pool, 429
message-driven beans, 426–427
performance-profiling tools, 429
server, 431
stateful session beans, 421–422

26_785415 bindex.qxp 6/5/06 7:06 PM Page 683

684 Index

tuning (continued)
stateless session beans, 420–421
Web applications, 430

tutorials
Java Message Service (JMS), 167
Java Naming and Directory

Interface (JNDI), 559
RMI-IIOP, 559

two-phase commit protocol,
283–285

Tyrex project (SourceForge.net), 414

U
UDDI Web services, 118
Ullman, Jeffrey D. (Principles of

Databases Systems), 309
unidirectional relationships, 237–238
@UniqueConstraints annotation,

621
unit testing, 392–395
unitName element, 209
unmarshaling, 560–561
unrepeatable read problem, 309,

312–313
U.S. Justice Department vs. IBM

antitrust lawsuit, 4–5
user-data-constraint element,

328
users, multiple users sharing data,

274–275
UserTransaction interface, 286,

303–304
utilities. See also tools

At, 366
Batch, 366
EasyMock, 394–395
jMock, 394
MockMaker, 394

V
vendor-specific files

deployment descriptors, 87
EJB version 2.1 and earlier, 39–40

@Version annotation, 628
version control, 150
Vinoski, Steve, Middleware Dark

Matter article, 121
violations of security, 323
vulnerabilities in security, 323

W
Web application frameworks

best practices, 385–387
choosing, 385–387
open source versus closed source,

386–387
small-device support, 386
standards, 386
tools, 385–386

Web applications
authentication, 326–327
authorization, 327–328
data confidentiality protection,

328–329
data integrity protection, 328–329
security, 325–329
tuning, 430

Web pages, 13
Web service clients, 13–14, 126–128
Web Service Description Language

(WSDL), 26–27, 117–119, 125
Web services

application integration, 117, 435,
503–504

bindings, 119
client-side callback functionality,

396
deploying, 125–126
examples of, 116
implementing, 122–124
integration, 117
interoperability, 117
Java API for XML Web Services

(JAX-WS), 122–124
Java Architecture for XML Binding

(JAXB), 124–125

26_785415 bindex.qxp 6/5/06 7:06 PM Page 684

Index 685

packaging, 125–126
port components, 122
Pricer Web service (application

example), 554–557
Pricer Web service interface

(application example), 553–554
security, 356–361
service interfaces

defined, 116
ports, 119

service-oriented architecture
(SOA), 26–27, 115–117

SOAP (Simple Object Access
Protocol), 26, 119–121

standards, 118–121
UDDI, 118
Web Service Description Language

(WSDL), 26–27, 117–119, 125
XML documents, 121–122

Web Services Metadata for the Java
Platform, 32

web sites
Java Community Process (JCP), 132
SourceForge.net Tyrex project, 414
WordNet service (Princeton

University), 4

when to use EJB, 382–384
WordNet service web site (Princeton

University), 4
work management contract, 462, 464
workarounds for statelessness, 414
workflow scheduling, 366
WRITE locks, 152–153
writeObject() method, 568–569
WSDL (Web Service Description

Language), 26–27, 117–119, 125
WS-Security, 362–364

X
XAResource interface, 286
XDoclet framework, 394–395, 401,

597–598
XML

best practices, 406–407
deployment descriptor files,

593, 596–597
digital signatures, 358–361
encryption, 358–361
Web services, 121–122

X/Open XA resource manager
interface, 276

XP (Extreme Programming), 389–391

26_785415 bindex.qxp 6/5/06 7:06 PM Page 685

26_785415 bindex.qxp 6/5/06 7:06 PM Page 686

27_785415 bob.qxp 6/5/06 7:06 PM Page 687

27_785415 bob.qxp 6/5/06 7:06 PM Page 688

	Mastering Enterprise JavaBeans 3.0
	About the Authors
	Credits
	Contents
	Acknowledgments
	Introduction
	Goals for This Edition
	Organization of the Book
	Illustrations in the Text
	The Accompanying Web Site
	Feedback
	From Here

	Part I: Overview
	Chapter 1: Overview
	A Prelude to Enterprise JavaBeans
	Infrastructure Needs of Distributed Applications
	Enterprise JavaBeans Technology
	Service-Oriented Architectures and Enterprise JavaBeans
	Divide and Conquer to the Extreme with Reusable Services
	The Java Platform, Enterprise Edition 5.0 (Java EE)
	Summary

	Chapter 2: Pre-EJB 3.0: The World That Was
	What Constituted a Pre-EJB 3.0 Enterprise Bean?
	Developing and Deploying a Pre-EJB 3.0 Enterprise Java Bean
	Dissecting EJB 2.x
	Summary

	Chapter 3: The New Enterprise JavaBean
	Introducing EJB 3.0
	The EJB 3.0 Simplified API
	Packaging and Deployment of the “New” Bean
	Example of EJB 3.0 Bean
	Summary of Terms
	Summary

	Part II: The Triad of Beans and Entities
	Chapter 4: Introduction to Session Beans
	Session Bean Lifetime
	Session Bean Subtypes
	Special Characteristics of Stateful Session Beans
	Summary

	Chapter 5: Writing Session Bean Web Services
	Web Services Concepts
	Implementing a Web Service
	Implementing a Web Service Client
	Summary

	Chapter 6: Java Persistence: Programming with Entities
	Object-Relational Mapping
	What Is an Entity?
	The EntityManager API
	Summary

	Chapter 7: Introduction to Message-Driven Beans
	Motivations for Messaging
	The Java Message Service (JMS)
	Integrating JMS with EJB
	Developing Message-Driven Beans
	Advanced Concepts
	JMS Message-Driven Bean Gotchas
	Summary

	Chapter 8: Adding Functionality to Your Beans
	Calling Beans from Other Beans
	Annotations
	Summary

	Part III: Advanced Enterprise JavaBeans Concepts
	Chapter 9: Advanced Persistence Concepts
	Inheritance
	Polymorphism
	Relationships
	EJB-QL Enhancements
	Summary

	Chapter 10: Transactions
	Motivation for Transactions
	Benefits of Transactions
	Transactional Models
	Distributed Transactions
	Java Transaction Service and Java Transaction API
	Enterprise JavaBeans Transactions
	Container-Managed Transactions
	Bean-Managed Transactions
	Client-Controlled Transactions
	Transactional Isolation
	Designing Transactional Conversations in EJB
	Summary

	Chapter 11: Security
	Introduction
	Web Application Security
	Understanding EJB Security
	Secure Interoperability
	Web Services Security
	Summary

	Chapter 12: EJB Timers
	Scheduling
	EJB and Scheduling
	The EJB Timer Service
	Timer Example: CleanDayLimitOrdersBean
	Strengths and Limitations of EJB Timer Service
	Summary

	Chapter 13: EJB Best Practices
	When to Use EJB
	How to Choose a Web Application Framework to Work with EJB
	Applying Model Driven Development in EJB Projects
	Applying Extreme Programming in EJB Projects
	Testing EJB
	Implementing Client-Side Callback Functionality in EJB
	Choosing between Servlets and Stateless Session Beans as Service Endpoints
	Considering the Use of Aspect-Oriented Programming Techniques in EJB Projects
	Reflection, Dynamic Proxy, and EJB
	Deploying EJB Applications to Various Application Servers
	Debugging EJB
	Inheritance and Code Reuse in EJB
	Writing Singletons in EJB
	When to Use XML with EJB
	When to Use Messaging versus RMI-IIOP
	Summary

	Chapter 14: EJB Performance Optimizations
	It Pays to Be Proactive!
	The Stateful versus Stateless Debate from a Performance Point of View
	How to Guarantee a Response Time with Capacity Planning
	Use Session Façade for Better Performance
	Choosing between Local Interfaces and Remote Interfaces
	Partitioning Your Resources
	Tuning Stateless Session Beans
	Tuning Stateful Session Beans
	Tuning Entities
	Tuning Message-Driven Beans
	Tuning Java Virtual Machine
	Miscellaneous Tuning Tips
	Choosing the Right EJB Server
	Summary

	Chapter 15: EJB Integration
	Why Does Integration Matter?
	EJB and Integration
	Java EE Connector Architecture
	The Java EE Connector API
	System Contracts
	Connector Example: OutboundLoanRA
	Integration Best Practice: When to Use Which Technology
	Summary

	Chapter 16: Clustering
	Overview of Large-Scale Systems
	Instrumenting Clustered EJBs
	Other EJB Clustering Issues
	Summary

	Chapter 17: EJB-Java EE Integration: Building a Complete Application
	The Business Problem
	A Preview of the Final Web Site
	Scoping the Technical Requirements
	Example Code
	Summary

	Appendix A: RMI-IIOP and JNDI Tutorial
	Java RMI-IIOP
	Object Serialization and Parameter Passing
	The Java Naming and Directory Interface
	Integrating RMI-IIOP and JNDI
	Summary

	Appendix B: Annotations
	Introduction to Annotations
	EJB Annotation Reference
	Summary

	Index

