WILEY TIMELY. PRACTICAL. RELIABLE.

Mastering Enterprise

JavaBeans 3.0

Rima Patel Sriganesh
Gerald Brose
Micah Silverman

Mastering Enterprise
JavaBeans™ 3.0

Mastering Enterprise
JavaBeans 3.0

Rima Patel Sriganesh
Gerald Brose
Micah Silverman

WILEY
Wiley Publishing, Inc.

Click here to purchase this book.

http://www.amazon.com/gp/product/0471785415/ref=sr_11_1/103-1174895-6545420?%5Fencoding=UTF8
jpiscitelli
cover

Mastering Enterprise JavaBeans™ 3.0
Published by

Wiley Publishing, Inc.

10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2006 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN-13: 978-0-471-78541-5

ISBN-10: 0-471-78541-5

Manufactured in the United States of America

10987654321

1B/SS/QW/QW/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sec-
tions 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Pub-
lisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for per-
mission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indi-
anapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at http:/ /www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or war-
ranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all
warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be
created or extended by sales or promotional materials. The advice and strategies contained herein may not be
suitable for every situation. This work is sold with the understanding that the publisher is not engaged in ren-
dering legal, accounting, or other professional services. If professional assistance is required, the services of a
competent professional person should be sought. Neither the publisher nor the author shall be liable for dam-
ages arising herefrom. The fact that an organization or Website is referred to in this work as a citation and/or
a potential source of further information does not mean that the author or the publisher endorses the infor-
mation the organization or Website may provide or recommendations it may make. Further, readers should be
aware that Internet Websites listed in this work may have changed or disappeared between when this work
was written and when it is read.

For general information on our other products and services or to obtain technical support, please contact our
Customer Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317)
572-4002.

Library of Congress Cataloging-in-Publication Data
Sriganesh, Rima Patel.

Mastering enterprise JavaBeans 3.0 / Rima Patel Sriganesh, Gerald Brose,
Micah Silverman.

p-cm.

Includes index.

ISBN-13: 978-0-471-78541-5 (paper/website)

ISBN-10: 0-471-78541-5 (paper/website)

1. JavaBeans. 2. Java (Computer program language) I. Brose, Gerald. II. Silverman, Micah. III. Title.

QAZ76.73.]385756 2006

005.13'3--dc22

2006011333

Trademarks: Wiley, the Wiley logo, and related trade dress are trademarks or registered trademarks of John
Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used without
written permission. Enterprise JavaBeans is a trademark of Sun Microsystems, Inc. All other trademarks are
the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

www.wiley.com

Rima wishes to dedicate this book to her dearest and most loving
Mummy and Papa, on their completing 60 years of a wholesome and
exemplary life this year, and to her beloved husband, Sriganesh.

To my wonderful wife, Christine, and my sons Johannes and Julius.

For Dr. Charles Marshall, who taught me Excellence.

Mastering Enterprise
JavaBeans 3.0

.

About the Authors

Rima Patel Sriganesh is a staff engineer presently working in the Technology
Outreach group at Sun Microsystems, Inc. She specializes in Java, XML, and inte-
gration platforms. Rima represents Sun at various financial services standards.
She is a coauthor of three books and usually publishes her take on technology
in the form of papers and blogs. She also speaks frequently at various industry
conferences.

Rima graduated in Mathematics from M.S. University, Gujarat, India. She
currently lives with her husband in the Greater Boston area.

Gerald Brose works as head of software development for Projektron, a soft-
ware vendor that produces project management software. In previous jobs he
has worked as a product manager, software architect, and researcher. He holds
a Ph.D. in computer science.

Gerald is an expert in distributed object computing and middleware secu-
rity, including CORBA, J2EE, and Web services. Gerald also coauthored Java
Programming with CORBA, also published by Wiley.

Gerald is the maintainer of the JacORB project, the most widely used open
source ORB for Java, which is part of the JBoss and JOnAS J2EE application
servers. He lives with his wife and two sons in Berlin, Germany.

Micah Silverman has been a professional software architect and consultant for
over 15 years. He has been developing with Java since its release in 1995. In
that same year, he founded M*Power Internet Services, Inc., a consulting com-
pany providing software architecting, development, and security services. He
has written numerous articles on software development, information security,
and operating systems.

Click here to purchase this book.

vii

http://www.amazon.com/gp/product/0471785415/ref=sr_11_1/103-1174895-6545420?%5Fencoding=UTF8
jpiscitelli
cover

Mastering Emterprise
lavaBeans 3.0

-

Executive Editor
Robert Elliott

Development Editor
Tom Dinse

Technical Editor
Daniel Rubio

Production Editor
Felicia Robinson

Copy Editor
Foxxe Editorial Services

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive
Group Publisher
Richard Swadley

Vice President and
Executive Publisher
Joseph B. Wikert

Click here to purchase this book.

Credits

Project Coordinator
Michael Kruzil

Graphics and Production
Specialists
Jennifer Click
Lauren Goddard
Joyce Haughey
Stephanie D. Jumper
Barry Offringa
Lynsey Osborn
Heather Ryan
Brent Savage
Alicia B. South

Quality Control Technicians
Amanda Briggs
Jessica Kramer

Proofreading and Indexing
Techbooks

ix

http://www.amazon.com/gp/product/0471785415/ref=sr_11_1/103-1174895-6545420?%5Fencoding=UTF8
jpiscitelli
cover

Mastering Enterprise
JavaBeans 3.0

-

About the Authors
Acknowledgments
Introduction

Part | Overview

Chapter 1 Overview
A Prelude to Enterprise JavaBeans
Software Components
The Need for Componentization

Infrastructure Needs of Distributed Applications

Application Server—Class Software

Building Middleware Services from Scratch
Buying Middleware Services via Application Server Software

Standardization of Component Frameworks
Enterprise JavaBeans Technology

Why Java?

EJB as a Business Tier Component

Distributed Computing: The Foundation of EJB

EJB Middleware Services
Explicit Middleware Approach
Implicit Middleware Approach

Implicit vs. Explicit Middleware Services in EJB

Roles in the E]JB Application Life Cycle
The Bean Provider
The Application Assembler
The E]JB Deployer
The System Administrator

Click here to purchase this book.

Contents

vii
xXXxiii

XXV

O O O 0 © Ul v = b N -

NN = = b e e e e e e
O O 0OV WWOWNNSS RN

http://www.amazon.com/gp/product/0471785415/ref=sr_11_1/103-1174895-6545420?%5Fencoding=UTF8
jpiscitelli
cover

Contents

EJB Ecosystem 22
EJB Container 24

EJB Tools 24
Service-Oriented Architectures and Enterprise JavaBeans 25
Defining Service-Oriented Architectures 26
SOA and Web Services 26

SOA and Component Architectures 27
Divide and Conquer to the Extreme with Reusable Services 27
The Java Platform, Enterprise Edition 5.0 (Java EE) 29
The Java EE Technologies 31
Summary 34
Chapter 2 Pre-EJB 3.0: The World That Was 37
What Constituted a Pre-E]B 3.0 Enterprise Bean? 38
Developing and Deploying a Pre-E]B 3.0 Enterprise Java Bean 41
The Remote Interface 42
The Local Interface 43
The Home Interface 44
The Local Home Interface 45
The Bean Class 45
Deployment Descriptor 47
Deploying The Bean 47
HelloWorldE]B Client 48
Dissecting EJB 2.x 50
Complexity: The Overarching Issue of EJB 2.x 50
Development Complexities 51
Deployment Complexities 53
Debugging and Testing Complexities 54
What Needs to Be Done to Improve EJB 2.x? 55
Summary 55
Chapter3 The New Enterprise JavaBean 57
Introducing EJB 3.0 57
EJB Container 59
Types of Beans 61
RMI-IIOP: The Protocol of the Bean 65
EJB and Location Transparency 66
Enterprise Bean Environment 67
Anatomy of the “New” Bean 68
The Role of EJB Home and Object Interfaces 72
The EJB 3.0 Simplified API 73
Elimination of Home and Object Interfaces 74
Elimination of Component Interface 74
Use of Annotations 76
Annotations and Bean Development 77
Annotations and Deployment Descriptors 77

The Good, the Bad, and the Ugly of Deployment Annotations 79
Simplified Access to Environment 80

Packaging and Deployment of the “New” Bean 81

Contents

Part Il
Chapter 4

Chapter 5

Chapter 6

Example of EJB 3.0 Bean
The Business Interface
The Bean Class
The Deployment Descriptor
The Client
Summary of Terms
Summary

The Triad of Beans and Entities

Introduction to Session Beans
Session Bean Lifetime
Session Bean Subtypes
Stateless Session Beans
Stateful Session Beans
Special Characteristics of Stateful Session Beans
Achieving the Effect of Pooling with Stateful Beans
The Rules Governing Conversational State
Activation and Passivation Callbacks
Summary of Callback Methods
A Simple Stateful Session Bean
The Count Bean’s Remote Interface
The Count Bean
The Count Bean’s Callback Interceptor
The Count Bean’s Deployment Descriptor

The Count Bean’s Proprietary Descriptor and Ejb-jar File

The Count Bean’s Client Code
Running the Client
Life-Cycle Diagrams for Session Beans
Summary

Writing Session Bean Web Services
Web Services Concepts
Web Services Standards
WSDL
SOAP
XML Artifacts and Platform Independence
Implementing a Web Service
WSDL and the XML/Java Mapping
Packaging and Deploying a Web Service Session Bean
Implementing a Web Service Client
Summary

Java Persistence: Programming with Entities
Object-Relational Mapping
What Is an Entity?

Entities versus Session Beans

Persistence Provider

Entity Classes

82
83
83
84
85
86
87

89

91
91
92
92
94
94
95
96
97
100
100
100
102
104
106
107
107
109
110
114

115
115
118
118
120
121
122
125
125
126
128

129
130
133
134
135
135

xiv Contents

Chapter 7

Chapter 8

Accessing Entities in the Persistence Context
Extended Persistence Context
Packaging and Deploying Entity Classes
The EntityManager API
Entity Life Cycle
Life-Cycle Callbacks
Database Synchronization
Direct Entity Data Manipulation
Concurrent Access and Locking
Entity Lookup and Query API
Named Queries
Summary

Introduction to Message-Driven Beans
Motivations for Messaging
The Java Message Service (JMS)
Messaging Domains
The JMS API
Integrating JMS with EJB
What Is a Message-Driven Bean?
Developing Message-Driven Beans
The Semantics
A Simple Example
The Bean Implementation Class
The Deployment Descriptor
More Metadata: Activation Configuration Properties
The Client Program
Advanced Concepts
Transactions
Security
Load Balancing
Duplicate Consumption in a Cluster
JMS Message-Driven Bean Gotchas
Message Ordering
Missed @PreDestroy Calls
Poison Messages
How to Return Results Back to Message Producers
An Alternative Request/Response Paradigm
The Future: Asynchronous Method Invocations
Summary

Adding Functionality to Your Beans
Calling Beans from Other Beans
Default JNDI Lookups
Annotations
Common Annotations
Business Interface Annotations
Other Stateful Annotations

138
141
143
144
145
147
148
149
150
153
154
155

157
157
160
161
162
167
169
173
173
175
175
177
178
183
183
183
183
183
184
186
186
186
187
190
194
195
195

197
197
198
199
200
200
202

Contents

XV

Part Il
Chapter 9

Chapter 10

Dependency Injection
Resource References
Interceptors
Summary

Advanced Enterprise JavaBeans Concepts

Advanced Persistence Concepts
Inheritance

Single Table per Class Hierarchy

Separate Table per Subclass

Single Table per Concrete Entity Class

Other Modes of Inheritance
Polymorphism
Relationships

Relationship Types

One-to-One

One-to-Many

Many-to-Many
EJB-QL Enhancements

Bulk Updates and Deletes

JOIN Operations

GROUP BY and HAVING clauses

Projection

Fun with Queries

Dynamic Queries and Named Parameters
Subqueries

Object Construction in SELECT Statements

Summary

Transactions
Motivation for Transactions
Atomic Operations
Network or Machine Failure
Multiple Users Sharing Data
Benefits of Transactions
The ACID Properties
Transactional Models
Flat Transactions
How Transactional State Is Rolled Back
Nested Transactions
Other Transactional Models
Distributed Transactions
Durability and the Two-Phase Commit Protocol
The Transactional Communications Protocol
and Transaction Contexts

205
205
209
214

217

219
220
223
230
232
232
234
237
237
238
245
254
261
261
265
266
267
268
268
268
269
270

271
272
272
273
274
275
276
278
278
280
280
281
282
283

285

xvi Contents

Java Transaction Service and Java Transaction API
OTS and Java Transaction Service
The Java Transaction API
JTS and Distributed Transaction Interoperability
across Application Servers
Enterprise JavaBeans Transactions
Underlying Transaction System Abstraction
Container-Managed, Bean-Managed, and
Client-Controlled Transactions
Container-Managed Transactions
Client-Controlled Transactions
Choosing a Transaction Style
Container-Managed Transactions
EJB Transaction Attribute Values
Required
RequiresNew
Supports
Mandatory
NotSupported
Never
Transaction Attribute Summary
Container-Managed Transaction Example
Applicability of Transaction Attributes to Various Beans
Bean-Managed Transactions
The javax.transaction.UserTransaction Interface
Bean-Managed Transaction Example
Client-Controlled Transactions
Transactional Isolation
The Need for Concurrency Control
Isolation Levels
The Dirty Read Problem
READ UNCOMMITTED
READ COMMITTED
The Unrepeatable Read Problem
REPEATABLE READ
The Phantom Problem
SERIALIZABLE
Transaction Isolation Summary
Using Various Isolation Levels in EJB Applications
Pessimistic and Optimistic Concurrency Control
Designing Transactional Conversations in EJB
Summary

285
285
286

287
288
288

288
289
290
291
292
293
293
294
294
294
295
295
295
296
300
302
303
306
307
307
308
310
310
311
311
312
312
313
313
314
314
315
316
319

Contents xvii

Chapter 11

Chapter 12

Security
Introduction
Violations, Vulnerabilities, and Risk
Controls
Web Application Security
Authentication in Web Applications
Authorization
Confidentiality and Integrity
Understanding EJB Security
Authentication in EJB
JAAS Overview
The JAAS Architecture
JAAS Sample Code
Authorization in E]B
Security Roles
Performing Programmatic Authorization
Performing Declarative Authorization
Declarative or Programmatic?
Security Propagation
Secure Interoperability
1IOP/SSL
CSIv2
Web Services Security
End-to-End Security
XML Digital Signature and XML Encryption
SAML
WS-Security
Summary

EJB Timers
Scheduling
EJB and Scheduling
The EJB Timer Service
Timer Service API
javax.ejb. TimerService
javax.ejb.Timer
javax.ejb.TimedObject
javax.ejb. TimerHandle
Interaction between the EJB and the Timer Service
Timer Example: CleanDayLimitOrdersBean
The CleanDayLimitOrders Business Interface
The CleanDayLimitOrdersBean Class
The CleanDayLimitOrders EJB Deployment Descriptor
The CleanDayLimitOrders EJB Client
Running the Client
Strengths and Limitations of EJB Timer Service
Summary

321
322
323
323
325
326
327
328
329
329
329
331
333
341
341
342
346
351
351
353
353
354
356
357
358
361
362
364

365
365
366
368
368
369
370
370
371
371
373
374
374
376
377
378
379
380

xviii Contents
Chapter 13 EJB Best Practices 381
When to Use EJB 382
How to Choose a Web Application Framework
to Work with EJB 385
Applying Model Driven Development in E]JB Projects 387
Applying Extreme Programming in EJB Projects 389
Testing EJB 392
EJB Unit Testing 392
Use Frameworks for EJB Unit Testing 393
The JUnit Framework 393
Mock Object Frameworks 394
Implementing Client-Side Callback Functionality in EJB 395
TMS 395
Remote Method Invocation 396
Web Service 396
Choosing between Servlets and Stateless
Session Beans as Service Endpoints 396
Considering the Use of Aspect-Oriented Programming
Techniques in EJB Projects 397
Aspect-Oriented Programming 397
When to Use AOP in EJB Applications 398
Support Custom Concerns 398
Are Interceptors AOP? 398
Supply Aspects to the World Outside the EJB Container 399
Reflection, Dynamic Proxy, and EJB 400
Deploying EJB Applications to Various Application Servers 400
Debugging E]B 402
Inheritance and Code Reuse in EJB 404
Writing Singletons in EJB 405
When to Use XML with EJB 406
When to Use Messaging versus RMI-IIOP 407
Summary 410
Chapter 14 EJB Performance Optimizations 411
It Pays to Be Proactive! 411
The Stateful versus Stateless Debate from a
Performance Point of View 413
How to Guarantee a Response Time with Capacity Planning 415
Use Session Facade for Better Performance 416
Choosing between Local Interfaces and Remote Interfaces 418
Partitioning Your Resources 419
Tuning Stateless Session Beans 420
Tuning Stateful Session Beans 421
Tuning Entities 423
Tuning Message-Driven Beans 426
Tuning Java Virtual Machine 427
Miscellaneous Tuning Tips 429
Choosing the Right EJB Server 430
Summary 431

Contents

Chapter 15 EJB Integration 433
Why Does Integration Matter? 433
Integration Styles 434
EJB and Integration 435
Java EE Connector Architecture 436
Why Java EE Connectors? 436
Integrating Java EE Platform with Non-IIOP World 436

The M x N Integration Problem 436

The Infrastructure Services Problem 438
Resource Adapter Interaction with Java EE Components 439
Resource Adapter Interaction with Application Server 440
The Java EE Connector API 442
The javax.resource Package 442
The javax.resource.cci Package 443
The javax.resource.spi Package 443
The javax.resource.spi.endpoint Package 451
The javax.resource.spi.security Package 451
The javax.resource.spi.work Package 452
System Contracts 453
Life Cycle Management 453
Connection Management 454
Security Management 458
Container-Managed Sign-On 458
Component-Managed Sign-On 459
Transaction Management 460
Local Transaction Management Contract 460
Global Transaction Management Contract 461
Work Management 462
Message Inflow 464
Connector Example: OutboundLoanRA 467
Example Architecture 468
JavaLoanApp.java 469
LoanApp.dll 470
OutboundLoanRA 471
OutboundLoanRA Client Contracts 471
OutboundLoanRA System Contracts 485
Deploying OutboundLoanRA 493
LoanRatesE]B 495
Developing LoanRatesE]B 495
LoanRatesClient 496
Running the Client 497
Extending OutboundLoanRA 502
Integration Best Practice: When to Use Which Technology 502
When to Use JMS and JMS-Based MDB 502
When to Use Java EE Connectors 503
When to Use Java Web Services 503

Summary 504

XX Contents

Chapter 16 Clustering
Overview of Large-Scale Systems
What Is a Large-Scale System?
Load Balancing and Failover

Clustering with Collocated or Distributed Java EE Containers

Instrumenting Clustered E]Bs
How EJBs Can Be Clustered
The Concept of Idempotence
Stateless Session Bean Clustering
Load Balancing
Failover
Stateful Session Bean Clustering
Load Balancing
Failover
Entity Clustering
Load Balancing
Failover
Caching
Read-Only Caches
Distributed Shared Object Caches
Read-Mostly Caches
Message-Driven Bean Clustering
Other EJB Clustering Issues
First Contact
Initial Access Logic
Summary

Chapter 17 EJB-Java EE Integration: Building a Complete Application
The Business Problem
A Preview of the Final Web Site
Scoping the Technical Requirements
The Business Logic Tier
Persistent Data: Entities
Business Logic: Session and Message-Driven Beans
The Presentation Tier
What Are Servlets?
What Are Java Server Pages?
How Do I Combine Servlets, JSP, and EJB Components?
JSP Files in Our E-Commerce Deployment
Example Code
Summary

Appendix A RMI-1IOP and JNDI Tutorial
Java RMI-IIOP
Remote Method Invocations
The Remote Interface
The Remote Object Implementation
Stubs and Skeletons

505
505
506
509
512
516
516
518
519
519
519
521
522
522
523
523
523
523
524
524
525
526
526
527
527
528

529
529
530
534
534
534
538
541
541
543
543
544
547
558

559
560
560
563
564
566

Contents xxi

Object Serialization and Parameter Passing 568
Passing by Value 568
Object Serialization 568
Rules for Serialization 569
What Should You Make Transient? 570
Object Serialization and RMI 571
Pass-by-Reference Semantics 572
CORBA Interoperability with RMI-IIOP 573
The Big Picture: CORBA and EJB Together 575
The Java Naming and Directory Interface 576
Why Use JNDI? 576
Naming and Directory Services 576
Problems with Naming and Directories 579
Enter JNDI 579
Benefits of JNDI 579
The JNDI Architecture 580
JNDI Concepts 581
Naming Systems, Namespaces, and Composite Names 582
Initial Context Factories 584
Programming with JNDI 586
Integrating RMI-IIOP and JNDI 588
Binding an RMI-IIOP Server to a JNDI Name 589
Looking Up an RMI-IIOP Server with JNDI 590
Summary 591
Appendix B Annotations 593
Introduction to Annotations 593
Annotations for EJB 596
Background 597
XDoclet 597
Annotations in Java 598
Pros and Cons 598
EJB Annotation Reference 599
Bean Type Annotations 599
Common Annotations for Session and 603
Message-Driven Beans
Entity Annotations 611
Summary 645

Index 647

Acknowledgments

This book has been a project spanning several years. Many have commented that
the first edition was one of the best technical books they’ve ever read. What's
made this book a reality are the many people who aided in its development.

As a special thanks, we’d like to acknowledge the great folks at John Wiley &
Sons. They have been absolutely outstanding throughout this book’s evolution.
In particular, we thank Bob Elliott, Tom Dinse, and Mary Beth Wakefield for
their incredible efforts. We also thank Daniel Rubio for his insightful technical
reviews, and Linda DeMichiel for lending her help to the authors in under-
standing the evolution of E]JB 3.0 standard.

I would like to thank my wife, Tes and my daughter, Shaina for being so
patient while I worked on this book.

—Micah

Mastering Emterprise
lavaBeans 3.0

xxiii

Click here to purchase this book.

http://www.amazon.com/gp/product/0471785415/ref=sr_11_1/103-1174895-6545420?%5Fencoding=UTF8
jpiscitelli
cover

Mastering Enterprise
JavaBeans 3.0

.

Introduction

This book is a tutorial on Enterprise JavaBeans (EJB). It’s about E]JB concepts,
methodology, and development. This book also contains a number of
advanced EJB topics, giving you a practical and real-world understanding of
the subject. By reading this book, you will acquire a deep understanding of EJB.

Make no mistake about it—what you are about to read is not easy. EJB incor-
porates concepts from a wealth of areas, including distributed computing,
databases, security, component-based architecture, message-oriented systems,
and more. Combining them is a magnificent stride forward for the Java com-
munity, but with that comes a myriad of concepts to learn and understand.
This book will teach you the concepts and techniques for authoring distrib-
uted, enterprise components in Java, and it will do so from the ground up. You
need only to understand Java to understand this book.

While you're reading this book, you may want to download the EJB specifi-
cation, available at http://java.sun.com/products/ejb/docs.html.

Goals for This Edition

This book has had a long run and hence, a long history. The first edition of this
book came out in 1999, followed by second and third editions in 2002 and early
2005, respectively. Writing the latest edition of this popular title was not an
easy thing. There was an endless exchange of emails back and forth between
the authors before arriving at decisions about the topics to cover, the approach
and the tone that should be used to cover them, and so on. We had to make

Click here to purchase this book.

XXV

http://www.amazon.com/gp/product/0471785415/ref=sr_11_1/103-1174895-6545420?%5Fencoding=UTF8
jpiscitelli
cover

xXxvi

Introduction

some tough calls when writing the second and third editions, and that did not
change in this edition. However, we are confident you'll like them. Here are
our goals for this edition:

= To update the book for E]JB 3.0. EJB 3.0 is a sea change from the previous

versions of EJB technology in that the programming and deployment
model is very different from its precursors. We take a top-down
approach in explaining these changes. We do not just talk about the
changes themselves but also discuss the rationale for making these
changes to the existing EJB technology. In addition, this book goes an
extra mile in providing in-depth coverage on the Java Persistence API
and the entities defined therein. The ability to use POJO (plain old Java
object) style entities with enterprise beans is a much sought after fea-
ture, and this book doesn’t save pages when it comes to providing real
implementation tips and best practices on how to use POJO entities
with Enterprise JavaBeans.

To be broad and also deep. We do not regurgitate the complete EJB
specification in this book, nor do we cover every last detail of EJB.
Rather, we cover the most important parts of EJB, leaving room to dis-
cuss advanced issues. For a complete reference while you are coding,
search through the E]JB specification using Adobe Acrobat. Readers who
are looking for a well-written book that is interactive and fun to read,
and that covers the basics through advanced subjects in adequate
details have come to the right place.

To be concise. Your time as a reader is extremely valuable, and you're
likely waiting to read a stack of books besides this one. Given that most
people don’t have time to read 1,000-plus-page books, we actually
wanted to reduce the size of this book as much as possible. So we've
tightened things up and eliminated redundant examples. This way, you
can get to actually program with EJB immediately, rather than read a
book for months on end. The irony of this story is that it was harder for
us to write a shorter book than a long book!

To be a book for developers. This book is not intended for high-level
businesspeople. This is a technical book for a technical audience.

To write a book the right way. The authors of this book have taken
their skills in architecture, development, consulting, and knowledge
transfer, and applied them to this book. Thus, we’ve infused this book
with the following attributes:

m A conversational style. When you read this book, sometimes you’ll
feel like you're almost having a discussion with us. We think this is
far superior to spending eons trying to reread a formal writing style
over and over again.

Introduction xxvii

m Use of diagrams and bulleted lists. The adage “a picture is worth a
thousand words” applies here. These tactics are great for breaking
up blocks of text. They keep things varied and make the book a
much faster read.

m A consistent voice. Even though several coauthors wrote this book,
you'll hear one voice. This was done to combine best-of-breed
knowledge from several expert coauthors, while maintaining a
uniform look and feel throughout the book.

m To be an introductory book, but also to get quickly into advanced
topics. We figured that the average developer has had enough of books
that merely skim the surface. We wanted to write a book that pushed
beyond the basics. Our approach when writing this book was always to
err on the side of being advanced. To achieve this, we did an immense
amount of research. We have participated in the forums, worked on
many real-world projects, attended conferences and seminars, talked to
the people who have worked on the actual EJB specifications, and net-
worked with the top experts throughout the world.

m To be vendor-neutral. The code listings for the examples in this book
will work on any EJB application server, thereby making the book useful
immaterial of the vendor you use. To stay away from the vendor wars,
we have a policy to deploy all of our examples on the Java EE reference
implementation rather than on a specific vendor’s platform.

m To take all the source code and make it available online. Because
we’ve made the code available on the Web, you know it’s tested on the
latest version of the EJB application server. This will ensure that the
code you receive works right the first time.

Organization of the Book

The text is organized into the following five parts:

m Part I is a whirlwind introduction to EJB programming. Part I serves as a
great overview for people in a hurry. While Part I is essential information
for EJB newcomers, veterans will also find nuggets of useful knowledge.
The following chapters are included:

m Chapter 1 is a tour of enterprise computing. We’ll talk about
component-based software, distributed computing frameworks,
application server—class software, service-oriented architectures, and
containers. In this regard, we’ll introduce EJB and Java Enterprise
Edition (Java EE).

xxviii Introduction

m Chapter 2 sets the scene for introducing the changes of EJB 3.0 in
Chapter 3. This chapter is a must read for long timers in EJB in that
it explains why a drastic change was needed in the programming
and deployment model of E]JB.

m Chapter 3 shows you how to put together a simple EJB 3.0 bean of
the HelloWorld fame. It introduces the EJB technology at a more
fundamental level by bringing the discussions on IIOP, location
transparency, JNDI naming services, annotations, deployment
descriptors, and so on, to the fore.

m Part II devotes exclusive attention to programming with EJB. We'll see
how to use the trio of session beans, session bean Web services, and
message-driven beans. More interestingly, we will learn programming
of the new and cool Java Persistence API based POJO entities. Needless
to say, our discussions are accompanied with working examples.

m Chapter 4 introduces session beans. We'll look at the difference
between stateful and stateless session beans, how to code a session
bean, and what’s going on behind the scenes with session beans.

m Chapter 5 shows how Web services can be implemented using the
EJB model. In particular, we show how a stateless session bean can
be made available as a Web service.

m Chapter 6 introduces the Java Persistence API, which is a specification
created within the EJB Expert Group hosted at http: //www. jcp.
org. The mechanisms for development and deployment of POJO
style entities defined in this specification are crucial in eliminating
the complexity from EJB applications. This chapter explains the
basics of object-relational mapping and the notion of an entity with
respect to Java Persistence AP

m Chapter 7 covers message driven beans. We'll begin with a review
of message-oriented middleware (MOM) and the Java Message
Service (JMS), which forms the backbone of all Java based MOM
software. Underneath, message driven beans use the JMS frame-
work This is followed by an extensive discussion on various aspects
of writing message-oriented EJB applications and their respective
examples.

m Chapter 8 discusses the useful bits and pieces of EJB technology
such as how to access resources made available using JNDI naming
services, how to use annotations in conjunction with EJB, and so on.
It further explains the resource and dependency injection mechanisms
as well as interceptors introduced in EJB 3.0 with examples.

Introduction

xxix

m Part III, the most exciting part of the book, covers advanced EJB con-
cepts. The following chapters are included:

m Chapter 9 provides a comprehensive discussion on the advanced
concepts of persistent entities such as inheritance, polymorphism,
entity relationships, and EJB Query Language (EJB-QL) enhance-
ments. This chapter has a wealth of information for anyone who
wants to get deeper into the world of persistent entities.

m Chapter 10 tackles transactions. Transactions are a crucial topic for
anyone building an EJB application where ACIDity (Atomicity,
Consistency, Isolation, and Durability) is a prerequisite. We’ll discuss
transactions at a conceptual level followed by a discussion on how
to apply them to EJB. We'll learn a lot about the Java Transaction API
(JTA) in the process.

m Chapter 11 provides in-depth coverage of EJB security and covers Java
Authentication and Authorization Service (JAAS), secure interoperability,
and Web Services security, within the purview of enterprise beans.

m Chapter 12 introduces the EJB Timer Service, which lets you sched-
ule tasks for automatic execution at given point(s) in time.

m Chapter 13 explains guidelines for using various Web application
frameworks, model-driven development tools, and so on, in EJB
applications. It also presents proven best practices for EJB design,
development, and testing.

m Chapter 14 covers EJB tips and techniques for designing and
deploying EJB for better performance. You'll learn about design
strategies that will help you make decisions such as when to choose
between stateful versus stateless session beans, when to choose
between local and remote interfaces, and so on. The chapter also
focuses a great deal on providing performance tuning tips for differ-
ent types of beans as well as for Java Persistence API-based entities.

m Chapter 15 covers integration to and from EJB platform in depth.
It provides an introduction to the various styles of integration, fol-
lowed by a discussion of various techniques for integrating EJB with
the outside world. It explains the Java EE Connector Architecture, a
predominant framework for integrating EJB with back-end enter-
prise applications, and discusses a connector example.

m Chapter 16 discusses clustering in large-scale E]JB systems. You'll
learn about how clustering works behind the scenes and learn a few
strategies for how containers might support clustering. This is a crit-
ical topic for anyone building a system that involves several machines
working together.

XXX

Introduction

m Chapter 17 shows how to build a real-world Java EE application
containing EJB components. We'll see how the EJB components
should be used together with other technologies of the Java EE stack
such as the persistent entities, as in an enterprise, as well as how to
connect them with clients using Java servlets and JavaServer Pages
(JSP) technologies. We'll also demonstrate how to design an EJB
object model using UML.

m The Appendices are a collection of ancillary EJB topics. Some developers
may want to read the appendices, while some may not feel the need to do
so. Appendices A and B are provided in the book, whereas Appendices C,
D, and E have been made available on the companion web site.

m Appendix A teaches you Java Remote Method Invocation over the
Internet Inter-ORB Protocol (RMI-IIOP) and the Java Naming and
Directory Interface (JNDI). These technologies are prerequisites for
using EJB. If you're just starting down the EJB road, you shall find it
very helpful to read this appendix first.

m Appendix B discusses the newly introduced annotations feature for
the Java platform. It provides a quick reference of various annota-
tions supported by the EJB 3.0 specification. This can come in handy
while writing EJB code.

m Appendix Cis a deployment descriptor reference guide. This will
be useful to you especially when you're examining deployment
descriptors and if you ever find yourself in a situation of modifying
the deployment descriptors manually.

m Appendix D covers the EJB query language (EJB-QL) in detail.

m Appendix E is an API and diagram reference guide. This is useful
when you need to look up the purpose of a method or a class in the
EJB programming APIL

.mm Throughout the book, this icon will signal a tip, note, or other helpful
advice on EJB programming.

IHlustrations in the Text

Almost all of the illustrations in this book are written in the Unified Modeling
Language (UML). UML is the de facto standard methodology for illustrating
software engineering concepts in an unambiguous way. If you don’t know

Introduction

xxxi

UML, pick up a copy of The Unified Modeling Language User Guide (Addi-
son-Wesley, ISBN 0201571684), which illustrates how to effectively use UML in
your everyday software. UML is a highly important achievement in object-ori-
ented methodology. It's a common mechanism for engineers to communicate
and design with, and it forces you to abstract your object model prior to imple-
mentation. We cannot stress its use enough.

The Accompanying Web Site

This book would not be complete without a way to keep you in touch after it
was published. A Web site is available for resources related to this book. There
you'll find:

m All of the source code you see in this book. The code comes complete
with Ant scripts, ready to build and run. It can be deployed on any
application server that is Java EE 5—compliant.

m Updates to the source code examples.
m Error corrections from the text.

m A PDF copy of this book.

The Web site is at www.wiley.com/go/sriganesh.

Feedback

When you begin your EJB programming, we’re sure you'll have many experi-
ences to share with other readers. Feel free to e-mail examples, case studies,
horror stories, or tips that you've found helpful in your experience, and we’ll
post them on the Web site.

From Here

Now that we’ve gotten the logistics out of the way, let’s begin our exploration
of Enterprise JavaBeans 3.0.

Mastering Enterprise
JavaBeans 3.0

-

PART

Overview

In Part I, we introduce the server-side development platform, the Java Enter-
prise Edition (Java EE), of which the Enterprise JavaBeans (EJB) component
architecture is a vital piece. Java EE is a conglomeration of concepts, pro-
gramming standards, and innovations—all written in the Java programming
language. With Java EE, you can rapidly construct distributed, scalable, reli-
able, and portable as well as secure server-side deployments.

m Chapter 1 begins by exploring the need for a server-side component
architecture such as EJB. You'll see the rich needs of server-side com-
puting, such as scalability, high availability, resource management,
and security. We'll discuss how EJB architecture relates to the Service-
oriented Architecture (SOA) paradigm. We’ll also take a look at the
Java EE server-side development platform.

m Chapter 2 focuses on explaining why the existing EJB technology,
especially the programming and deployment model, has to change to
something much simpler. Chapter 2 makes this point by walking us
through an example of developing and deploying an EJB 2.1 bean.

m Chapter 3 gets down and dirty with EJB programming. Here, we’ll
write our first truly simple EJB 3.0 bean. In this chapter, we will also
introduce other technologies and concepts that go hand in hand with
EJB such as IIOP, JNDI naming services, annotations, deployment
descriptors, and so on.

Click here to purchase this book.

http://www.amazon.com/gp/product/0471785415/ref=sr_11_1/103-1174895-6545420?%5Fencoding=UTF8
jpiscitelli
cover

Overview

Enterprise JavaBeans (EJB) is a server-side component framework that simpli-
fies the process of building enterprise-class distributed component applica-
tions in Java. By using EJB, you can write scalable, reliable, and secure
applications without writing your own complex distributed component
framework. EJB is about rapid application development for the server side;
you can quickly and easily construct server-side components in Java by lever-
aging a prewritten distributed infrastructure provided by the industry. EJB is
designed to support application portability and reusability across any ven-
dor’s enterprise middleware services. For the benefit of those new to enter-
prise computing, these concepts will be clarified shortly. EJB is a complicated
subject and deserves a thorough explanation.
This chapter introduces EJB by answering the following questions:

m What plumbing do you need to build a robust distributed object
deployment?

m What is E]JB, and what value does it add?
m How does E]B relate to SOA?

m Who are the players in an EJB ecosystem?

Let’s kick things off with a brainstorming chapter.

Chapter 1

A Prelude to Enterprise JavaBeans

Simply put, an EJB is a component. What are components? Unfortunately, over
the years, this question has become a bit rhetorical, especially in the context of
software engineering, because there is no exact or widely accepted answer to
it. Henceforth, we will present our understanding of components.

Software Components

The online WordNet service hosted by Princeton University (http: //wordnet

.princeton.edu/perl/webwn) defines component quite simply and suc-
cinctly as “an abstract part of something.” A software component goes one
step beyond. It is a concrete part of something. A software component is a piece
of code written to manifest the behavior of a corresponding abstract concept.
Mostly, these abstract concepts find their underlying basis in the real world.
For example, a MortgageDebt component might emulate the nuances associ-
ated with actual mortgage debts of real-world entities such as people, corpo-
rations, and so on. This explanation of components probably sounds a lot like
how objects were explained in the late 1980s. Even so, components differ from
objects in a substantial manner—they live an independent existence. Therein
lies all the difference between objects and components.

A component is a self-contained entity such that it can be reused in a similar
or a completely different application, as long as the semantics of the compo-
nent are well understood. A component must be packaged with all the requi-
site artifacts so that it can live an independent, reusable existence outside of
the original application. A business or system application can thus be designed
to consist of multiple such reusable software components, each tasked with a
certain functional responsibility.

So what do we stand to gain by designing software applications in terms of
components? How did we reach the conclusion that componentization was
the right approach to take? Well, continue reading.

The Need for Componentization

One of the fortuitous by-products of a more than decade-long U.S. Justice
Department vs. IBM antitrust lawsuit (more details of this landmark trial can be
found at http://www.hagley.lib.de.us/1980.htm) was the emer-
gence of a burgeoning software industry. The U.S. Justice Department based
the antitrust lawsuit on the premise that IBM’s bundling of software, hardware
(including peripherals), and services under a single pricing model marred the
independent players in the software as well as the peripherals markets. Up
until then, IBM and other hardware vendors did not sell software but rather

Overview

bundled it with hardware almost for free, thereby making the survival of inde-
pendent software vendors impossible. Even though the Justice Department
eventually withdrew their charges against IBM in 1982, the impact that this
case had on IBM and other players was profound. Suffice it to say that the
1970s marked the dawn of the software industry.

The emergence of the software market led to the advent of new software
architectures and development paradigms. In the ensuing 25-odd years, the
software industry became increasingly sophisticated in terms of architecture
and development methodologies. The industry had begun deploying two-tier
architectures where monolithic applications communicated with large data-
bases running on a different system. Object-oriented development in older as
well as newer languages such as C++ and Java, respectively, was in full swing.
People were trying to fathom the potential of the public Internet. Corporations
were beginning to realize that having a corporate Web site was as important
as having phones and fax machines for communication with customers and
partners.

It was at this juncture that software architects started recognizing the lack of
flexibility and interoperability in existing application deployments. The inflexi-
bility was attributed to the inherent nature of monolithic applications that inhib-
ited the ability to repurpose and reuse existing functionality. Even though these
monolithic applications were developed using object-oriented languages, object
technology by itself was not fully equipped to garner optimum levels of reuse.
Dividing functionality into independent and self-contained components that
can interoperate with each other to assemble an application was deemed the bet-
ter solution for building applications.

The preference for component-based architectural principles gradually gave
way to component frameworks such as Common Object Request Broker Archi-
tecture (CORBA), ActiveX/COM, E]B, and so on. In keeping pace with other
disruptive forces at work in software design (mainly distributed multi-tier
computing), these frameworks ended up providing much more than merely
the mechanisms for component development. Component frameworks
evolved sufficiently to support development and deployment of enterprise
applications comprising components distributed over various tiers.

To dive further, let us identify the infrastructure needs of multi-tier enter-
prise applications that could be provided by component frameworks.

Infrastructure Needs of Distributed Applications

Figure 1.1 shows a typical business application. This application could exist in
any industry and could solve any business problem. It could be an equity trad-
ing system, a corporate banking application, a call center application, a sales
automation application, and so on.

Chapter 1

Client
Presentation Tier

Client
Presentation Tier

Client
Presentation Tier

AN AN Ve
P P ¥
Business Business
Logic Logic
Middleware Tier Middleware Tier
AN Ve
N 7
N 7
AN 7
\A ‘/
Database

Figure 1.1 A typical multi-tier deployment.

Notice that this enterprise application is a distributed system. We broke up
what would otherwise be a large, monolithic application and divorced each
layer of the application from the other, so that each of these layers is indepen-
dent and serves a distinct purpose. For instance, the presentation layer carries
the logic to provide a user interface to the client, the middleware tier consists
of the logic to provide the actual business functionality and other services,
whereas the database tier provides data services.

Now look at this picture and ask yourself which issues would need to be
taken care of for such a deployment? Take a moment to reflect on this question
before proceeding to the following list of aspects worth considering in such a
distributed deployment.

m Remote Method Invocation. We need logic that connects one tier to
another via a network connection—viz. logic to connect presentation
tier to middleware tier and middleware tier to database tier. This
includes dispatching method requests, brokering parameters, dispatch-
ing SQL statements, and more.

m Load balancing. Presentation clients must be directed to the middle-
ware (as well as database) servers with the lightest load. If a server is
overloaded, a different server should be chosen.

Overview

7

Transparent failover. If a server crashes, or if the network crashes, can
clients be rerouted to other servers without interruption of service? If
so, how fast does failover happen? Seconds? Minutes? What is accept-
able for your business problem?

Back-end integration. Code needs to be written to persist business data
into databases as well as integrate with legacy systems that may
already exist.

Transactions. What if two clients access the same row of the database
simultaneously? Or what if the database crashes? Transactions protect
you from these issues.

Clustering. What if the server contains state when it crashes? Is that
state replicated across all servers, so that clients can use a different
server?

Dynamic redeployment. How do you perform software upgrades
while the site is running? Do you need to take a system down, or can
you keep it running?

Clean shutdown. If you need to shut down a server, can you do itin a
smooth, clean manner so that you don’t interrupt service to clients who
are currently using the server?

Logging and auditing. If something goes wrong, is there a log that you
can consult to determine the cause of the problem? A log would help
you debug the problem so it does not happen again.

Systems management. In the event of a catastrophic failure, who is
monitoring your system? You want monitoring software that pages a
system administrator if a catastrophe occurred.

Threading. Now that you have many clients connecting to a server, that
server is going to need the capability of processing multiple client
requests simultaneously. This means the server must be coded to be
multithreaded.

Message-oriented middleware. Certain types of requests should be
message-based, where the clients and servers are very loosely coupled.
You need infrastructure to accommodate messaging.

Component life cycle. The components that live within the server need
to be created or destroyed when client traffic increases or decreases,
respectively.

Resource pooling. If a client is not currently using a server, that
server’s precious resources can be returned to a pool to be reused when
other clients connect. This includes sockets (such as database connec-
tions) as well as components that live within the server.

Chapter 1

m Security. The servers and databases need to be shielded from saboteurs.
Known users must be allowed to execute operations for which they
have adequate rights of execution.

m Caching. Let’s assume that there is some database data that all clients
share and make use of, such as a common product catalog. Why should
your servers retrieve that same catalog data from the database over and
over again? You could keep that data around in the servers” memory
and avoid costly network roundtrips and database hits.

m And much, much more.

Each of these aspects should be addressed to enable deployment of robust
large-scale distributed applications. Consequently, each of these aspects can
be thought of as a service—a service to do resource pooling, a service to pro-
vide message-based communications, a service to provide authentication and
other security facilities. These services are termed middleware services due to
the fact that they are commonly required in the middleware layer of a multi-
tier application.

Application Server-Class Software

Clearly middleware services are a must for an enterprise application to function
successfully. So how should one go about availing such infrastructure services?
What greater role can component frameworks play in this regard? IT and tech-
nology organizations around the world can do one of the two things—build
these services or buy them.

Building Middleware Services from Scratch

This approach could be considered perilous because building and maintaining
middleware services is a complicated affair. It requires expertise in system-
level programming semantics such as multithreading, pooling, transaction
management, clustering, and so on. Most business application developers
employed by IT departments are not skilled enough in system programming.
Undertaking such a development would therefore require additional invest-
ment in hiring system programmers proficient in this arena.

Moreover, such infrastructure services are orthogonal to the core business of
most corporations using IT. Therefore, building such infrastructure services in-
house would divert IT departments from the business information services
that they are supposed to be delivering to the rest of the organization.
Nonetheless, quite a few companies have taken this route, mainly due to the
absence of frameworks to provide such distributed computing services, out of
the box, at the time.

Overview

Buying Middleware Services via Application Server Software

The increasing popularity of component-based development and distributed
computing gave rise to component frameworks that provided not only the
basic component development facilities but also commonplace infrastructure
services—a.k.a. quality of services (QoS)—for multi-tier enterprise applica-
tions. These QoS are rendered to the components hosted within an environ-
ment, namely application server, which implements a distributed component
framework such as EJB.

Application server—class software came into existence to let you buy these
middleware services rather than build them yourself. Application servers
enable you to focus on your business application and not worry about the
middleware plumbing you need for a robust server-side deployment. You
write the code specific to your business and industry, and deploy that code
into the runtime environment of an application server. You've just solved your
business problem by dividing and conquering.

Standardization of Component Frameworks

It has been a number of years since the idea of multi-tier server-side deploy-
ments surfaced. Since then, more than 50 application servers have appeared on
the market. At first, each application server provided component services in a
nonstandard, proprietary way. This occurred because there was no agreed-
upon definition of what a component should be or how it should be provided
with services or how should it interact with the application server. The result?
Once you bet on an application server, your code was locked into that ven-
dor’s solution. This greatly reduced portability and was an especially tough
pill to swallow in the Java world, which has always promoted openness and
portability.

What we need is an agreement, or a set of standard interfaces, between appli-
cation servers and components. This agreement will enable any component to
run within any application server. It will allow components to be switched in
and out of various application servers without having to change code or
potentially even recompile the components themselves. Application server
vendors that implement such a standardized component framework secure
their business by providing a higher quality of implementation of the stan-
dard, rather than locking in their customers.

Figure 1.2 depicts an application server that implements a standard compo-
nent framework such as EJB.

10

Chapter 1

Application Server

Components

A

Interaction with
application
server via
standard
interfaces

Y

Figure 1.2 A standard component framework.

.]ma Even though software is regarded as one of the most cutting-edge
industries, it has lagged behind in the trend to standardize component
interfaces. Other industries, such as consumer device manufacturers, began
following this path long before the software industry. For instance, television
vendors started supporting NTSC (National TV Standards Committee), a
standard for broadcasting, in TV sets almost five decades before we started

seeing similar design principles in software.

Enterprise JavaBeans Technology

Let us finally define E]JB properly. E]B is a standard for developing and deploy-
ing server-side distributed components in Java. It defines an agreement (con-
tract) between components and application servers that enables any
component to run in any compliant application server.

The three main value propositions of EJB are:

m [t is a ubiquitous industry standard. E]JB has benefited from its wide-
spread use—it is easy now to hire staff with a good knowledge of EJB to
develop and maintain your systems. Also, due to the maturity of the
technology, numerous best practices for implementing EJB are available

to those who use it.

m Portability is possible. The E]B specification is published and available
freely to all. Since E]JB is a standard, you do not need to gamble on the
long-term viability and proprietary architecture of a single vendor. And
although porting applications from one platform to another will never
be without its costs, it is easier to get it done working with a standard

than without it.

Overview

11

m Rapid application development. Your application can be built faster
because you get middleware infrastructure services such as transac-
tions, pooling, security, and so on from the application server. Also,
innumerable tools have been made available by vendors as well as the
open source community over the years to do rapid application develop-
ment using EJB.

Note that while EJB does have these virtues, there are also scenarios in
which EJB is overkill. Hopefully, with the simpler programming model intro-
duced in EJB 3.0, its usage in smaller applications will increase. See Chapter 13
for best practices and discussions surrounding the issue of when to (and when
not to) use EJB.

L, {1109 Physically, EJB is actually two things in one:

m Specification. With EJB 3.0, the specification has been divided
into three documents, which are all freely downloadable from
http://www.jcp.org/en/jsr/detail?id=220. The specification
lays out the rules of engagement between components and application
servers. It constricts how you code enterprise beans to enable “write
once, run anywhere” behavior for your EJB application.

m A set of Java interfaces. Components and application servers must
conform to these interfaces. Since all components are written to the
same interfaces, they all look the same to the application server. The
application server therefore can manage any EJB-compliant components.

Why Java?

The EJB framework has supported only the Java language thus far, unlike the
NET framework that supports multiple languages. Though this sounds a bit
restrictive, the good news is that Java is one of the best-suited languages for
building distributed components for the following reasons:

m Interface/implementation separation. We need a language that sup-
ports clean separation between the interface and implementation
mainly to keep the component upgrades and maintenance to a mini-
mum. Java supports this separation at a syntactic level through the
interface and class keywords.

m Safe and secure. The Java architecture is much safer than traditional
programming languages. In Java, if a thread dies, the application stays
up. Pointers are not an issue since the language never exposes them to
the programmer. Memory leaks occur much less often. Java also has a
rich library set, so that Java is not just the syntax of a language but a
whole set of prewritten, debugged libraries that enable developers to

12

Chapter 1

avoid reinventing the wheel in a buggy way. This safety is extremely
important for mission-critical applications.

m Cross-platform. Java runs on any platform. There is a Java Virtual
Machine (JVM) for all platforms. Vendors provide support for their
application servers across all the platforms most of the time. This means
that EJB applications could be deployed on all these platforms. This is
valuable for customers who have invested in a variety of hardware
platforms, such as Intel, AMD X32-X64, SPARC, and mainframes, as
well as operating platforms, including various flavors of UNIX, Win-
dows, and so on, in their data centers.

.m If you don’t want to go the EJB route, you have two other choices:

m Lightweight open source Java frameworks such as Spring. In Chapter 13
we discuss when to use EJB versus such nonstandard frameworks.

= Microsoft .NET-managed components, part of the Microsoft .NET
platform.

EJB as a Business Tier Component

The real difference between presentation tier components, such as standalone
applications and applets, dynamically generated Web pages, or Web service
clients, and enterprise beans is the domain in which they operate. Presentation
components are well suited to handle client-side operations, such as rendering
GUlIs, executing client-side validations, constructing appropriate Simple
Object Access Protocol (SOAP) messages to send them back and forth to a Web
service, and so on. They deal directly with the end user or end application.
Enterprise beans, on the other hand, are not intended for the client side; they
are server-side components. They are meant to perform server-side operations,
such as executing complex algorithms or performing highly transactional
business operations. The server side has different kinds of needs than GUI
clients do. Server-side components need to run in a highly available (24x7),
fault-tolerant, transactional, multi-user, secure environment. The application
server provides such a server-side environment for the enterprise beans, and it
provides the runtime services necessary for the functioning of enterprise beans.
Specifically, EJB is used to help write logic that solves business problems. Typi-
cally, EJB components (enterprise beans) can perform any of the following tasks:

m Perform business logic. Examples include computing taxes on a
shopping cart, ensuring that the manager has authority to approve
the purchase order, or sending an order confirmation e-mail using the
JavaMail API.

Overview 13

m Access a database. Examples include submitting an order for books,
transferring money between two bank accounts, or calling a stored pro-
cedure to retrieve a helpdesk ticket in a customer service application.
Enterprise beans can achieve database access using many techniques,
one of which is the Java Database Connectivity (JDBC) API

m Integrate with other systems. Examples include calling a highly trans-
actional CICS legacy system written in C that computes the risk expo-
sure for a new insurance customer, using a legacy VSAM (Virtual
Storage Access Method) data store, or accessing SAP R/3. Enterprise
beans can be integrated with other applications in multiple ways, one
of which is through the Java EE Connector Architecture, which we will
cover in detail in Chapter 15.

Thus, EJB components sit behind the presentation tier applications or
components and do all the hard work. Examples of EJB clients include the
following;:

m Application clients. Application clients execute on a user’s desktop,
either within an Internet browser environment as an applet or alone.
They connect through the network to EJB components that live on a
server. These EJB components may perform any of the tasks listed pre-
viously (business logic, database logic, or accessing other systems).

m Dynamically generated Web pages. Web sites that are transactional
and personalized in nature need their Web pages generated specifically
for each request. For example, the home page for Amazon.com is com-
pletely different for each user, depending on the user’s personal prefer-
ences. Core technologies such as Java Servlets and Java Server Pages
(JSP) are used to dynamically generate such Web pages. Both servlets
and JSPs live within a Web server and can connect to EJB components
for business logic, thereby generating dynamic Web pages based upon
the results returned from the EJB layer.

m Web service clients. Some business applications require no user inter-
face at all. They exist to interconnect with other business partners’
applications, which in turn may provide their own user interface. For
example, consider a scenario where Dell Computer Corporation needs
to procure Intel chips to assemble and distribute desktop computers.
Here, Intel could expose an Order Parts Web service that enables the
Dell Procurement Web service client to order chips. In this case, the Intel
system does not provide a graphical user interface per se, but rather
provides a programmatic Web service interface that can be used by a
system instead of a human user. This scenario is shown in Figure 1.3.

14

Chapter 1

A Dell customer
orders 100 computers
on dell.com

Dell.com Web application finds

out that chips needs to be

procured for fulfilling the order.

It submits the request for the same
to its internal procurement application.

Dell.com

A

RMI/IIOP

A

EJB acts as
Web service

SOAP/HTTP

Intel Order Parts
Application

EJB as Web
service

RMI/IIOP

Web service

client

EJB Procurement
Application

Dell’s procurement application
communicates with Intel’s order

parts Web service.

Figure 1.3 EJBs as Web service clients.

Wrapper

Distributed Computing: The Foundation of EJB

EJB enables development and deployment of distributed components. A dis-
tributed component, also commonly referred to as distributed object or remote
object, is callable from a remote system. That is, not only can it be called from
an in-process client but also from an out-of-process client that might be located

on a different system on the network.

A remote invocation of a method on a distributed object follows a common
process that is similar across almost all distributed computing technologies.

The main steps of this remote method invocation process are:

1. The client calls a stub, which is a client-side proxy object. This stub is

responsible for masking network communications from the client. The
stub knows how to call over the network using sockets and also how to
massage parameters from their Java representations to the correspond-

ing network representations.

2. The stub calls over the network to a skeleton, which is a server-side

proxy object. The skeleton masks network communication from the dis-

tributed object. The skeleton understands how to receive calls on a

socket as well as how to massage parameters from their network repre-

sentations to their Java representations.

Overview

3. The skeleton delegates the call to the appropriate implementation
object. This object serves the call and does its work, and returns control
to the skeleton, which returns it to the stub, which finally returns con-
trol to the client.

Figure 1.4 depicts the method invocation on a remote object.

A key point here is that both the stub and the server-side implementation
object implement the same interface (called the remote interface). This means
the stub clones the distributed object’s method signatures. A client who calls a
method on the stub thinks he is calling the distributed object directly; in reality,
the client is calling an empty stub that knows how to go over the network. This
is called distribution transparency. In fact, the distributed object is an abstraction
that is created by the cooperation between the stub, skeleton, and implemen-
tation objects. No single entity in this scenario is the distributed object.

You can develop and deploy distributed objects using many other technolo-
gies, including CORBA (OMG), Distributed Component Object Model or
DCOM (; Microsoft), and Java RMI-IIOP (Sun).

Distributed

Client Object

Remote Interface l

Remote Interface

T

Stub Skeleton

._________________>

Figure 1.4 Remote method invocation.

16

Chapter 1

DISTRIBUTION TRANSPARENCY

Distribution transparency is the Holy Grail in distributed systems technology
and is very hard to achieve. Perfect distribution transparency would mean that
a client never sees any differences between local and remote interactions. In
the presence of the more complex failure modes of remote operations and
network latency, this is not possible. Most of the time, the term distribution
transparency is used rather loosely to mean that the syntax of the client code
making invocations is the same for both remote and local invocations. Even this
is not always the case when you consider the different exceptions found in
remote interfaces that in turn require different exception handling, and the
subtle differences between the pass-by-reference and pass-by-value semantics
that local and remote invocations sometimes exhibit.

For these reasons, most middleware systems settle for a less ambitious form
of transparency, viz. location transparency. We will explore location
transparency further in Chapter 3.

EJB Middleware Services

Although we expound upon the EJB middleware services such as transaction
management, persistence, messaging, security, clustering, and so on through-
out this book, we think it is about time to introduce you to the approach taken
by EJB in provisioning them.

There are two ways in which a framework such as EJB can provide middle-
ware services—explicitly and implicitly. To use explicit middleware services
you must explicitly call the middleware services” APIs. Implicit middleware
services can be used without having to write against the middleware APIs viz.
implicitly.

Explicit Middleware Approach

Traditionally, transactional systems such as CORBA, Tuxedo, and COM/
DCOM have made available middleware APIs; your code uses them to request
the framework to provide the requisite services. This explicit approach can be
illustrated using pseudo-code. The following example shows a transfer
method on the Bank distributed component that performs transfer of funds
between two accounts.

transfer (Account accountl, Account account2, long amount) {
// 1: Call middleware API to perform a security check

// 2: Call middleware API to start a transaction

// 3: Call middleware API to load rows from the database

// 4: Subtract the balance from one account, add to the other

Overview

17

// 5: Call middleware API to store rows in the database
// 6: Call middleware API to end the transaction
}

Clearly, although we are serviced with the requisite middleware by the
framework, our business logic is intertwined with the logic to call these mid-
dleware APIs. This approach has some major downsides:

m Lowers developer productivity. Even though the framework provides
middleware services, the developer is still supposed to write the code
to use them. Writing and testing this code obviously takes time, thereby
leading to lower developer productivity.

m Difficult to write. The code is bloated. We simply want to perform a
transfer, but it requires a large amount of code due to the mingling of
middleware service interaction code with the business logic code.

m Difficult to maintain. If you want to change the way you consume
middleware services, you need to rewrite your code.

Implicit Middleware Approach

Using this approach, the framework would not only provide middleware ser-
vices but also an easier way to use them. An implicit middleware framework
will let you declare the middleware services that you need for your application
in a separate descriptor file or even through simple annotations within the
code. Hence, your code contains no cumbersome API calls to use the middle-
ware services. The code is clean and focused on business logic. To use the ear-
lier illustration, below is how the pseudo-code for the transfer method on
the Bank component will look:

transfer (Account accountl, Account account2, long amount) {
// 1l: Subtract the balance from one account, add to the other

}

At the time the preceding code is compiled, the framework will peruse the
descriptor and/or annotations within the code (depending on the approach
used) and will provide the requested middleware services. A framework may
or may not prescribe a methodology as to how to implicitly render these ser-
vices. For instance, the EJB framework does not define a specific way of doing
this, and different EJB vendors use different mechanisms to provide these ser-
vices implicitly. For instance, some vendors choose to consolidate all calls to
middleware services in the skeleton of the given EJB component, whereas
some vendors put these calls in a different object, which is then called by the

18

Chapter 1

EJB skeleton. Thus, the mechanism used to provide the middleware services
implicitly is an implementation detail of the E]JB server and is left to the prod-
uct vendors to decide individually.

Most contemporary computing frameworks, standard or not, follow this
approach. The examples include EJB, Microsoft .NET, Hibernate, and so on.
The upsides to this approach are:

m Increases developer productivity. Developers do not have to write the
code for invoking middleware services. All they have to do is declare
the services they require in a descriptor file or as annotations in the
code itself. This increases their productivity.

m Easy to write. Since no code needs to be written to call middleware ser-
vices, your component code is focused on business logic.

m Easy to maintain. The separation of business logic and middleware
logic is clean and maintainable. Changing middleware service con-
sumption does not require changing application code.

Annotations or metadata facilities have been introduced in the Java
platform from J2SE 5.0. Annotations are a powerful concept and play an
important role in EJB 3.0 and Java EE 5.0 at large. We will introduce annotations
in Chapter 3, while discussing the EJB 3.0 programming model.

Implicit vs. Explicit Middleware Services in EJB

EJB uses the implicit middleware approach—however, it also provides a sim-
ple API to explicitly interact with middleware services. Although the API
approach is a complex one, it puts greater control in the hands of a developer.

For instance, imagine a scenario where a developer does not want to mark
an entire method on an EJB as transactional. In this case, he can use the Java
Transaction API to interact with the transaction management services of EJB.
Using this middleware service API, the developer can mark the beginning and
end of the transaction at specific points within the method code, thereby
wielding better control.

Although developers usually use middleware services implicitly, it is help-
ful to know that the E]JB framework provides a choice. Also, it is good to know
that you can use some middleware services implicitly and some explicitly,
which leads to a hybrid approach to using middleware.

Roles in the EJB Application Life Cycle

An E]B application’s life cycle involve three main phases—development, deploy-
ment, and administration. Depending on the size and scale of the application, the
activities related to each of these phases can range from simple to complex. In the

Overview

19

latter case, the time required to take an EJB application live can be significantly
reduced if responsibilities across the life cycle are divided among various parties.
Each of these parties will play a role, so to speak, in the EJB application’s life
cycle. These parties can be made up of a single person or groups of 10s or even
100s of developers. As long as the individuals playing these roles are well trained
in the given area of application life cycle, this division of labor can yield the max-
imum possible efficiency. We have seen such role-based development practice
used widely, especially in medium and large-scale projects.

The following sections discuss the responsibilities handled by these roles
and clarify the issues that could surface.

The Bean Provider

The bean provider supplies business components, or enterprise beans. It is
tasked with writing the code of enterprise beans and also unit testing their
beans. The bean provider can be an internal department providing compo-
nents to other departments, or it can be a group of developers in a team
responsible for writing EJB components, which can subsequently be used by
other developers in the same team.

The Application Assembler

The application assembler is the overall application architect. This party is
responsible for understanding how various components fit together and
writes the glue code, if required, to make the components work together in a
meaningful manner. An application assembler may even author a few compo-
nents along the way for this purpose. The application assembler is mostly the
consumer of the beans supplied by the bean provider.

The application assembler could perform any or all of the following tasks:

m Using an understanding of the business application to decide which
combination of existing components and new enterprise beans are
needed to provide an effective solution; in essence, plan the application
assembly.

m Supply a user interface (perhaps a Swing-based application or applet,
or servlet, or JSP) or a Web service.

m Write the client code to access components supplied by bean providers.

m Write integration code that maps data between components supplied
by different bean providers. After all, components won’t magically
work together to solve a business problem, especially if different parties
write the components.

The role of application assembler can be played either by a systems integra-
tor, a consulting firm, or an in-house developer.

20

Chapter 1

The EJB Deployer

After the application assembler builds the application, the application must be
deployed (and go into production) in a running operational environment. Many
times, the bean provider or an application assembler is unaware of the issues
involved in a production environment. Invariably, the environment in which
EJB applications are developed is not the same as the one in which they are
deployed. Hence, definite skills are required to take care of such differences in
system and software infrastructure products used in development versus
production to ensure a smooth transition to the live environment. This need is
fulfilled by the role of an EJB deployer. The EJB deployer should be well
acquainted with the portfolio of systems, storage, software, and so on in use in
production, at least for that specific application. For instance, an EJB deployer
should be able to work with the various application server(s) used in the pro-
duction environment.
Some of the responsibilities of an E]B deployer include:

m Securing the deployment with a hardware or software firewall and
other such security measures. Usually, enterprise applications are
hosted within managed data centers. In which case, the EJB deployer
will interact actively with the data center staff and co-manage the
deployment of E]JB applications.

m Choosing hardware that provides the required level of robustness and
quality of service. Again, if your enterprise application lives within the
walls of a data center, the E]B deployer will work with data center staff
to identify the systems that meet the needs in terms of resources such as
storage, network bandwidth, memory, and so on.

m Providing redundant hardware and other resources for reliability and
fault tolerance. This involves configuring the EJB deployment for fault
tolerance at the system level and/or application level.

m Tuning application performance. EJB deployment is not considered
complete without ensuring that its performance meets the defined
requirements. If the application does not meet the desired performance,
then it will need tuning. Deployers can conduct this exercise in coordi-
nation with other performance experts in their organization.

The System Administrator

Once the deployment goes live, the system administrator steps in to oversee
the stability of the operational solution. The system administrator is responsi-
ble for the upkeep and monitoring of the deployed system and may make use

Overview

21

of various performance monitoring and application management tools in the
process.

For example, in the event of failures or disruptions, a sophisticated EJB
application-monitoring tool can send an alarm to the designated administra-
tor, calling for their immediate attention. Some EJB server vendors have sup-
plemented their server offerings by integrating with widely used management
tool product lines such as OpenView, Tivoli, Unicenter, and so on. Others such
as JBoss have written their own support for EJB application monitoring and
management using technologies such as JMX.

Figure 1.5 highlights the coordination between the various parties through-
out the EJB application’s life cycle.

Note that some of these roles could be combined as well. For example, at a
small startup company, the bean provider, application assembler, and
deployer could all be the same person who is trying to build a business solu-
tion using E]Bs.

DATA CENTERS

A data center is a consolidated facility that houses computer systems, storage,
and communication related equipment needed to run information technology
operations. In a typical data center, a dedicated staff manages not just hardware
systems but also the hosted software applications. Depending on how critical
the 24x7 functioning of a hosted application is, a data center would provide
various levels of service agreements to their clients.

In years gone by, almost all companies operated an in-house data center.
Many business models bloomed during the Internet revolution of the late
1990s, and outsourcing data centers was one. Most of the dotcoms at the time
outsourced the hosting and operations of their Web sites to professional data
center businesses. Even today, small as well as most medium-sized businesses
continue to outsource data center operations. However, larger companies, such
as the large commercial banks, continue to manage their own in-house data
centers.

Data centers are one area where these companies are incurring large capital
as well as operational expenditure today—even more than for new IT
development. Therefore, it is one of the prime targets that CFOs are focusing on
to reduce costs and increase efficiency. If you work in the role of an EJB
application architect, a deployer, or even a system administrator who manages
systems hosting EJB applications, it would be beneficial for you to find out
about your company’s data center optimization strategy. Knowing about it will
help you make the right decisions in terms of product and architecture
selection, thereby reducing the cost and complexity of your data centers.

22

Chapter 1

QUALITY OF SERVICE(S) AND THE EJB SPECIFICATION

Quality of Service (QoS) in our industry refers to the types of services offered
by infrastructure software such as operating systems, application servers,
databases, and so on to the applications that run on them. Different QoS levels
will impact the health of applications differently. For example, an application
running on an application server that has support for transparent failover
mechanisms will be much more robust (assuming it uses the facility) than the
one deployed on a product that does not provide such QoS.

The EJB specification has mandated that application server vendors provide
certain crucial QoS such as transaction management, resource pooling,
component life cycle management, and so on to enable faster development of
relatively sound enterprise applications. However, other enterprise-level QoS
are still considered as optional by the EJB specification expert group. QoS such
as clustering or caching of data or load balancing, and monitoring and
management capabilities, fall into this category. The specification does not
force vendors to provide these optional QoS. Vendors provide them if their
customers demand them. However, they do not need to support such optional
QoS to be compliant with the EJB specification.

Because the specification does not mandate the support for such QoS or
even specify how vendors should implement them, the question is—does using
such nonstandard QoS hamper application portability? The answer is—it
depends. If you are making changes in your EJB code to be able to use these
QosS, then you are most likely making your code nonportable. Why? Because
you could be using nonstandard programming APIs supplied by the vendor to
access these vendor provided services. When you hop application servers, the
new application server may or may not provide that QoS. If in fact the new
application server does provide that QoS, it definitely will be using different
APIs to provide for that. However, if you are availing these QoS transparently or
through out-of-the-code configurations, then you are protecting your code from
becoming nonportable.

Bottom line—be aware of the portability issues that could arise when using
proprietary vendor features.

EJB Ecosystem

The EJB ecosystem comprises literally, thousands of tools, servers, utilities,
IDEs, and so on that are available to the developers for all stages of EJB appli-
cation development and deployment. Out of them all, developers most cer-
tainly interact with two categories of products in their EJB projects—E]B
containers and development tools. Let us give you a taste of these two classes
of products in terms of what is available today.

Overview 23

System Administrator
Build Provider (Maintains Deployment)

X X

.

Deploy System

ueag asudisiug 10nasuod

S

N4 }
$ s> $

Application Assembler Deployer
Figure 1.5 EJB role-based development.

REBRANDING OF JAVA ENTERPRISE EDITION AND STANDARD EDITION

Sun Microsystems recently rebranded the J2SE and J2EE stacks to Java SE (Java
Platform, Standard Edition) and Java EE (Java Platform, Enterprise Edition),
respectively. This change is in effect from the 6.0 version of Standard Edition
and 5.0 version of Enterprise Edition. This means that what could have been
J2SE 6.0 will now be Java SE 6.0 and what could have been J2EE 5.0 will now be
Java EE 5.0. It is important to get used to calling these platforms by their newer
names, since the entire industry has started using them. Everywhere in this
book, we have used the newer branding for both these technologies wherever
applicable.

Since these naming conventions only apply to the upcoming versions of
standard and enterprise stacks, we should continue using J2SE and J2EE
convention for the older versions. For example, we can refer to version 5.0 of
standard edition as J2SE 5.0 instead of Java SE 5.0. Similarly, we can refer to
version 1.4 of enterprise edition as J2EE 1.4 instead of Java EE 1.4.

24

Chapter 1

EJB Container

The EJB container is the piece of software that implements the EJB specification.
The reason it is called a container is that it provides an environment within
which EJB components live and breath. In other words, it provides contain-
ment to the EJB components. An application server provider usually also pro-
vides an EJB container. The container supplies middleware services to the
beans and manages them. More than 30 application servers have been certified
by Sun Microsystems to date for previous versions of Java EE (J2EE 1.2, 1.3,
and 1.4). A complete list can be obtained from http://java.sun.com/
j2ee/licensees.html, but some of the popular commercial application
servers include BEA WebLogic, Sun Java System Application Server (formerly,
Sun ONE Application Server), IBM WebSphere, and Oracle Application
Server. In the open source arena, JBoss, Glassfish, and Apache Geronimo are
the notable application servers.

.]Im We will use the terms EJB container and EJB server interchangeably in
this book.

EJB Tools

To facilitate EJB development and deployment, there are numerous tools you
can use. The EJB tools ecosystem consists of several integrated development envi-
ronments (IDEs) that assist you in rapidly building, debugging, and deploying
components. IDEs encompass most of the major phases of the EJB application
life cycle, except monitoring and management. Most IDEs provide a mecha-
nism to design, develop, test, document, and deploy E]JBs. Some of the popu-
lar commercial and open source EJB IDEs are Borland JBuilder, Oracle
JDeveloper, BEA WebLogic Workshop, IBM WebSphere Studio Application
Developer, Sun Microsystems Java Studio Enterprise, NetBeans, and Eclipse.
This list is by no means exhaustive.

Most of these tools enable you to model components using unified modeling
language (UML), which is the diagram style used in this book. You can also gen-
erate EJB code from these UML models. Some of the examples of specialized
commercial products in this space include Borland Together and IBM Rational
line of products. Also, there are a bunch of open source code utilities and tools,
covered in Chapter 13, that can be used for UML modeling and code generation.

There are other tools as well, which you can use to develop your E]B appli-
cations rapidly and successfully. For example, you can use Junit for testing,
Ant/Xdoclet for building your EJB projects, and performance analyzers (Bor-
land Optimizelt or Quest Software JProbe).

Overview

JAVABEANS VERSUS ENTERPRISE JAVABEANS

You may have heard of another standard called JavaBeans. JavaBeans is a
different technology from Enterprise JavaBeans.

In a nutshell, JavaBeans are Java classes that have get/set methods on
them. They are reusable Java components with properties, events, and methods
that can be easily wired together to create Java applications.

The JavaBeans framework is lightweight compared to Enterprise JavaBeans. You
can use JavaBeans to assemble larger components or to build entire applications.
JavaBeans, however, are development components and are not deployable
components. You typically do not deploy a JavaBean; rather, JavaBeans help you
construct larger software that is deployable. And because they cannot be
deployed, JavaBeans do not need to live in a runtime environment and hence, in a
container. Since JavaBeans are just Java classes, they do not need an application
server to instantiate them, to destroy them, and to provide other services to them.
An EJB application can use JavaBeans, especially when marshaling data from one
EJB layer to another, say to components belonging to a presentation tier or to a
non-Java EE application written in Java.

.]Im Given that this book is technology focused, we will obviously not be
spending much time on in-depth coverage of any specific product. However,
every now and then we will use some interesting products (open source and
closed source), to make our point.

Service-Oriented Architectures and Enterprise
JavaBeans

Service-oriented architecture (SOA) has gained stupendous momentum in the
recent years. As with all new ideas, there is a lot of confusion while everyone
is trying to understand the core principles underlying SOA—while they are
still attempting to discern what characterizes an architecture as SOA-based or
otherwise. The fact that different vendors define SOA in various ways, mostly
to suit their purposes, does not help reduce the SOA tumult either.

In this section, we strive to provide a workable understanding of SOA. It is
essential for EJB developers and architects to understand that SOA and E]B are
not mutually exclusive but rather are symbiotic. You can write robust SOA
architectures using EJB. You might be called upon to implement SOA projects
using EJB. Hence, it is imperative that you understand the basic principles of
SOA and correctly juxtapose SOA and EJB.

26

Chapter 1

Defining Service-Oriented Architectures

At the core of a service-oriented architecture lies the concept of service. A sim-
plistic definition of service is a group of related components that carry out a
given business process function, for example transferring funds between banks
or booking an itinerary. An SOA, thus, is a paradigm focusing on development
of services rather than piecemeal components such that these services provide
a higher level of abstraction from a functional standpoint. Of course, there are
more properties to SOA than mere coarse granularity. One such characteristic
property of SOA is that they are autonomous in nature. These independent
entities can interact with others in spite of differences in the way they have been
implemented or the platform they have been deployed on. The notion of
putting together (integrating) such autonomous and loosely coupled services
to address the changing business needs has a huge value proposition, and it is
well on its way to realization with the emergence of various choreography,
orchestration, and collaboration technologies such as WS-BPEL (Web Services
Business Process Execution Language), EbXML BPSS (Electronic Business XML
Business Process Specification Schema), and WS-CDL (Web Services Choreog-
raphy Description Language)

SOA and Web Services

The terms Web services and SOA are often used interchangeably and wrongly
so. SOA is a paradigm. There are many possible ways of building software so
that it implements salient features of SOA (mainly coarse granularity and
loose coupling). One such way is Web services. Web services are a group of
XML technologies that can be used for implementing SOA. Core Web service
technologies—mainly SOAP and WSDL—form the basis of most of these Web
service implementations today.

Simple Object Access Protocol (SOAP) is an XML-based application-level
protocol intended for exchanging information in a distributed network. SOAP
supports both the models of distributed computing: RPC as well as document-
style messaging. RPC style SOAP allows remote invocation of operations. The
RPC in-out parameters and return values of these operations are serialized into
XML, whereas in document-style SOAP, because an operation’s input and out-
put are XML fragments, serialization of parameters and return values to XML
is not needed. Although most of the Web service applications use SOAP over
HTTP today, the standard does not preclude using SOAP over other Internet
protocols, such as Simple Mail Transfer Protocol (SMTP). The latest version of
SOAP, SOAP 1.2, is a World Wide Web Consortium (W3C) Recommendation.

Web Service Description Language (WSDL) is an XML-based metadata stan-
dard that is used to describe the service interface as well as service binding
information. For RPC style services, a WSDL service interface consists of the
supported operations, the input-output parameters that these operations

Overview

27

accept, and their return values. For document-style services, the service inter-
face description contains the XML schema fragments for the input-output
messages of the service operations, whereas the service binding description
specifies communication protocols, ports, the service URL, and other such
binding information. At the time of this writing, the latest version of WSDL,
WSDL 2.0, is well on its way to becoming a W3C standard.

It is noteworthy that these key Web service technologies are neutral to specific
programming languages or development platforms. Support for these technolo-
gies is ubiquitously found on disparate systems ranging from mainframes to
mobile devices such as cell phones. Web services can thus be employed effec-
tively to implement service architectures encompassing such otherwise incom-
patible language and systems platforms. No doubt Web services present a
powerful technological solution for implementing SOA.

We will spend some more time explaining technical aspects of implementing
Web services on an EJB platform in Chapter 5; however, explaining Web ser-
vices, and SOA for that matter, in their entirety is outside the scope of this book.
If you are new to Web services, there are many books and online papers that
you can refer to get started. Given the widespread adoption of this stack in the
industry, we suggest that you familiarize yourself properly with Web services.

SOA and Component Architectures

SOA is not a replacement for component architecture; rather it neatly comple-
ments the component architecture. While component architectures enhance
reusability at a finer-grained level, SOA can enhance reusability at a coarser-
grained level. Hence, from an implementation standpoint, a service might very
well be developed using well-defined component frameworks such as EJB.
The EJB standard, therefore, has in-built support for Web services, the most
popular stack for building SOA. So EJB is still very much in demand!

Divide and Conquer to the Extreme with Reusable
Services

We have been seeing a slow but steady shift in the “build-from-scratch” trend
for years now. More and more businesses want CIOs to stretch their IT dollars
to the maximum. Naturally, this has led the IT departments to think of reuse;
reuse in terms of systems as well as software. What better candidate than
highly functional and autonomous services to fulfill this promise of reuse?
SOA offers maximum reuse, especially when implemented using ubiquitous
protocols such as those supported by Web services. Architects want to design
their software as a composition of services such that these services can be used
from any platform through well-defined service interfaces.

28

Chapter 1

Why just stop at corporate ITs? Even independent software vendors (ISVs) are
thinking of providing their software as services. Prime examples of “software as
a service” include Salesforce.com and Siebel (now Oracle). Both these compa-
nies have made their enterprise software available to customers as hosted ser-
vices. Many other businesses such as Amazon.com and Google provide their
core business services—e-commerce and Web searching respectively—as
reusable services to customers and end users.

Reusable services are a very powerful concept, because:

m Businesses can focus on strategic software development. In cases
where business functionality is horizontal and cuts across multiple
business domains, the related software applications can be treated as a
shared commodity and can be procured from a specialized ISV in the
form of services. For example, each business requires a corporate trea-
sury management and cash management system. For such a commod-
ity business need, it is best to acquire software from an outside vendor
than to build it. This will relieve the IT staff from having to deal with
complex treasury functions involving millions of regulations, which
anyway does not have direct relevance to the business’s core function.

m The business processes can be assembled faster. The autonomous and
loosely coupled nature of services makes it easier to assemble them into
business processes. This strength makes services the chosen paradigm
for encapsulating business logic.

m There is a lower total cost of ownership. Businesses that build their
software as services end up with a lower total cost of ownership in the
long term because they are building software such that it can be easily
reused and assembled into business processes. This is a definite plus
when businesses are frequently expected to adapt business processes to
swiftly address the changing market needs or when they are required to
integrate with the IT systems of new customers and partners. Businesses
that sell software as services, on the other hand, can benefit their cus-
tomers by offering flexible software RTU (right to use) options, such as
per-month or per-year software subscriptions, thereby setting up their
customers with a lower total cost of ownership for the software solution.

Remember that these services can and should be built using components.
Therefore, the component architectures are very much here to stay. Figure 1.6
depicts a treasury management service built using EJB components.

Overview

29

HTTP Company
Portal Application

All company employees use a
central company portal application

A corporate finance to access various services
personnel uses treasury

management system through SOAP/HTTP
company portal

Corporate IT

Rather than building a
treasury management
application from X

scratch, the business Corporate

buys treasury Treasury Management ,| EJBs providing treasury
management system, Web Service Wrapper RMI/IIOP management logic
built as a service, from
outside.

Figure 1.6 Reusable services built using EJB.

The Java Platform, Enterprise Edition 5.0 (Java EE)

EJB is only a portion of a larger offering called Java Platform, Enterprise Edi-
tion, or Java EE, also known previously as Java 2 Platform, Enterprise Edition,
or J2EE. Java Community Process (JCP) members define Java EE just like all
other standard Java technologies. The mission of Java EE is to provide a plat-
form-independent, portable, multi-user, secure, and standard enterprise-class
platform for server-side deployments written in the Java language.

Java EE is a specification, not a product. It specifies the rules of engagement
that people must agree on when writing enterprise software. Vendors then
implement the Java EE specifications in their Java EE-compliant products.

Because Java EE is a specification (meant to address the needs of many com-
panies), it is inherently not tied to one vendor. It supports cross-platform
development and deployment, since it is based on Java. This encourages ven-
dors to compete, yielding best-of-breed products. It also has its downside,
which is that incompatibilities between vendor products will arise—some
problems due to ambiguities with specifications, other problems due to the
human nature of competition.

Java EE is one of the three different Java platforms. Each platform is a con-
ceptual superset of the next smaller platform.

30

Chapter 1

m The Java 2 Platform, Micro Edition (J2ME) is a development platform for

applications running on mobile Java-enabled devices, such as phones,
Palm Pilots, pagers, set-top TV boxes, and so on. This is a restricted
form of the Java language due to the inherent performance and capacity
limitations of small-form-factor wireless devices.

The Java 2 Platform, Standard Edition (J2SE) defines a standard for core
libraries that can be used by applets, applications, Java EE applications,
mobile applications, and the like. These core libraries span a much
wider spectrum, including input/output, graphical user interface facili-
ties, networking, and so on. This platform contains what most people
use in standard Java programming.

The Java Platform, Enterprise Edition (Java EE) is an umbrella standard for
Java’s enterprise computing facilities. It basically bundles together tech-
nologies for a complete enterprise-class server-side development and
deployment platform in Java.

Java EE is significant because it creates a unified platform for server-side
Java development. The Java EE stack consists of the following:

m Specifications. Each enterprise API within Java EE has its own specifi-

cation, which is a PDF file downloadable from www . jcp . org. Each
time there is a new version of Java EE, the Java EE Expert Group at JCP
locks down the versions of each enterprise API specification and bun-
dles them together as the de facto versions to use when developing
with Java EE. This increases code portability across vendors” products,
because each vendor supports exactly the same API revision. This is
analogous to a company such as Microsoft releasing a new version of
Windows every few years: Every time a new version of Windows
comes out, Microsoft locks down the versions of the technologies bun-
dled with Windows and releases them together.

Test suite. Sun provides a test suite (a.k.a. Test Compatibility Kit, or
TCK) for Java EE server vendors to test their implementations against.
If a server passes the tests, Sun issues a Java EE compliance brand,
alerting customers that the vendor’s product is indeed Java EE-compli-
ant. There are numerous Java EE—certified vendors, and you can read
reviews of their products for free on TheServerSide.com.

Reference implementation. To enable developers to write code against
Java EE, Sun provides its own free reference implementation for each
version of the stack. Sun is positioning it as a low-end reference plat-
form, because it is not intended for commercial use. You can download
the reference implementation for Java EE 5.0, the latest version of Java,
EE platform that includes EJB 3.0, the technology of focus in this book,
from http://java.sun.com/j2ee/download.html.

Overview

31

The Java EE Technologies

Java EE is a robust suite of middleware services that make life very easy for
server-side application developers. It builds upon the existing technologies in
the J2SE. J2SE includes support for core Java language semantics as well as
various libraries (.awt, .net, .io, and so on). Because Java EE builds on J2SE, a
Java EE—compliant product must not only implement all of Java EE stack but
also implement all of J2SE. This means that building a Java EE product is an
absolutely huge undertaking. This barrier to entry has resulted in significant
industry consolidation in the enterprise Java space, with a few players emerg-
ing from the pack as leaders.

In this book, we discuss E]B 3.0, an integral part of Java EE 5.0. Some of the
major Java EE technologies are shown working together in Figure 1.7.

Web Browser Wireless Device

Client Tier
Business Part picato @S @
usiness Partner Applications, @

or Other System CORBA Clients
Web services tlechnologies IIC|)P H'I|'I'P HTTP
(SOAP, UDDI, WSDL, ebXML)
Firewall
Servlets JSPs
J2EE Server
EJBs
Connectors
JMS SQL i Web Services Technologies
Back-End Proprietary Protocol (SOAP, UDDI, WSDL, ebXML)
Systems \l/
Existing System Business
Legacy System Partner
ERP System or Other System

Databases

Figure 1.7 A Java EE deployment.

32 Chapter 1

To understand more about the real value of Java EE, here are some of the
important technologies and APIs that a Java EE 5.0-compliant implementation
will support for you. Note that this is not a complete list of Java EE technologies.

m Enterprise JavaBeans (EJB). E]B defines how server-side components
are written and provides a standard contract between components and
the application servers that manage them. EJB is the cornerstone of
Java EE.

m Java API for Web Services (JAX-WS) Previously known as JAX-RPC,
JAX-WS is the main technology that provides support for Web services
on the Java EE platform. It defines two Web service endpoint models—
one based on servlet technology and another based on EJB. It also speci-
fies a lot of runtime requirements regarding the way Web services
should be supported in a Java EE runtime. Another specification called
Web Services for Java EE defines deployment requirements for Web ser-
vices and uses the JAX-WS programming model. Chapter 5 discusses
support of Web services provided by both these specifications for EJB
applications.

m The Web Services Metadata for the Java Platform. It specifies the vari-
ous annotations for Web services development and deployment. It is
newly introduced in the Java EE 5.0. Its goal is to provide ease of devel-
opment and an easy model for deployment for Web services on the Java
EE platform.

m Java Remote Method Invocation (RMI) and RMI-IIOP. RMI is the Java
language’s native way to communicate between distributed objects,
such as two different objects running on different machines. RMI-IIOP
is an extension of RMI that can be used for CORBA integration. RMI-
IIOP is the official API that we use in Java EE (not RMI). We cover RMI-
IIOP in Appendix A.

m Java Naming and Directory Interface (JNDI). JNDI is used to access
naming and directory systems. You use JNDI from your application
code for a variety of purposes, such as connecting to EJB components or
other resources across the network, or accessing user data stored in a
naming service such as Microsoft Exchange or Lotus Notes. JNDI is
covered in Appendix A.

m Java Database Connectivity (JDBC). JDBC is an API for accessing rela-
tional databases. The value of JDBC is that you can access any relational
database using the same APIL

m Java Transaction API (JTA) and Java Transaction Service (JTS). The
JTA and JTS specifications allow for components to be bolstered with
reliable transaction support. JTA and JTS are explained in Chapter 10.

Overview 33

m Java Messaging Service (JMS). JMS allows your Java EE deployment to
use message-based communication. You can use messages to communi-
cate within your Java EE system as well as outside your Java EE system.
For example, you can connect to existing message-oriented middleware
(MOM) systems such as IBM MQSeries or Microsoft Message Queue
(MSMQ). Messaging is an alternative paradigm to RMI-IIOP, and has
its advantages and disadvantages. We explain J]MS and message-driven
beans (MDB) in Chapter 7.

m Java servlets. Servlets are networked components that you can use to
extend the functionality of a Web server. Servlets are request/response
oriented in that they take requests from some client host (such as a Web
browser) and issue a response back to that host. This makes servlets
ideal for performing Web tasks such as rendering a HyperText Markup
Language (HTML) interface. Servlets differ from EJB components in
that the breadth of server-side component features that EJB offers, such
as declarative transactions, are not readily available to servlets. Servlets
are much better suited to handling simple request/response needs, and
they do not require sophisticated management by an application server.
We illustrate using servlets with EJB in Chapter 17.

m Java Server Pages (JSP). JSP technology is very similar to servlets. In
fact, JSP scripts are compiled into servlets. The largest difference
between JSP scripts and servlets is that JSP scripts are not pure Java
code; they are much more centered on look-and-feel issues. You would
use JSP when you want the look and feel of your deployment to be
physically separate and easily maintainable from the rest of your
deployment. JSP technology is perfect for this, and it can be easily writ-
ten and maintained by non-Java-savvy staff members (JSP technology
does not require a Java compiler). We illustrate using JSP with EJB in
Chapter 17.

m JavaServer Faces (JSF). JSF was made a part of the platform from Java
EE 5 onwards. JSF was designed to support rapid application develop-
ment of Java based Web applications by providing a framework that
allows reuse of server-side user interface components. The JSF user
interface (UI) components can be used in JSF pages, which are basically
JSP pages that use JSF tag libraries, as drag-and-drop components. JSF
also has provisions of a typical Web application framework such as
Struts in that it provides control flow and data flow between various
components of a Web application.

m Java EE Connector Architecture (JCA). Connectors enable you to
access existing enterprise information systems from a Java EE applica-
tion. This could include any existing system, such as a mainframe

34

Chapter 1

system running high-end transactions (such as those deployed with
IBM CICS, or BEA TUXEDO), Enterprise Resource Planning (ERP) sys-
tems, or your own proprietary systems. Connectors are useful because
they automatically manage the details of middleware integration to
existing systems, such as handling transactions and security concerns,
life-cycle management, thread management, and so on. Another value
of this architecture is that you can write a connector to access an exist-
ing system once, and then deploy it into any Java EE-compliant server.
This is important because you only need to learn how to access an exist-
ing system once. Furthermore, the connector needs to be developed
only once and can be reused in any Java EE server. This is extremely
useful for ISVs such as SAP, Siebel, Peoplesoft and others who want
their software to be accessible from within Java EE application servers.
Rather than write a custom connector for each application server, these
ISVs can write a standard Java EE connector. We discuss legacy integra-
tion in more details in Chapter 15.

The Java API for XML Parsing (JAXP). There are many applications of
XML in a Java EE deployment. For example, you might need to parse
XML if you are performing B2B interactions (such as through Web ser-
vices), if you are accessing legacy systems and mapping data to and
from XML, or if you are persisting XML documents to a database. JAXP
is the de facto API for parsing XML documents in a Java EE application
and is an implementation-neutral interface to XML parsing technolo-
gies such as DOM and SAX. You typically use the JAXP API from
within servlets, JSP, or EJB components.

The Java Architecture for XML Binding (JAXB). JAXB specifies a bind-
ing of XML documents to JavaBean objects based on XML document’s
XML schema. Also, in the latest version of JAXB 2.0, Java can be
mapped to an XML schema. JAXB is leveraged by JAX-WS as a data-
binding technology.

The Java Authentication and Authorization Service (JAAS).JAASis a
standard API for performing security-related operations in Java EE.
Conceptually, JAAS also enables you to plug authentication and autho-
rization mechanisms into a Java EE application server. See Chapter 11
for more details on security pertaining to EJB applications.

Summary

We’ve achieved a great deal in this chapter. First, we brainstormed a list of
issues involved in a large, multi-tier deployment. We then understood that

Overview

35

server-side component framework enables us to write complex business appli-
cations without understanding tricky middleware services. We then intro-
duced the EJB standard and fleshed out its value proposition. That was
followed by a discussion of the basics of distributed computing and the vari-
ous approaches used by frameworks to provide middleware services. Then,
we established relationship between SOA and EJB. And last but not least, we
investigated the different players involved in an EJB deployment and
wrapped up the chapter by exploring the various technologies bundled in the
Java EE platform.

That was quite a good beginning (and we're just getting started)—many
more interesting and advanced topics lie ahead. The next chapter attempts at
providing the rationale for much of the work that has gone into EJB 3.0. It
explains what was wrong with the previous versions of EJB and how and
where the changes to the existing technology should be made in order to
improve it. Thus, the next chapter builds a foundation for you to understand
why EJB 3.0 needed to change the way it did. Let’s go!

Pre-EJB 3.0:
The World That Was

Chapter 1 introduced you to the motivation behind EJB technology. In this
chapter, we will briefly introduce you to the programming and deployment
model used in the previous versions of EJB technology, viz. version 2.1 and
earlier. EJB 3.0 has undergone major changes; changes of this magnitude have
never been made to EJB, not even when container-managed persistence entity
beans were redesigned in EJB 2.0. It is essential that we take you through the
pre-EJB 3.0 world for you to realize the breadth and depth of enhancements
made in EJB 3.0. After reading this chapter, you will understand what a pre-
EJB 3.0 enterprise bean component was composed of as well as its program-
ming model. We will provide an example of an E]JB 2.1 bean to help you
understand further. Most importantly, in this chapter you will recognize the
drawbacks of the present EJB programming model. Comprehending these
limitations will prepare you for the exultation you shall experience peeking at
EJB 3.0 in Chapter 3!

If you are new to EJB technology and so haven’t worked with EJB before,
you might want to proceed straight to Chapter 3. Chapter 3 focuses on
fundamentals—from an EJB 3.0 vantage point.

37

38

Chapter 2

What Constituted a Pre-EJB 3.0 Enterprise Bean?

An enterprise bean is a server-side software component that can be deployed in
a distributed multi-tiered environment, and it will remain that way going for-
ward. Anyone who has worked with Enterprise JavaBeans technology before
knows that there are three types of beans—session beans, entity beans, and
message-driven beans (MDBs). Historically an EJB component implementa-
tion has never been contained in a single source file; a number of files work
together to make up an implementation of an enterprise bean. Let us briefly go
through these EJB implementation artifacts:

m Enterprise bean class. The primary part of the bean used to be the
implementation itself—which contained the guts of your logic—called
the enterprise bean class. This was simply a Java class that conformed to
a well-defined interface and obeyed certain rules. For instance, the EJB
specification defined a few standard interfaces that your bean class had
to implement. Implementing these interfaces forced your bean class to
expose certain methods that all beans must provide, as defined by the
EJB component model. The EJB container called these required methods
to manage your bean and alert your bean to significant events. The most
basic interface that all of the session, entity, and message-driven bean
classes implemented is the javax.ejb.EnterpriseBean interface.
This interface served as a marker interface, meaning that implementing
this interface indicated that your class was indeed an enterprise bean
class. Session beans, entity beans, and message-driven beans each had
more specific interfaces that extended the component interface
javax.ejb.EnterpriseBean, viz. javax.ejb.SessionBean,
javax.ejb.EntityBean, and javax.ejb.MessageDrivenBean.

m EJB object. When a client wants to use an instance of an enterprise bean
class, the client never invokes the method directly on an actual bean
instance. Rather, the invocation is intercepted by the EJB container and
then delegated to the bean instance. By intercepting requests, the EJB
container can provide middleware services implicitly. Thus, the EJB
container acted as a layer of indirection between the client code and the
bean. This layer of indirection manifested itself as a single network-
aware object called the E]JB object. The container would generate the
implementation of javax.ejb.EJBObject or
javax.ejb.EJBLocalObject, depending on whether the bean was
local or remote, that is whether it supported local or remote clients, at
deployment time.

m Remote interface. A remote interface, written by the bean provider,
consisted of all the methods that were made available to the remote

Pre EJB 3.0: The World That Was

39

clients of the bean. These methods usually would be business methods
that the bean provider wants the remote clients of the bean to use.
Remote interfaces had to comply with special rules that EJB specifica-
tion defined. For example, all remote interfaces must be derived from
the javax.ejb.EJBObject interface. The E]JB object interface con-
sisted of a number of methods, and the container would implement
them for you.

Local interface. The local interface, written by the bean provider, con-
sisted of all the methods that were made available to the local clients of
the bean. Akin to the remote interface, the local interface provided busi-
ness methods that the local bean clients could call. The local interface
provided an efficient mechanism to enable use of EJB objects within the
Java Virtual Machine (JVM), without incurring the overhead of RMI-
IIOP. An enterprise bean that expected to be used by remote as well as
local clients had to support both local and remote interfaces.

Home interface. Home interfaces defined methods for creating,
destroying, and finding local or remote EJB objects. They acted as life
cycle interfaces for the EJB objects. Each bean was supposed to have a
corresponding home interface. All home interfaces had to extend stan-
dard interface javax.ejb.EJBHome or javax.ejb.EJBLocalHome,
depending on whether the enterprise bean was local or remote. The
container generated home objects implementing the methods of this
interface at the time of deployment. Clients acquired references to the
EJB objects via these home objects. Even though the container imple-
mented home interfaces as home objects, an EJB developer was still
required to follow certain rules pertaining to the life-cycle methods of a
home interface. For instance, for each createXXX () method in the
home interface, the enterprise bean class was required to have a corre-
sponding ejbCreateXXX () method.

Deployment descriptor. To inform the container about your middleware
needs, you as a bean provider were required to declare your compo-
nents’ middleware needs—such as life-cycle management, transaction
control, security services, and so on—in an XML-based deployment
descriptor file. The container inspected the deployment descriptor and
fulfilled the requirements laid out by you. The deployment descriptor
thus played the key role in enabling implicit middleware services in the
EJB framework.

Vendor-specific files. Since all E]B server vendors are different, they
each have some proprietary value-added features. The EJB specification
did not touch these features, such as how to configure load balancing,
clustering, monitoring, and so on. Therefore, each EJB server vendor

40

Chapter 2

required you to include additional files specific to that vendor, such as
a vendor specific XML or text-based deployment descriptor that the con-
tainer would inspect to provide vendor-specific middleware services.

m The Ejb-jar file. The Ejb-jar file, the packaging artifact, consisted of all
the other implementation artifacts of your bean. Once you generated
your bean classes, your home interfaces, your remote interfaces, and
your deployment descriptor, you'd package them into an Ejb-jar file. It
is this Ejb-jar file that you, as a bean provider, would pass around for
deployment purposes to application assemblers.

Figure 2.1 schematizes an Ejb-jar file, the EJB artifact that is ultimately
deployed.

With this primer on the pre-EJB 3.0 constituents, let us go through with the
development and deployment of a simple stateless session bean. This will set
the stage for us to explore further the shortcomings of the programming model
of the previous versions of the technology.

Home Interfaces Local Interfaces
Jar File Creator EJB Jar File
Enterprise Bean Remote Interfaces
Classes
Deployment Vendor-specific
Descriptor files

Figure 2.1 Pre-EJB 3.0 constituents.

Pre EJB 3.0: The World That Was

41

Developing and Deploying a Pre-EJB 3.0 Enterprise
Java Bean

In this section, we will conduct a simple exercise: developing and deploying
the universal HelloWor1dEJB stateless session bean using EJB 2.1. The fol-
lowing are the typical steps involved:

1.

Write the Java code for the files composing your bean—the remote
and/or local interface, the bean class, and the home interface.

Write the deployment descriptor or have it generated by using an IDE
or tools such as XDoclet.

3. Compile the Java source codes from step 1.

4. Using the jar utility, create an Ejb-jar file containing the deployment

descriptor and the . class files from step 3.

Deploy the Ejb-jar file into your container in a vendor-specific manner,
perhaps by using a vendor-specific tool or perhaps by copying your
Ejb-jar file into a folder where your container looks to load Ejb-jar files.

Configure your E]B server so that it properly hosts your Ejb-jar file. You
might tune things such as database connections, thread pools, and so
on. This step requires vendor-specific configuration and might be done
through a Web-based console or by editing a configuration file.

7. Check your EJB container and confirm that it has loaded your Ejb-jar file.

8. Optionally, write a standalone test client . java file and let vendor tools

generate stub classes for remote access, if required. Compile that test
client into a . class file. Run the test client from the command line,
and have it exercise your bean’s APIs.

Figure 2.2 shows the class diagram for our HelloWor1dEJB stateless ses-
sion bean.
Now, let us go through the programming artifacts, one by one.

42

Chapter 2

<<interface>>
java.rmi.Remote

Comes with Java 2 platform

<<interface>>
java.io.Serializable

<<interface>>

javax.ejb.EJBLocalObject

<<interface>>
javax.ejb.EJBObject

<<interface>>
javax.ejb.EJBHome

<<interface>>
javax.ejb.EJBLocalHome

<<interface>>

javax.ejb.EnterpriseBean

B

I

I

Comes with EJB distribution

I

1

<<interface>>

javax.ejb.SessionBean

A

<<interface>> <<interface>> <<interface>> <<interface>> Hello World Bean
Hello World Hello World Hello World Hello World Implementation
Local Interface Remote Interface Home Interface Local Home Interface Class

Supplied by Bean provider (we will write)

Hello World
EJB Local Object

Hello World
EJB Object

Hello World
Home Object

Hello World
Local Home Object

The Remote Interface

Generated for us by container vendor's tools

Figure 2.2 HelloWorldEJB class diagram.

The remote interface for HelloWor1dEJB extends javax.ejb.EJBObject,
which in turn extends java.rmi.Remote. Note that the container imple-

ments the bean’s remote interface, not us. Also HelloWor1dEJB remote inter-

face consist of one business method, hello (), which needs to be
implemented in the bean class. Because the remote interface is an RMI-IIOP
interface, that is it indirectly extends java.rmi . Remote, all its methods must
throw a java.rmi.RemoteException. However, the implementation of
hello () inthe bean class does not have to throw a remote exception. Why? It
is not directly accessed by the client over the network and hence does not need
to foresee a networking-related issue.

The source for Hello. java, the remote interface of HelloWor1dEJB, is
given below in Source 2.1.

/**

* This is the HelloBean remote interface.

*

* This interface is what clients operate on when

* they interact with EJB objects.

Source 2.1

Hello.java. (continued)

The container

Pre EJB 3.0: The World That Was 43

* vendor will implement this interface; the

* implemented object is the EJB object, which

*

*/
public interface Hello extends javax.ejb.EJBObject
{

delegates invocations to the actual bean.

/**
* The one method - hello - returns a greeting to the client.
*/

public String hello() throws java.rmi.RemoteException;

Source 2.1 (continued)

The Local Interface

If HelloWor1dEJB were to support access by local clients within the same
JVM, it would need a local interface.
Source 2.2 shows the local interface for HelloWor1dEJB.

/**
* This is the HelloBean local interface.
*

* This interface is what local clients operate

* on when they interact with EJB local objects.
* The container vendor will implement this
* interface; the implemented object is the
* EJB local object, which delegates invocations
* to the actual bean.
*/
public interface HelloLocal extends javax.ejb.EJBLocalObject

{

/**

* The one method - hello - returns a greeting to the client.
*/
public String hello() ;

Source 2.2 HelloLocal java.

44 Chapter 2

Notice that there are differences between the local and the remote interface
for the same bean:

m The local interface extends javax.ejb.EJBLocalObject instead of
javax.ejb.EJBObject.

m Qur business method, hello (), does not throw a java.rmi.Remote
Exception, since there is no need to take care of network contingencies
in local JVM communication.

The Home Interface

The home interface has methods to create and destroy EJB objects of the bean.
The E]B container generates the home interface implementation.
The code for home interface is given in Source 2.3.

* This is the home interface for HelloBean. This interface
* is implemented by the EJB Server's tools - the

* implemented object is called the Home Object, and serves
* as a factory for EJB Objects.

* One create() method is in this Home Interface, which
* corresponds to the ejbCreate() method in HelloBean.
*/

public interface HelloHome extends javax.ejb.EJBHome

{

/*
* This method creates the EJB Object.

*

* @return The newly created EJB Object.
*/
Hello create() throws java.rmi.RemoteException,
javax.ejb.CreateException;

Source 2.3 HelloHome java.

Notice the following in the home interface:

m [t extends javax.ejb.EJBHome as required for all home interfaces.

m We provided a create () method that will act as a factory method for
getting a reference to an EJB object; the EJB container initializes the
bean when this method is called.

Pre EJB 3.0: The World That Was 45

m The create () method throws remote exception given that the home
object is a networked object. Also, javax.ejb.CreateException is
thrown, to cover for situations where creation of a bean failed due to
some application-level error.

The Local Home Interface

The local clients use a local home interface in order to access the local EJB
object of the bean.

The local home interface code is shown in Source 2.4.

* This is the local home interface for HelloBean.
* This interface is implemented by the EJB Server's
* tools - the implemented object is called the
* local home object, and serves as a factory for
* EJB local objects.
*/
public interface HelloLocalHome extends javax.ejb.EJBLocalHome

{

/*
* This method creates the EJB Object.
*

* @return The newly created EJB Object.
Y

HelloLocal create() throws javax.ejb.CreateException;

Source 2.4 HelloLocalHome java.

Notice the differences between local and remote home interfaces for the bean:

m Whereas the remote home interface extends javax.ejb.EJBHome
interface, the local home interface extends javax.ejb.EJBLocalHome.
This means that the generated local home object is not a remote object.

m Unlike the methods on the remote home interface, the local home inter-
face methods, such as create (), do not throw remote exceptions.

The Bean Class

Now let us take a look at our bean class code, shown in Source 2.5.

46 Chapter 2

/**
* Demonstration stateless session bean.
*/
public class HelloBean implements javax.ejb.SessionBean {

private javax.ejb.SessionContext ctx;

//

// EJB-required methods

//

public void ejbCreate() {
System.out.println("ejbCreate()") ;

public void ejbRemove () {
System.out.println("ejbRemove ()") ;

public void ejbActivate() {
System.out.println("ejbActivate()") ;

public void ejbPassivate() {
System.out.println("ejbPassivate()") ;

public void setSessionContext (javax.ejb.SessionContext ctx) {
this.ctx = ctx;

//

// Business methods

//

public String hello() {
System.out.println("hello()");
return "Hello, World!";

Source 2.5 HelloBean.java.

This is, of course, a simplistic bean, and hence our bean class, which holds
the logic for the bean, is quite simple. Notice the following;:

m Jtimplements a javax.ejb.SessionBean interface, since it is a session
bean. The bean class therefore must implement SessionBean interface
methods, most of which are the hooks for the container to manage the
bean. Via such methods, the container lets the bean know of its life cycle—
when it is being created, destroyed, passivated, activated, and so on.

Pre EJB 3.0: The World That Was 47

m The bean has an ejbCreate () method that matches the home object’s
create () method and takes no parameters.

m The setSessionContext () method provides a way for the container
to set the EJB context-specific to your bean, which in the case of our ses-
sion bean, is a session context. The bean can then use this context object
to get information about its status changes from the container.

Deployment Descriptor

The deployment descriptor carries the configuration information about the
bean, things such as its middleware requirements, which the container could
use to set up an appropriate environment for the bean. It is an XML document,
usually generated by the tools. The deployment descriptor for our bean is
shown in Source 2.6.

<?xml version="1.0" encoding="UTF-8"?>

<ejb-jar
xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd"
version="2.1">
<enterprise-beans>
<session>
<ejb-name>HelloWorldEJB</ejb-name>
<home>examples.ejb2l.HelloHome</home>
<remote>examples.ejb2l.Hello</remote>
<local-home>examples.ejb2l.HelloLocalHome</local-home>
<local>examples.ejb2l.HelloLocal</local>
<ejb-class>examples.ejb2l.HelloBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>
</session>
</enterprise-beans>
</ejb-jar>

Source 2.6 ejb-jar.xml.

Deploying The Bean

Once we have all the required artifacts for the HelloWor1ldEJB, we will
package them into an Ejb-jar file. Typically, your EJB development environ-
ment would do this packaging, so that you don’t have to use another jar tool
exclusively to do it. We then deploy this Ejb-jar file on the container of our

Chapter 2

choice. The steps of deployment, though tentatively are the same, vary in
specifics from container to container.

Once the bean is deployed and working, develop, compile, and test the bean
with a client.

HelloWorldEJB Client

Examine the code for the bean client. It is a standalone Java application, as
shown in Source 2.7.

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Properties;

/**
* This class is an example of client code that invokes
* methods on a simple stateless session bean.
*/

public class HelloClient {

public static void main(String[] args) throws Exception {
/*
* Setup properties for JNDI initialization.
*
* These properties will be read in from
* the command line.
*/
Properties props = System.getProperties();

* Obtain the JNDI initial context.

* The initial context is a starting point for
* connecting to a JNDI tree. We choose our JNDI
* driver, the network location of the server, etc.
* by passing in the environment properties.
*/
Context ctx = new InitialContext (props) ;

/*
* Get a reference to the home object - the
* factory for Hello EJB Objects
*/

Object obj = ctx.lookup("HelloHome") ;

/*

Source 2.7 HelloClient.java. (continued)

Pre EJB 3.0: The World That Was

49

* Home objects are RMI-IIOP objects, and so
* they must be cast into RMI-IIOP objects

* using a special RMI-IIOP cast.
*

* See Appendix A for more details on this.
*/
HelloHome home = (HelloHome)
javax.rmi.PortableRemoteObject .narrow (
obj, HelloHome.class) ;

/*
* Use the factory to create the Hello EJB Object
*/

Hello hello = home.create();

/*
* Call the hello() method on the EJB object. The
* EJB object will delegate the call to the bean,

* receive the result, and return it to us.
*

* We then print the result to the screen.
*/
System.out.println(hello.hello());

/~k
* Done with EJB Object, so remove it.
* The container will destroy the EJB object.
*/

hello.remove () ;

Source 2.7 (continued)

HelloClient.java does some interesting things:

m]t creates a JNDI initial context object by supplying the container with
the appropriate information such as the network location of the JNDI
service, JNDI driver, and so on.

m [t looks up the home object for the bean, HelloHome, implemented and
registered by the container under the name specified in <ejb-name> of
the deployment descriptor in a JNDI directory, so that it can create EJB
object for HelloWor1dEJB.

m Once it gets the home object for Hel1loWor1dEJB, it gets a reference to
the EJB object by calling create () method on the home object.

50

Chapter 2

m After calling the business method, hello (), on the Hello E]B object,
it informs the container that it is done using the EJB object and that the
container can destroy it or return to the object pool, if it so desires.

The client is then compiled and run. This brings our example to completion.

Dissecting EJB 2.x

The preceding example is a good preamble to start our discussion of the short-
comings of the EJB 2.x model. Mind you, our example is a session bean—a
stateless session bean to be more specific. However, the way we develop and
deploy a stateful session bean is quite similar to that of the stateless session
bean, so our examination is relevant to both stateless and stateful session
beans, as well as to the greater EJB architecture.

The message-driven beans slightly differ in that they do not have a home or
a remote interface. However, some of the issues are applicable to MDBs as
well. So let’s begin!

Complexity: The Overarching Issue of EJB 2.x

As a consultant, a compatriot once gave me the key to his booming consulting
practice. His mantra: complexity is a virtue you could never have enough of.
Of course, this mantra was convenient for his consulting business. However,
imagine yourself in the position of an IT manager hiring one of his consultants.
Well, you get the picture. You do not want code that is so complicated to
develop, deploy, test, and maintain, that you'd rather sell it at a dime a pound,
assuming there were such a junk code marketplace, and be rid of it. And the
last thing you’d want is architecture such as E]B to aid to make this nightmare
a reality.

WHAT ABOUT ENTITY BEANS?

Entity beans in EJB 2.x do have issues, as all of us who have worked with that
technology are aware. After much contemplation, the EJB 3.0 specification expert
group decided to leave entity beans alone in this version. That is, entity beans
will remain as they were in EJB 2.x without undergoing any enhancements.
Instead, the expert group worked on making available another API called Java
Persistence API to EIB developers. This API aims at providing a very simple yet
effective persistence technology for EJB applications. Therefore, our scrutiny of
EJB 2.x drawbacks will not address entity beans, even though it might be
applicable to entity beans as such.

Pre EJB 3.0: The World That Was

51

EJB was designed to meet almost all of an enterprise application’s middle-
ware needs. In doing so, it also ended up adopting leviathan ways for enter-
prise programming. In all fairness, E]JB visionaries have continually improved
the technology from what it was at the time of its debut in early 1998. How-
ever, to deal with the all-encompassing convolutions of EJB, serious measures
are called for. These measures are the sole focus of EJB 3.0 and Java EE 5.0
enhancements, and most rightly so.

Development Complexities

Developing a typical enterprise bean consisted of three—and many times
more than three—Java sources. For our simplistic HelloWor1dEJB, we were
required to write five Java sources, including the sources for home and EJB
object interfaces to support local clients, remote clients, and a bean class. The
concern is that often these sources contain boilerplate stuff and yet they are
cumbersome to write without the help of IDE wizards. Below are some of the
examples of vanilla coding requirements that exist throughout the EJB pro-
gramming model. To reduce development complexity, such coding require-
ments should be made the first targets of any simplification exercise.

m For session beans, home interfaces exist so that the clients can look
them up and create references to the bean, which they can then use.
Now EJB programming restrictions mandate that every stateless session
bean have exactly one create () method. This create () method
needs to be without arguments, since stateless session beans are with-
out state and hence don’t need to be equipped with a state-passing
mechanism such as arguments. Therefore, given a way to somehow cre-
ate and pass the stateless session bean reference to the client, stateless
session bean development can be simplified by getting rid of this other-
wise unnecessary home interface.

Similarly, for a stateful session bean, its home interface serves the pur-
pose of creating bean references and initializing their states via the cre-
ate methods. If there were a way of putting these create methods
elsewhere, we could get the home interface completely out of the ses-
sion bean programming model. This would save developers the time
and effort of developing home interfaces.

m The remote interface for HelloWor1dEJB carries methods that are
made available to the remote clients. Similarly, the methods that should
be made available to the local clients are provided as part of local inter-
face. And the ones invoked by Web service clients are made available
via a Web service endpoint interface. Almost always the business meth-
ods that go into remote and local interfaces are the same, except that the
former has remote invocation semantics with regard to serialization,
exception handling, and so on taken into consideration, while the latter

52

Chapter 2

doesn’t. If somehow the client view of the session bean can be provided
irrespective of the client invoking its business methods, this can further
help simplify the EJB programming model. In short, EJB need not
worry about the location of the client invoking it. It should just be able
to provide the business methods in a business interface and leave it up
to the container to handle the support for local or remote client invoca-
tion of the beans using this business interface.

The HelloWor1dEJB bean class requires implementation of component
interface, javax.ejb.SessionBean. As a result, our bean class has to
provide implementation for four methods, namely ejbActivate (),
ejbPassivate (), ejbRemove (), and setSessionContext ().

The ejbPassivate () and ejbActivate () callback methods are
called before the container passivates your bean and after it activates

it, respectively. Naturally, these methods are not applicable to

stateless session beans, which are never passivated or activated. The
ejbRemove () callback method is invoked by the container before it
removes your bean instance. The setSessionContext () callback is
called right after the bean class instance is created. The bean can then
do whatever it chooses to do with this SessionContext object—get
access to the transaction object and manage transactions for the bean
manually, get access to the local and remote home objects associated
with the bean instance, get access to local and remote EJB objects associ-
ated with the bean instance, and so on. The SessionBean interface,
thus, can have an important role to play in your bean’s existence in that
it provides your bean with useful information about its environment as
well as letting the bean find out about its life cycleevents and take
action appropriately.

In spite of all this, however, there are times when implementing this
interface can be overkill. Not all the beans need these callbacks. In our
HelloWor1ldEJB example for instance, we simply did not have a
reason to use the callbacks and so we ended up putting pointless
System.out.println() callsin their implementation. Nonetheless
the restrictions of EJB programming made us take on the extra burden
of implementing the SessionBean interface. Therefore, if there were a
way to implement such callbacks if need be and not have to implement
them when there is no need, this would clean up a lot of bean classes
with unnecessary implementations of SessionBean component inter-
face methods.

Let us talk about the Hel1loWor1dEJB client now for a moment. In order
to use the bean, the client has to work with the JNDI APIs. The JNDI
registry holds the EJB home object references and all the other resources
such as JMS topics, JMS queues, JDBC connection factories, J]MS
connection factories, and so on in a Java EE server. Making available

Pre EJB 3.0: The World That Was

the factories and other distributed resources in a registry such as JNDI
registry is a good thing. However, the EJB client programmer shouldn’t
have to learn JNDI intricacies. The client programmer shouldn’t have to
know how to work with JNDI APIs. This is definitely one area where EJB
programming can be simplified; provide an easier way to get resources
such that using JNDI APIs isn’t a requirement for clients.

The preceeding list of major EJB development complexity issues hints at the
areas of focus for EJB 3.0 enhancements.

Deployment Complexities

The original EJB designers thought of a wonderful architectural concept that
separates middleware issues and concerns and how these concerns are
addressed from the actual business logic. In doing so, they realized that there
has to be a way for a bean to let the container know about the middleware ser-
vices that it will need for successful execution. The designers thought of a con-
figuration file that is essentially used by the bean to put its needs in terms of
middleware. This configuration came to be known as a deployment descriptor.
It is uncanny how an artifact born of such an incandescent idea can come to be
so disliked by almost all EJB programmers on the planet!

The separation of deployment information from the actual business logic in
itself was a brilliant idea; however, its implementation isn’t exactly to the lik-
ing of a good many EJB architects and developers. The reasons are many; some
of these are:

m A deployment descriptor is a piece of XML and as such is not very
straightforward to edit; a single misplaced or mistyped character can
render XML invalid and lead to errors in the deployment process.
Although tools usually generate these deployment descriptors, the fact
that descriptors are the only way of letting the container know about
bean’s deployment needs means that developers are required to have a
good understanding of them. If there were yet another way—a more
programmer-friendly alternative—of specifying the bean’s deployment
needs, it would surely provide a choice for those of us who are XML-
phobic.

m One of the main purposes of making the deployment descriptor a part
of the EJB specification was to devise a standard way of communicating
configuration information from the bean to the container such that even
if the bean were to be ported to a different container, the deployer
would not need to change this configuration and the deployer could
deploy the bean as is. Although this has been achieved, the question is,
to what extent? For example, even though our bean can specify its
needs to the container with regard to transaction in a vendor agnostic
way, it is not yet possible to let the container know about the clustering

54

Chapter 2

or caching needs of a bean without resorting to vendor-specific deploy-
ment descriptors. Over the years, EJB application implementers have
felt a surging need to insert more and more of such configuration infor-
mation into the standard to make the write once, deploy anywhere
promise of enterprise Java a reality.

Not all of the deployment descriptor flaws mentioned above have been rec-
tified in EJB 3.0. However, the fact remains that enhancing a technology as
comprehensively defined and widely deployed as EJB is not going to be an
overnight process. We will get there, nonetheless, slowly and steadily.

Debugging and Testing Complexities

Debugging and testing EJB introduces us to a different set of issues. No won-
der there are dozens of EJB testing and debugging utilities available, both in
open source as well as in commercial/closed source domains. The reason we
have to fall back on using these utilities and tools for something as intrinsic to
the software development life cycle as testing and debugging is because the
EJB architecture doesn’t facilitate these to developers out of the box, not with-
out ramifications.

There are two ways in which a bean could be tested—within the container
or outside the container. For the former, we have to deploy the tests within the
container, that is, essentially our tests have to become Java EE components
such as servlets/JSPs or an E]B that implements the test case. For the latter, we
need to deploy the EJB in the container such that it supports remote invoca-
tions. What if you have an E]B that supports only local interface? Would you
put remote interfaces on your bean just to support the remote test clients? As
you can see, testing is not as simple as it ought to be. Test frameworks, utilities,
and IDEs have tried over the years to make testing enterprise beans simpler
and provide an out-of-the-box experience. We are reaching that destination,
but we are not there yet.

By the same token, there are two ways in which debugging an enterprise
application deployed on an EJB container is accomplished—by reading the
application server log files or by attaching a debugger process with the appli-
cation server’s JVM. Most times, especially if an application server is config-
ured to be verbose (which, by the way, needs to be done if we want to know
what is going on inside the application server), log files tend to get bulky.
Scouring such log files to find exactly where your application could have gone
wrong is an inefficient technique for debugging. The latter approach of attach-
ing a debugger with an application server sure sounds more promising, and it
is. Most of the IDEs today come with debuggers that attach to EJB containers
so as to be able to write and debug code from within the IDE. The only issue
here is that not all EJB compliant application servers are supported by the

Pre EJB 3.0: The World That Was

55

IDEs. The IDE-to-EJB-server integration is posing issues to developers who
want ubiquitous debugging support across all E]B server platforms from their
favorite IDE.

What Needs to Be Done to Improve EJB 2.x?

Our example and the examination of EJB technology that followed it, specifi-
cally session beans, make one thing very clear—E]JB needs to be simplified to
address the issues surrounding development, deployment, testing, and
debugging. Please don’t mistake us; we are not in the least suggesting that E]B
be made into a child’s play. On the contrary, we believe that EJB programming
model should be changed so as to make mundane things simpler, thereby
increasing developer productivity. Developer productivity sits right at the
heart of every IT organization that is a consumer of technology. Indeed, the
time has come for us to make life easier for developers, so that their resulting
increase in productivity can make life easier for businesses, which in turn is
good for all of us.

We do believe that enterprise software development is no fool’s business,
although we don’t think that it should be made into a rocket science either. We
do acknowledge that enterprise software development demands sound
knowledge of architectural principles; however, our task would be made
much easier if we could get cooperation from frameworks to implement these
principles.

Summary

In this chapter, we examined the past; we looked at a very simplistic example
of a 2.x stateless session bean, which helped us understand the development
and deployment shortcomings of the EJB 2.x model. It helped in setting us to
the right speed for diving into the depths of EJB 3.0.

We are now fully prepared to get into the ocean of EJB 3.0!

The New Enterprise JavaBean

Okay, so now we have witnessed the excessively difficult development of a
very simple EJB in Chapter 2. What did that make you want? EJB 3.0 should be
the answer there. Without further ado, here is brand new introduction to the
EJB technology within the context of EJB 3.0.

It is of the utmost necessity that you understand that while a lot of
changes have been made to the programming model in EJB 3.0, fundamentally
EJB technology continues to address the same need, that is, it serves as the
server-side software component framework. The development and deployment
model of EJB has been revamped, not its core framework and architectural
principles. Obviously, some current best practices and design patterns might
lose their applicability to EJB 3.0 solutions; however, many of them still hold
water in EJB 3.0.

Introducing EJB 3.0

An enterprise bean is a server-side software component that can be deployed
in a distributed multi-tier environment. A bean is written using the EJB APIs
(The javax.ejb.* package) and is deployed into an EJB container. The
EJB container then provides the bean with various services such as life cycle

57

58

Chapter 3

management, security, transaction management, and much more. The client of
an EJB bean could be anything—a servlet, a JSP, a standalone Java application,
an applet, a SOAP-based Web service client, or even another EJB. One can
divide a complex task into multiple beans such that a client invokes an entry
point method on one of these beans, which in turn invokes the others in the
group. Thus, one can use a divide-and-conquer strategy in the E]JB application
design.

As areal-world example, imagine for a moment what happens when you go
to an ATM to withdraw some money from your checking account. Imagine
what takes place underneath the ATM screen from the architecture standpoint.
The ATM front-end user application can very well be a standalone Java appli-
cation running on the client-side JVM. This Java application takes details such
as your debit card info, pin, withdrawal amount, and so on and sends that data
across the wire (often in a compressed format) to a Web service hosted by the
ATM host processor, also known as the acquirer. It is the acquirer that then
communicates with the ATM user’s financial institution (bank, credit card
company, and so on) to accomplish the payment transaction. The acquirer Web
service can be implemented as an enterprise bean and as part of the invocation
of a method—named as, say, processWithdrawal () —on this bean, a bunch
of other invocations potentially on a number of different beans ensues.

1. Call logTransaction () on ATMLog bean, to log the date, time, and
coordinates of the withdrawal transaction.

2. Invoke doEFT () on ElectronicFundsTransfer bean to transfer the
withdrawal amount from ATM user’s checking account to the
acquirer’s account.

3. Invoke dispenseCash () on CashRegister bean once the EFT trans-
action goes through successfully and the acquirer receives an approval
code from the ATM user’s financial institution authorizing it to dis-
pense cash.

This flow is depicted in Figure 3.1. As is evident, this is a powerful way to
design complex applications using EJBs.

For those who are E]B veterans, it is important to note that the core partici-
pants have remained the same for EJB 3.0, that is, a bean, a container, and a
client. The difference between the old and the new is apparent when we exam-
ine the development and deployment semantics of these participants across
the versions of EJB.

The New Enterprise JavaBean

59

X

processWithdrawal() Acquirer > Acquirer
»(O—{ Web Service Web Service
Interface EJB
Client Java
Application
fo2 C c
c - <
= s m 3
ATM © <] (%)
< (a] g
v
c c
: 2
= 7]
o 2
S T
A Y Y
Electronic .
ATMLog FundsTransfer CashRegister
EJB B EJB

Figure 3.1 ATM cash withdrawal scenario accomplished using EJBs.

EJB Container

As you know by now, an E]B container is responsible for managing your enter-
prise bean. The most important responsibility of the container is to provide a
secure, transactional, distributed environment in which enterprise beans can
execute. However, neither the beans nor the clients that call these beans are
required to explicitly code against the EJB container APIs to avail themselves
of these container services. They can instead let the container know about their
needs implicitly by specifying the necessary configuration information within
an XML-based deployment descriptor or within the bean’s code using deployment
annotations (discussed later in this chapter). In essence, EJB containers act as
invisible middlemen between the client and the bean. They provide the beans
with suitable services implicitly. Described in the following list are just a few of
the many services that are made available by the bean container.

Transaction management. Transactions enable you to perform robust,
deterministic operations by setting attributes on your enterprise beans.
The E]B container provides a transaction service, a low-level implementa-
tion of transaction management and coordination. The transaction ser-
vice is exposed through the Java Transaction API (JTA). JTAis a
high-level interface that you can use to control transactions. We will get
into the details of EJB transactions, JTA, and much more in Chapter 10.

60 Chapter 3

ORGANIZATION OF EJB 3.0 SPECIFICATION DOCUMENTS

The EJB 3.0 specification developed under Java Specification Request (JSR) 220
has been divided into three specification documents, as under:

¢ The EJB Core Contracts and Requirements document defines the service
provider interfaces (SPIs) between the bean instance and the container;
application programming interfaces (APIs) between the bean provider
and the container, protocols, component and container contracts, system
level issues, various infrastructure services to be provided by the con-
tainer to the bean; and other such details regarding the development,
packaging, and deployment for all the types of beans.

& The EJB 3.0 Simplified APl document provides guidelines on the areas
where simplification to the preexisting EJB APIs and SPIs have been done
to achieve simplified development and deployment model in EJB 3.0. For
developers who are familiar with the previous versions of EJB technol-
ogy, we recommend quickly skimming through this document to get a
very good idea of how and where the EJB 3.0 technology has been
simplified.

& The Java Persistence APl document specifies the POJO-style persistent
entity development guidelines. Even though the Persistence API specifi-
cation was developed within the EJB 3.0 Expert Group, we believe that
any enhancements or changes to this work would be carried out in a
separate working group in the future. It makes a lot of sense to evolve
this work independent of EJB technology in the future, given that Persis-
tence API-based entities can be used not just in EJB applications but in
any other kind of Java application.

Security. Security is a major consideration for multi-tier deployments. The
Java SE platform already enables a secure environment that authenti-
cates and authorizes access to the Java code. E]B adds to this the notion
of transparent security such that the access to the bean methods is
secured by setting the security attributes instead of coding against a
security APL

Resource and life cycle management. The EJB container manages
resources, such as threads, sockets, and database connections, on behalf
of the enterprise beans. In fact, the container manages the life cycle of
enterprise beans as well. The container creates the bean instances,
destroys them, passivates them by serializing them to a secondary stor-
age (when needed), activates them by reading their serialized state from
the secondary storage, and so on. Thus, the container has the ability to
reuse the bean instances as and how it wants.

Remote accessibility. Clients located in a remote JVM can invoke methods
on an enterprise bean. As with everything else, the container makes this
happen without requiring the bean provider to code for such remote

The New Enterprise JavaBean 61

accessibility of the bean. The container converts our networkless beans
into distributed, network-aware objects in order to service the remote
clients.

Support for concurrent requests. The container also takes care of servicing
concurrent requests from clients without making the bean provider
write multithreading code to handle them. E]B containers provide built-
in thread management support. For instance, it can instantiate multiple
instances of the bean—maintain a pool of bean instances, so to speak—to
efficiently service the concurrent client requests. If multiple clients call
the methods on a bean’s instance, the container can also serialize the
requests, thereby allowing only one client to call the bean instance at a
time. When this happens, other clients are either routed to a different
bean instance or are forced to wait till the original bean instance
becomes available. This thread management performed by container has
a lot of value to the E]JB developer, because after all, who enjoys writing
synchronized multithreaded code?

Clustering and load-balancing. Although, an EJB container is not required
by the specification to provide these, most of the containers come
equipped with clustering and load-balancing support. Obviously, this is
a tremendous value addition to any deployment that wants to handle a
large number of requests in a fail-safe and scalable manner. At the same
time, because these are essentially nonstandard services, their configura-
tion varies from container to container. Also, if your code relies on these
services for smooth functioning, porting it to another container can
become a little tricky. But all things considered, these services still make
a highly scalable and fail-safe deployment possible.

Types of Beans

Enterprise JavaBeans are categorized into various types. Depending on the
design requirements you can use the suitable bean type.

Session beans. Session beans model business processes. They are like verbs
because they perform actions. The action could be anything, such as
adding numbers, accessing a database, calling a legacy system, or calling
other enterprise beans. Examples include a pricing engine, a workflow
engine, a catalog service, a credit card authorization service, or a stock-
trading service. Session beans are further divided into two categories—
stateful session beans and stateless session beans. As their names suggest,
stateful session beans maintain state, encapsulated within the bean
instance, across multiple client requests, whereas stateless session beans
are not tasked with retaining the state across multiple client requests.
Chapter 4 explores both stateless and stateful session beans in detail.

62

Chapter 3

Message-driven beans (MDBs). Message-driven beans are similar to ses-
sion beans in that they perform actions. The difference is that you can
call message-driven beans only implicitly by sending messages to those
beans. That is to say that there is no direct way of invoking a method on
the message-driven bean. Examples of MDBs include beans that receive
stock trade messages such as trade acknowledgment messages, credit
card authorization messages, or messages within a given workflow or a
business process where interactions are loosely coupled. These MDBs
can in turn call the invoke methods directly on other EJBs or indirectly
by sending a message to be received by another MDB. Chapter 7 pro-
vides a comprehensive discussion of message-driven beans.

Entity beans. Entity beans model business data. They are like nouns
because they are data objects, that is, Java objects that cache database
information. Examples include a product, an order, an employee, a
credit card, or a stock. Session beans can harness entity beans to accom-
plish business transactions. Note that entity beans haven’t been
enhanced in EJB 3.0. Since there have been no changes made to entity
beans in EJB 3.0, we have decided that this edition of our book shall not
address entity beans at all. For readers who wish to educate themselves
on entity beans, we suggest reading the third edition of this book. The
third edition provides up-to-date guidance on developing and deploy-
ing entity beans, as well as related best practices and performance-tun-
ing guidelines. Please read the sidebar “The Future of Entity Beans” to
get an idea of where we think entity beans are headed and what made
us drop entity beans coverage from this edition.

When we compare EJB architecture to other component based computing
architectures such as DCOM, .NET, and CORBA, one of the obvious questions
that arises is: Why does E]B have different types of components when other
architectures don’t? In other words, why does EJB have session beans, message-
driven beans, and entity beans instead of just having, say, a generic bean? E]B is
the only component framework that differentiates between components that
represent domain business logic versus components that represent domain
model versus components that react to messages passed as part of some busi-
ness process. We think that this differentiation, even though not called out
explicitly in other frameworks, is one of the salient features of EJBs. We can uti-
lize various component types to suit specific purposes in accordance with the
designated functions of our components right at the design time. This, in turn,
further clarifies our component model and that directly translates into a better
design. Admittedly this does increase the learning curve for EJB, however, it
pays off in the long run with increased functionality.

Figure 3.2 is an illustration of various types of clients tapping into an EJB
application comprising different types of EJBs. Also notice the protocol that is
used by these clients to communicate with enterprise beans in a distributed

The New Enterprise JavaBean

63

environment. This brings us to our next topic, RMI-IIOP, the protocol of the
enterprise bean.

.]ma EJB 3.0 style POJO EJB programming is only applicable to session beans
and message-driven beans. Entity beans, as noted previously, have not been
enhanced to benefit from the simplicity of the POJO model in EJB 3.0. Hence,
even though entity beans are very much a part of the EJB 3.0 specification, they
are not “POJO-fied” as is the case with session beans and message-driven
beans. Instead, Persistence APl-based entities are recommended for
applications that want to utilize POJO entities. This basically means that there
is no real notion of “EJB 3.0 entity beans”; there is only “EJB 2.1 entity beans”
given that entity beans as specified in the EJB 3.0 specification are exactly the
way they were in EJB 2.1 specification. Hence, anywhere in this book, the term
EJB 3.0 bean essentially implies session beans or message-driven beans but
not entity beans.

Client Tier |Web Service Client| |HTML Client|
|SOAP/HTrP| | HTTP |
Firewall b——
Y Y
Messaging C++ CORBA | | Java Application
Client Client Client Servlet JSP
\ 7
Messaging |CORBA-IIOP| | RMI-IIOP | | RMI-IIOP | | RMI-IIOP |
protocol
EJB Tier

\
\

\
\

L/

Message-Driven
Bean

Session Bean

Session Bean

A

| \ !

Session Bean

Entity

Figure 3.2 EJB sub-system: The various clients and beans.

64 Chapter 3

THE FUTURE OF ENTITY BEANS

Entity beans have been a part of EJB technology ever since it was introduced.
Throughout their history, entity beans have managed to cause ambivalent
feelings among the industry experts and EJB application architects/developers
alike. Mostly, entity beans have been projected as a heavyweight approach to
handling persistence in enterprise applications. Many times entity beans have
been accused, rightly or wrongly, of poor performance and heavy resource
consumption of the enterprise servers. Entity beans, in short, are controversial
and not surprisingly, many architects and developers tried to steer clear of
using them in their applications.

Meanwhile, the rapid adoption of alternative persistence technologies and
products fashioned around POJO-style entities roused the EJB community to
demand that POJO-style entities be blessed by the EJB Expert Group, that the
EJB Expert Group undertake providing a standard mechanism to develop and
deploy such lightweight yet fully functional POJO entities. As a result, when the
EJB 3.0 Expert Group was formed, one of their loftiest goals was to provide a
standard lightweight persistent entity alternative to entity beans. Thus was born
the Persistence API specification under the EJB 3.0 umbrella. Hence, EIB 3.0
gives you multiple alternatives for persistence:

& Use entity beans for persistence. If your application presently uses entity
beans and you are happy with the way it performs, you can migrate that
application as it is to EJB 3.0. All EJB 3.0 containers have to support en-
tity beans in their entirety. Now, if you are designing a new application
and if you and your developers truly feel comfortable and confident
using entity beans, there is no reason not to use them in the new appli-
cations. Also note that right now there are no plans to deprecate entity
beans from the EJB specification. In fact, even though there are no en-
hancements made to entity beans in EJB 3.0 specification, there could
very well be enhancements made to them in the future versions of EJB
specification. It is all based on what the industry desires and needs at
the time. For now, the Expert Group has decreed that we have everything
we need to get going with entity beans.

¢ Use Persistence API entities, also known simply as entities. Persistence
API has been defined in response to the heavy demand for a standard
lightweight mechanism of persistence in EJB applications. If this style of
persistence suits your needs, go for Persistence API. We believe that enti-
ties are a way to go because of the sheer simplicity and ease of develop-
ment and productivity that they provide, so we provide a lot of in-depth
information about entities in this edition. Not only do we discuss API-
level details of developing entities, but we also provide a lot of guide-
lines and best practices to help you optimally design and deploy the
entity-based EJB applications.

¢ Use other persistence technologies such as Java Data Objects (JDO) or
JDBC in your applications for persistence.

The New Enterprise JavaBean

65

Again, we want to emphasize that we have made a conscious decision of not
addressing entity beans in this edition. Our reasoning is that entity beans
haven’t changed a bit in EJB 3.0. There was no need to duplicate the same
entity bean information across the two editions. Besides, we believed that
using the space freed up by entity beans to cover Persistence API entities better
served our readers. Hence our decision to discard entity beans related
information from this edition. But this in no way reflects our take on entity
beans as a less or a more viable technology for handling persistence. That
decision needs to be made after considering your architecture and design
requirements.

RMI-110P: The Protocol of the Bean

Internet Inter-ORB Protocol, also known in short as IIOP, was originally intro-
duced within the Object Management Group (OMG), the standard-setting
organization for the CORBA world, as a mechanism to enable ORB-to-ORB
internetworking. The IIOP protocol connects CORBA products from different
vendors, thereby ensuring interoperability among them. Later on, the precep-
tors of EJB understood that a similar need for interoperability among the con-
tainers from different vendors existed in the EJB world as well. They looked
around to see if a solution in the form of an inter-ORB protocol already existed
and that exercise brought IIOP to the EJB world.

Today every EJB container has to support IIOP. To be precise, it is RMI-IIOP
that they are required to support. So what is RMI-IIOP? It is essentially mar-
riage of CORBA'’s IIOP with the RMI programming model. CORBA and RMI
were developed independently as distributed object programming models.
RMIl served as a foundation for EJB. In fact, the early days, E]B containers were
based on RMI’s native JRMP (Java Remote Method Protocol) protocol for
remote method invocation. Although JRMP is good enough for interoperabil-
ity as long as both ends of the wire are Java based, it is inadequate in scenarios
where either of the client or server belong to a different programming plat-
form. Moreover, JRMP did not address the critical question of intercontainer
interoperability. However, in spite of its shortcomings, RMI did provide a very
simple-to-use API for developing distributed applications on a Java platform.
Hence, instead of discarding RMI completely, the Java community moved on
to defining RMI-IIOP, a combination of RMI distributed computing APIs with
ITIOP as a protocol underneath. This way, the Java world got the best of both
these technologies.

An EJB vendor can provide support for another protocol in addition to RMI-
IIOP. An EJB deployer can use this vendor-specific protocol for his application
as long as the communication is between the components deployed in the same
vendor’s container and both ends of the wire can understand RMI. However, if

66

Chapter 3

an E]B gets requests from other EJBs deployed in a different vendor’s container
or if it services requests from CORBA clients written in a different language,
RMI-IIOP protocol is needed to enable interoperable communications to take
place. Appendix A discusses RMI-IIOP in further detail.

EJB and Location Transparency

Distributed computing systems that offer location transparency essentially
offer an ability for the clients to communicate with the remote object without
them having to be aware of the remote object’s machine location. The servicing
object can be located on the same machine or on a different machine; the client
doesn’t have to care. The location transparency is usually attained via an inter-
mediary, such as a registry, wherein the distributed objects are registered along
with information such as their exact machine location. All the client has to do
is search this registry for the requisite remote object, and it is the registry that
hands over the remote object to the client.

In the EJB world, location transparency translates to the ability of the client
to communicate with the EJB that is deployed in a JVM other than the client’s
JVM. The clients of the EJB that support remoting are not required to be
located within the same JVM; they can be in the same JVM, but they don’t have
to be. JNDI is an enabler of location transparency in the EJB framework. A
remote client of a bean can be located on any system—as long as it can com-
municate with the JNDI service of the EJB container, it can get to the bean.

EJBs also support local client view. This functionality was added in the 2.0
version of EJB technology so that the clients co-located in the same JVM as the
bean can bypass the performance inefficiencies of pass-by-value semantics
inherent to the distributed programming models. For such invocations on the
bean’s local client view, the container passes method parameters by reference.
Similarly, the container passes method return values by reference from bean to
the client. Pass-by-reference basically leads to sharing of the state between
caller and the called. Hence, if the bean does not want the client to modify the
returned value, it needs to explicitly copy the return data into another variable
and pass that to the client. Local clients of EJB do not benefit from location
transparency as such, since they have to be, by definition, co-located in the
same JVM as the bean.

EJB 3.0 does support both local and remote client views, as it did in the pre-
vious versions, except that the bean developer is no longer required to provide
definitions of EJBObject interfaces for local and remote client views. Instead,
the bean developer is just required to define POJI (plain old Java interface)
business interfaces for local and remote clients of the bean. Alternatively, the
same business interface can be used to serve both local and remote clients.

The New Enterprise JavaBean

67

JAVA NAMING AND DIRECTORY INTERFACES (JNDI)

INDI provides a standard API to access different kinds of naming and directory
services within a Java program. It is not specific to a specific naming or
directory service and instead can be used to access any given naming

or directory service, such as a Lightweght Directory Access Protocol (LDAP)
directory, COS (CORBA Object Services) naming, and so on, from within Java
code as long as a corresponding JNDI provider for that specific naming or
directory service is used. JNDI provides two APIs—one for accessing naming
services, called Naming API, and another for accessing directory services, called
Directory API. The power of JNDI is in the fact that a Java developer only needs
to learn one set of APIs to access almost any naming or directory service, that
is to say that the knowledge once acquired can be reused again and again. The
question to ask henceforth is what are naming and directory services?

A naming service maintains a set of name-object bindings. Basically, these
bindings associate names with objects such that a naming service client can
provide this name to the service and the service retrieves the corresponding
object bound to this name and sends it to the client. Some of the examples of
naming services include COS Naming (naming services for CORBA objects), DNS
(naming service for IP addresses), NIS/NIS+ (naming services developed by Sun
as part of enabling network access of files and applications), and so on.

A directory service, on the other hand, provides an information model to
organize and store the objects and a protocol to query and manipulate this
information model. A very well-known example of directory service is LDAP.
LDAP is a subset of X.500 directory services designed to address the directory
services needs of smaller clients. Another example is Active Directory from
Microsoft.

INDI provides a single abstraction in the form of an API to these various
naming and directory services. JNDI plays an important role in EJB
programming, as we shall see in this chapter and throughout this book.
Appendix A discusses the further details of JNDI technology.

Enterprise Bean Environment

The enterprise bean’s environment provides a way for a bean to refer to any
externally defined name-value property, resource, or even another bean such
that the bean’s code can remain independent of the actual referred object. In
other words, an environment enables the bean to access properties; resources
such as connection pools, connection factories, topics/queues, and so on; and
enterprise beans, from within the bean’s code without actually resolving them.
The resolution can happen at the time of deployment, when the actual values
of the environmental properties or references are set. The bean’s environment
thus provides a level of indirection to enable the bean to stay independent of
referred objects so that any change to the referred object’s configuration does
not have to trickle down to the bean’s code. The container implements the

68

Chapter 3

enterprise bean’s environment and makes it available to the bean through the
JNDI context, java: comp/env/

Why do we need such an indirection? As we know, enterprise beans are
designed to be reusable components from the get-go. And potentially, the
beans can be reused in different operational environments too. Also, most of
the beans have a need to access external world. The key issue then is how to
enable an enterprise bean to locate this external information/resources with-
out it requiring knowledge of how this information/resources are named and
organized in various operational environments.

For example, take an independent software vendor (ISV) that ships an EJB
application to multiple customers. Obviously, the ISV expects the application
to be deployed in different operational environments. In this case, any access
to externally defined properties and resources from within the bean’s code
should be shielded of the differences in the actual environments. So if say one
of the beans is trying to access a JMS topic, the code can refer to this topic as
MyTopic, which then can be mapped to the actual JMS topic, named say
MyJMSTopic, at the time of deployment. This ensures that the code does not
have to change the reference to the topic from MyTopic to MyJMSTopic or
from MyTopic to MyWonderfulJMSTopic and so on, each time it is
deployed in a different environment.

Thus, a bean’s environment is a powerful enabler of its reusability promise.

Anatomy of the “New” Bean

So what does an EJB 3.0 bean look like? What artifacts are required to develop
this new bean? As we have hinted many times before this point, EJB 3.0 beans
are POJO styled as opposed to their precursors that used to constitute multiple
Java classes per EJB. The EJB 3.0 bean has all its code contained in a single Java
class.

An enterprise bean can be a distributed component—its clients can live in
the same virtual machine as the bean (say, another codeployed bean) or it can
reside in another JVM potentially on a different machine. E]Bs that want to ser-
vice remote clients have to be equipped to handle the nitty-gritty of distrib-
uted communication ranging from error handling to marshaling and
unmarshaling method parameters and return types. And as we already know,
the enterprise bean is a managed component due to the fact that the container
in which the bean is deployed manages the services that the bean needs as well
as the environment in which the bean lives. The container takes care of such
things as when to create the bean’s instance, how to make available a reference
to this instance to the remote and/or local clients of the bean, how to make
available the various resources—such as connection factories, messaging
queues/topics, connection pools, transaction contexts, security contexts, and

The New Enterprise JavaBean

69

so on—that the bean is dependent on within its environment and so on. The
bean should thus be prepared to take notifications from the container about
changes to its environment and should in general be provisioned to communi-
cate with the container during its lifetime. Another remarkable feature of EJB
architecture is location transparency, explained later in this chapter.

Up until now the enterprise beans exposed developers to a lot of these intri-
cacies. The developer had to take care of handling system exceptions that a
bean is susceptible to, given its distributed nature, within the bean code. So
also, the developer had to write code for implementing the various component
interfaces such as javax.ejb.SessionBean or javax.ejb.Message
DrivenBean to enable the container management of the bean. In addition to
these, the bean developer had to deal with the complexity involved around
coming up with the rightly configured deployment descriptor, a bunch of
XML-based metadata, to further specify how the container should manage the
bean. An EJB client wasn’t excused from this web either; a client was required
to possess knowledge of working with JNDI registry services and deal with
JNDI APIs to obtain a reference to the EJB factory (EJB home interface) in order
to construct a reference to the actual bean (E]B object interface).

Yielding to the popular demand of the developer community, the Expert
Group had to come up with a way to take all these complications out of the EJB
developer’s hands and yet retain the power and flexibility that the distributed
component model of EJB APIs as well as implicit middleware services of the
EJB container provided. The new bean therefore is anatomized into a single
Java source that almost exclusively consists of only the business logic code. In
other words, this POJO class is devoid of the code that handles the horizontal
concerns pertaining to distributed computing such as throwing RMI remote
exceptions from all methods that could be invoked remotely or the code to
implement component interfaces so that the container can provide its implicit
middleware services such as life cycle management, transaction, security, and
so on to the bean. Similarly, the EJB 3.0 bean developer can also forgo a deploy-
ment descriptor file and get away from that morass.

Let us take another moment and examine Figure 3.3, which illustrates the
old EJB programming model, and then compare it with the new E]B 3.0 pro-
gramming model given in Figure 3.4.

Figure 3.3 highlights the flow of the business method invocation in EJB 2.x
as under:

m Steps la and 1b show a local or remote client application of the EJB—
might be a servlet/]JSP, a standalone application client, an application
container client, or another enterprise bean—creating a corresponding
local or remote E]B object reference using the EJB home reference. The
client gets hold of the EJB home reference from JNDI registry and nam-
ing services. Depending on whether the client is local or remote, the

70 Chapter 3

client retrieves local or remote EJB home reference from JNDI. In steps 2
and 3, an E]B object is created and returned back to the client. During
EJB deployment, it is the container that generates implementations for
EJB home and EJB object interfaces provided by the EJB developer.

m The client makes a business method invocation on the local/remote EJB
object interface in step 4.

m In old-style EJB, the container generates implementations for EJB home
and EJB object interfaces, written by the bean provider, at the time of
deployment. The business method invocation on EJB object reference
thus is handled by the container-generated EJB object implementation.
This implementation calls container-specific APIs to provide implicit
middleware services prior to calling the actual business method on the
EJB developer provided bean class. Similarly, the container-generated
EJB object implementation will call upon container middleware services
APIs after the business method invocation on the bean class. This
sequence is shown in steps 5, 6, 7, and 8.

m Step 9 concludes the method invocation with a return value (if any).

EJB Container JVM

3.a: Return P e e e e e e e e T T R -
EJB object —
reference

Local Client

J

3.b: Return EJB

Local
Inferface

1

1

! object reference

1

q 1.b: Create
Remote Client : EJB object 4.b: Call a method
' I
1
4.a: Call a 1.a: Create
f 1 9.b: Return from A .
method EJB object X C> method call Impllcgcemliccigsleware

1

1

e Lifecycle managment

e Transaction management

5 Call contai ® Persistence services
. Call container : .

L]
specific APIs that Sercurity services

2: EJB L L
on?(:ctl provide implicit * Much more
Local middleware
l Inferface before invocation

L ,
8: Call container
O EJB Object specific APIs that

EJB Home

Remote
Inferface

9.a: Return from
method call

Remote provide implicit
Inferface middleware

after invocation

1

1

1

: —| 6: Invoke method on bean class |—> Enterprise Bean
! Clas

1

Figure 3.3 Pre—EJB 3.0 programming model.

The New Enterprise JavaBean 71

EJB Container JVM

Local Client

4: Invokes the corresponding
business method on bean class

v

Enterprise Bean
Class

! 1
: 1
Remote Client : 1&&;':;‘ :
1 6.b: Return from :
1 method call
1.a: Call 1
a method ! O Implicit Middleware 1
: Local ervices !
Client View 1
e Lifecycle managment | !
e Transaction management ||
Cﬁ:f:?(\)/tizw 1 3: Call container * Persmtepce SeIvices :
e eSercurity services
1 2. Invoke specific APls th_at o M fhere 1
6.a: Return from 1 | corresponding provide implicit 1
method call 1 | method on middleware 1
. the wrapper before invocation . .
class 5: Call container
: | specific APIs that :
. Container Generated prmi;;w;'g't |
| Wrapper Classes after invocation 1
1 A 1
1 |
1 I
1 |
1 |
1 1
1 |
1 |

Figure 3.4 EJB 3.0 programming model.

Figure 3.4 highlights the invocation from an EJB 3.0 client’s perspective.

m Steps 1a and 1b show a local or remote client application of the EJB call-
ing a business method on the local or remote business interface. Clients
retrieve this business interface reference from the JNDI naming and reg-
istry services (using JNDI APIs or dependency injection mechanisms
discussed later in this chapter).

m Obviously, EJB container services have to be applied to the business
method invocation. Hence, figuratively speaking, some kind of a
container-generated wrapper class for remote and/or local business
interface is needed so that it will call the various container middleware
APIs both before and after invoking the actual business method on the
bean class. This flow is shown in steps 2, 3, 4, and 5.

m The call finally concludes upon the method return.

72

Chapter 3

.]ma Java EE application clients are standard Java applications that execute
within their own JVM. They are invoked via the static main() methods like their
standalone Java application brethren. The only difference between the two is
that the Java EE application clients run within a container, albeit a lightweight
container, which is devoid of many middleware services such as transactions,
as compared to a full-fledged Java EE container that provides such services.
Java EE application clients are packaged with their own deployment descriptor
within a jar file.

The Role of EJB Home and Object Interfaces

The major difference between the old and the new bean is that while the old
bean was exposed to a lot of contractual requirements, such as providing a
home interface, an EJB object interface, and a bean class, the new bean is lim-
ited in its contractual obligations. As you can see in Figure 3.4, it only has to
provide a business interface (for local and remote clients) and a bean class that
provides definitions of the methods on this business interface. The big ques-
tion is why doesn’t an EJB 3.0 bean require a home interface and an object
interface? How can it get away with these requirements? The answers lie in
understanding the purpose of home and remote interfaces and how that pur-
pose is served in EJB 3.0 without them.

In previous versions of EJB, the home interface served as a factory for creat-
ing references to the E]JB object. Now the home interface could practically be
the same for all stateless session beans and message-driven beans, since all
stateless session bean and message-driven bean objects are created equal.
Thus, there is no need to make the bean developer provide a specific home
interface for each specific stateless and message-driven bean. As for stateful
session beans, their EJB objects aren’t created equal; the state of a stateful ses-
sion bean EJB object varies across different clients. In pre-EJB 3.0, the per-
instance state of the stateful session bean was initialized by defining a special
create method on the home interface such that it takes state via the method
parameters from the clients and initializes the bean instance to it. In 3.0,
instead of subjecting the stateful session bean provider to defining a home
interface simply as a mechanism to transfer state from client to the bean
instance, the bean provider can define a special method right in the bean class
that would be called by the container right before invoking the first business
method on the bean instance. This eliminates the need for a home interface as
a factory for stateful session beans, too.

Now we come to the EJB object interface. The main purpose of the EJB object
interface was to provide the client view for an EJB, meaning that the EJB object
carried all the business methods that the bean wanted to expose to its local or
remote clients. Depending on the clients it intends to serve, the EJB object
could provide local client view, remote client view, or both. The container

The New Enterprise JavaBean

73

provided implementation for E]JB object interfaces, and the bean class imple-
mented all the EJB object’s business methods implicitly by declaring and
defining methods with the exact same method signatures. The container
implementation of the EJB object called upon the appropriate container ser-
vices before invoking the actual business method implementation on the bean
class. Similarly, after invocation the container services were applied to bring a
fruitful end to the invocation (by committing the current transaction, updating
the cache across the cluster, and so on).

Thus, the container-generated implementation of EJB object interfaces
served as a nice hook for invoking container services. However, from EJB
developers’ perspective, they had to write an E]JB object interface containing
business methods that they didn’t implement directly but rather indirectly.
The developers had to be extra careful in providing the implicit implementa-
tion of the EJB object interface by making sure that the signatures of business
methods declared in EJB object interface exactly matched those declared in the
bean class. This extra caution required on the part of the developers was not
worth it. As far as providing a hook for injecting container services is con-
cerned, it is an implementation detail of the container; it is expected that the
container implementations will provide their services through one or another
such hook, as long as the programming model is kept simple for the developer.
Hence, in EJB 3.0, the bean provider no longer has to supply an EJB object
interface and then implement it implicitly in the bean class. Instead, the bean
provider has to write a simple Java interface, also known as business interface,
consisting of business methods it wants to expose to the clients of the bean.
The bean provider then writes a POJO that implements this business interface,
and it is as simple as that. The container can internally use generated wrapper
classes to intercept the calls to the bean instance and thereby provide middle-
ware services, or it can use other design patterns to achieve this. In conclusion,
how the container injects various middleware services before and after the
business method invocation is a container-specific detail and need not concern
the EJB developer.

The EJB 3.0 Simplified API

Now it is time to look at the new EJB 3.0 AP, which offers ample simplification
over the previous EJB API. Simplicity in EJB 3.0 has been achieved in various
ways:

m No home and object interfaces are required.

m No component interface is required.

m Use of Java metadata annotations.

m Simplification of APIs for accessing bean’s environment.

74

Chapter 3

In the following sections, we go through each of these aspects of simplifica-
tion of the EJB programming model.

Elimination of Home and Object Interfaces

As discussed previously, getting rid of home and object interfaces eases devel-
opment on behalf of the bean provider. The new session beans put all the busi-
ness methods into a business interface. Depending on whether the clients of the
bean are local or remote, the bean provider can designate the business interface
as a remote business interface or local business interface or both. Whereas the meth-
ods on a remote business interface can throw arbitrary application exceptions,
they are not allowed to throw java.rmi.RemoteException. This is unlike
the definition of EJB home and object interfaces for EJB 2.1 remote client view
where all the methods were required to throw java.rmi.RemoteException.
Any system-level problems, protocol or otherwise, would be encapsulated
within javax.ejb.EJBException and returned to the client by the container.
Given that EJBException is a subclass of java.lang.RuntimeException,
it does not have to be listed in the throws clause of the business methods.

A message-driven bean doesn’t need a business interface because there are
no direct client invocations on a message-driven bean and hence there is no
need to define a business interface with business methods in it. Also for the
same reason, whenever an MDB runs into unexpected problems, the container
will log the error and communicate it, within a javax.ejb.EJBException,
to the underlying resource adapter instead of the client.

Elimination of Component Interface

Component interfaces in the previous versions of EJB, javax.ejb.Session
Beanand javax.ejb.MessageDrivenBean, existed for a reason—they pro-
vided a way through which the container notified the bean instance of various
life cycle events affecting it. A session or message-driven bean class had to
implement the respective component interface in order to stay abreast of the
events in its life cycle. These component interfaces carried the various life cycle
methods that the bean class would implement. All that the container had to do
then is call the appropriate method of the component interface to provide an
opportunity to the bean instance to handle the life cycle event the way it wants.
For example, the container can notify the message-driven bean instance that it
is about to destroy it by invoking the ejbDestroy () method on the message-
driven bean’s corresponding bean class. Within the ejbbDestroy () method
the bean class can close an open JDBC database connection and thereby free
some resources. Similarly, the container that is about to associate a client with a
stateful bean instance can notify the bean instance by calling ejbCreate () on
the bean class, and the bean class can instantiate the state of the bean instance
within this method’s implementation.

The New Enterprise JavaBean

75

The issue with this mechanism is: What if the bean does not want container
notifications of its life cycle events? In that case the bean still has to implement
the component interfaces because that is the contractual agreement between
the container and the bean instance. This enforcement on the bean provider to
implement the component interface regardless of whether it is needed or not
has been removed in EJB 3.0. Going forward, the bean class does not have to
implement javax.ejb.SessionBean, in case of a session bean, or
javax.ejb.MessageDrivenBean, in case of a message-driven bean. It will
be a plain Java class, which only has to implement a business interface if the
EJB is a session bean.

The question then is how can a bean class get notifications from the con-
tainer if interested? There are two ways it can get that—the first is for a bean
provider to write a separate class consisting of all the callback notification
methods and then inform the container to treat this class as the bean’s callback
listener class. The second way is for the bean provider to implement notifica-
tion methods right inside the bean class and designate these methods to han-
dle appropriate events. Both these approaches require the bean to use
annotations. Annotations are the biggest and most radical addition to EJB 3.0
specification. They are used not only for event notifications but also for many
other purposes. The next topic focuses on annotations and their contribution
in simplifying EJB 3.0 programming model.

PRE-EJB 3.0 AND EJB 3.0 COMPATIBILITY

One of the notable goals of EJB 3.0 Expert Group was to maintain compatibility,
both backward and forward, between the new and the old EJB worlds. The
older EJB applications can be deployed as is on an EJB 3.0 container without
rewriting them, thereby accommodating forward compatibility. This is because
the pre—EJB 3.0 APIs have been made available in EJB 3.0 containers. Also a
bean written against EJB 3.0 APIs can service clients written to use earlier
versions of EJB APIs, thereby providing backward compatibility. This is achieved
by adapting the client views provided by the EJB 3.0 beans to suit the older
clients.

These provisions for compatibility and portability in the EJB 3.0 specification
enable four possible scenarios of deployment within an EJB 3.0 container:

& EIB 3.0 bean with EJB 3.0 client view
4 EIB 2.1 bean with EJB 2.1 client view
& EIB 3.0 bean with EJB 2.1 client view
& EIB 2.1 bean with EJB 3.0 client view

4 Various combinations of the above three scenarios—for example, EJB 3.0
beans and EJB 2.1 beans deployed in the same application where EJB 2.1
clients not only make requests to EJB 2.1 beans but also to EJB 3.0 beans.

76

Chapter 3

Use of Annotations

Annotation, also known as metadata, stands for additional definition that can
be attached to an element within the code to help further explain or character-
ize it. Annotations are used to provide additional context to the program. We
in the software industry have used annotation for the longest time in the form
of code comments. Comments are used to provide additional information
about the code to the reviewer. At the same time, comments are ignored by the
compiler/interpreter of the code. That is the way code comments, the annota-
tions that we use to explain our code better to the readers, are designed to be
processed. Annotation processing typically occurs when code consisting of
annotations is compiled or interpreted by compilers, deployment tools, devel-
opment tools, and so on. The outcome of annotation processing can be many
different things. For example, processing annotations can result in creation of
code documents (remember JavaDocs?) or the generation of other code arti-
facts (XDoclet) or performing various compile-time checks (C language pre-
processor directives).

Java language did support annotations in the form of code comments and
JavaDocs. Also, Java frameworks such as XDoclet, which used annotations to
generate code artifacts and much more, came into existence over the course of
time. What Java lacked though, up until Java SE 5.0 (Tiger), was a standard
framework within the language platform that could be used to create and
process new annotations; a facility that can be leveraged by rest of the Java lan-
guage technologies as well as by custom programs. This need was addressed
in J2SE 5.0 release by including JSR-175 (A Metadata Facility for the Java Pro-
gramming Language) as part of the platform.

Java SE 5.0 annotations can be applied to various elements of the Java code
such as methods, variables, constructors, package declarations, and so on.
Annotations begin with an @ sign followed by the annotation name which in
turn is followed by annotation data (if any). Shown below is a hypothetical
example of a @Failsafe annotation that when applied to a distributed RMI
object will instruct the RMI compiler to generate the stubs and skeletons so
that they can connect to a different RMI instance in the event of a failure.

@QFailsafe
public interface SomeRMIExample extends java.rmi.Remote
{

3

Annotation programming is a vast subject and as such does not belong to
this book on enterprise beans. What we do cover in this book are built-in anno-
tations that are a part of EJB 3.0 and related specifications and how to use them
to ease development and deployment of enterprise beans.

The New Enterprise JavaBean

77

Annotations and Bean Development

EJB 3.0 has defined a lot of built-in annotations for use in EJB development.
This changes EJB programming quite significantly in that it is now a mix of
metadata tags and code constructs. The specification has also defined meta-
data to annotate deployment information within the code. Below is an exam-
ple of a bean class that uses metadata to designate the callback listener
methods for the stateful bean.

@Stateful
public class exampleBean implements BeanBusinessInterface
{
@Remove
public void removeBean ()
{
// Close any resources that were opened to service requests.

}

The @stateful annotation indicates to the EJB compiler that the given
bean is a stateful session bean and that the bean artifacts should be generated
S0 as to suit the semantics of a stateful bean. Also, @Remove is another annota-
tion used within the code, which indicates that the following method,
removeBean (), should be called by the container when it is about to destroy
the bean instance. These annotations have a special meaning to the EJB com-
piler. In this fashion, the annotations are used in EJB 3.0 programming.

EJB 3.0 development has been made a lot simpler as is evident from the
example above. A developer can annotate the code and expect the compilers,
code generators, deployment tools, or whatever is the processor working
behind the scenes to take care of the appropriate semantics. Chapter 8 dis-
cusses some other nuances of using annotations in EJB 3.0, while Appendix B
provides a good reference to annotation basics as well as an entire list of built-
in annotations in EJB 3.0.

Annotations and Deployment Descriptors

The biggest contribution of annotations with respect to simplification is that
they have made deployment descriptors redundant. EJB 3.0 annotations can
be used in lieu of deployment descriptors. A deployment descriptor is an XML
document consisting of information related to deployment of the bean. It spec-
ifies instructions to the container such as the kind of runtime services that
would be needed by the bean for its successful execution.

Deployment descriptors were introduced for a very good reason. They
enabled a mechanism through which a bean can be deployed on different EJB
containers and yet can be expected to behave the same across these different

78

Chapter 3

containers. This is because at the time of deployment the container will read
the bean’s deployment descriptor and provide a standard environment for the
bean’s execution. The deployment descriptor thus guarantees that certain run-
time aspects of the bean’s execution would remain uniform as long as the bean
is deployed in a standard EJB container.

The challenge that developers faced with deployment descriptors was with
regard to their complexity. A deployment descriptor is XML, and XML by its
very nature is prone to error when subjected to human editing. Therefore, only
tools were considered capable of handling these chunks of deployment infor-
mation. Most of the EJB deployment tools thus were enabled to generate
deployment descriptors. Now if the bean provider wants to change the behav-
ior of the bean, he will have no choice but to modify the deployment descrip-
tor. For this, most of the time the bean provider will use a deployment tool GUI
to change properties on the bean, which in turn will convert the bean’s settings
to the respective deployment descriptor XML. If the deployment tool GUI is
not available, then the provider will manually edit the descriptor’s XML
thereby making it susceptible to syntactical errors.

To help developers who find themselves in this situation and largely to take
the complexity of the deployment descriptor out of the development life cycle,
the EJB Expert Group came up with the notion of defining deployment meta-
data so that it can replace the deployment descriptor. Deployment metadata
can be embedded within the EJB code (bean class or business interface) such
that at the time of deployment this metadata could be used to provide the
appropriate behavior to the bean. Hence, instead of working with clumsy
XML constructs, the developers can utilize easy to use Java metadata to spec-
ify the deployment configuration of their beans right in the bean class. This
also helps in speeding up the development because now the developer does
not have to undergo an extra step of generating a deployment descriptor.

Does this mean that deployment descriptors are out of the game in EJB 3.0?
The answer is a resounding no. Deployment descriptors are very much a part
of EJB 3.0. If the bean provider so desires, he can put all of the bean’s configu-
ration information in deployment descriptor or he can distribute this informa-
tion across the bean class and the deployment descriptor or he can choose not
to put any configuration information in the deployment descriptor and
instead use deployment metadata in the bean class to specify it, and that
would be fine too. So there are quite a few options available to the bean
provider. In the scenario where the bean provider uses both the metadata and
the deployment descriptor, the latter will always override the former if both
have redundantly specified configuration information. For example, if trans-
action setting of a certain bean method is specified in both the bean class and
the deployment descriptor, the one specified in the descriptor will always take
precedence over the one specified using the metadata in the bean class. If a
developer doesn’t provide a deployment descriptor, at the time of deploy-
ment, a container can choose to generate a skeleton deployment descriptor.

The New Enterprise JavaBean

79

Container Specific Deployment Descriptor

The EJB container provides a lot of container services in a standard, uniform
fashion, and the bean provider asks the container to make these services avail-
able by using the metadata in the bean class or by defining a standard deploy-
ment descriptor. In addition to these standard container services, there are
certain value-added services that the container can provide, such as load bal-
ancing, clustering, caching of relatively static information, and so on that are
over and above the container services that are defined as part of the specifica-
tion. The configuration information of these value-added services is described
usually in a container-specific deployment descriptor. Hence, a typical bean
deployment consists of a standard deployment descriptor, a file named ejb-
jar.xml, and a nonstandard proprietary container-specific deployment
descriptor, whose file name varies from container to container. With EJB 3.0, a
container can also choose to provide respective metadata for the value-added
services, which can then be used by the bean provider in the bean class.

As should be clear by now, annotations are used pervasively in EJB 3.0. And
such pervasive use of deployment annotations certainly warrants a discussion
on what are the pros and cons of using deployment annotations.

The Good, the Bad, and the Ugly of Deployment Annotations

Using annotations to describe the deployment configuration of the bean can be
convenient and tricky at the same time. Convenient because the bean provider
can place the configuration along with the bean’s logic, right at the time of
developing bean. Both the activities—developing the bean and describing the
deployment configuration of the bean—can be accomplished at the same time
and place, thereby increasing the developer productivity. Tricky because if not
done properly the convenience of deployment annotations can also quickly
turn into a process nightmare, and here is why.

Conventionally, EJB application life cycle is divided into various tasks, and
a separate role is accorded to accomplishing each of these tasks. For instance,
the role of a bean provider is to develop the bean and supply it to the applica-
tion assembler who then takes the bean’s Ejb-jar and assembles it with rest of
the components such as other enterprise beans (supplied by other bean
providers), JSP/servlets, and so on. The assembler then passes down the
assembled components to the deployer who is responsible for deploying and
postdeployment tuning of the components. In a given EJB project, these roles
can be played by the same individual or by different people. In a scenario
where the bean is developed and deployed by the same individual, using
deployment metadata within the bean’s code can work out fine. Because it is
the same individual who is in charge of development and deployment of the
bean, there is less chance of problems arising due to miscommunication and
misunderstanding regarding the division of labor with respect to deployment
configuration specification. However, in a scenario where the bean provider is

Chapter 3

a separate entity from the bean deployer, embedding deployment metadata
within the code might lead to various issues. For one, before the deployer can
generate the bean’s deployment descriptor, he will now be required to go
through the bean’s code to make sure that the deployment descriptor does not
mistakenly override the bean provider’s deployment metadata—specified con-
figuration. However, the most important issue when using deployment meta-
data is that each time a change in deployment is needed, the bean’s code will
need to be changed, leading to the recompilation and repackaging of the bean.

Our suggestion is that in projects where different individuals play the roles
of bean provider and deployer, make one party responsible for specifying all
the deployment configuration. If the bean provider is chosen for the job, all the
deployment information should be provided as metadata within the bean
class. The deployer then should be exempt from generating a deployment
descriptor. And if the deployer is chosen, the bean provider should be exempt
from providing deployment metadata within the bean class. In conclusion, a
well-defined division of responsibilities should be done to avoid any potential
chaos resulting from scattering the deployment configuration across the bean
class and deployment descriptor.

Simplified Access to Environment

Accessing the environment to gain references to externally defined resources
and enterprise beans, and other entries such as properties, is a chore that
almost every EJB needs to perform. Up until now, an E]JB had to rely solely on
the JNDI APIs to get hold of these environmental entries. In EJB 3.0, other
mechanisms, namely dependency injection and a simple lookup () method on
the EJBContext interface have been added to solve the age-old problem of
having to use JNDI APIs from within bean class to access the bean’s depen-
dencies.

Dependency injection is a mechanism followed by the container to inject the
requested environmental entry and make it available to the bean instance
before any business methods are invoked on that particular instance. The con-
tainer injects these entries into the bean’s variables or methods. The bean
provider has to convey to the container where these dependencies should be
injected at the runtime, such as in which variables or methods. The provider
can use a deployment descriptor and annotations to specify this. Bean meth-
ods that are targets of dependency injection should be defined using the Jav-
aBeans naming convention for properties in that they should follow the
setXXX () convention.

So what happens if the dependency injection fails for some reason? If the
container is not able to make available the environmental entry on which the
bean is dependent for proper functioning? Well, the container will discard that
bean instance and try creating the bean instance again.

The New Enterprise JavaBean

During runtime, the bean does need to know about its environment in terms of
the transaction context within which its method is being invoked, security
attributes of the caller such as its security principal, and so on. The
javax.ejb.EJBContext APl is like a window for the bean to the outside
world with which it is interacting, that is, the container. ETBContext is further
subclassed into SessionContext and MessageDrivenContext for session
beans and message-driven beans, respectively.

Bean instances can use dependency injection mechanism to access the
EJBContext instance. The previous versions all the beans got access to the
EJBContext instance as part of the mandatory implementation of the
setSessionContext () OF setMessageDrivenContext () methods of the
javax.ejb.SessionBean and javax.ejb.MessageDrivenBean component
interfaces, respectively.

The lookup () method of EJBContext interface is another alternative to
the JNDI API for obtaining access to the environmental entries.

A bean can still use]NDI APIs to access the environmental dependencies,
but that is done by choice and not by mandate. We will discuss dependency
injection and related topics in further detail in Chapter 8.

.]ma The examples of environmental entries typically include references to
enterprise beans, Web services, connection factories, message destinations
(JMS topics or queues), persistence units, persistence contexts, transaction
contexts, EJB timer service, and last but not least, EJBContext. The container
provides tools to create and initialize the environment entries. For example, a
deployer will use some container-provided tool to create a message
destination, say, a JMS topic. The bean can ask the container to inject this
resource into a variable, say, My Topic, using dependency injection,
EJBContext lookup, or JNDI lookup.

Packaging and Deployment of the “New"” Bean

Once the bean is developed, you need to package it into an Ejb-jar file. Jar files
are a convenient way of distributing Java software, and what better choice
than to use them for packaging the enterprise beans? Usually, your IDE or the
EJB deployment tool bundled with your container comes with a capability to
package the bean’s artifacts into an Ejb-jar file. Figure 3.5 shows the creation of
an Ejb-jar file consisting of an EJB 3.0 bean.

82

Chapter 3

EJB Container JVM
Standard
Bean Deployment
Class Descriptor
(if any)

Remote
Business .| Jar File)
Interface '] Generator EJB Jar File
(if any)

Local Vendor-
Business Specific
Interface Deployment
(if any) Descriptor

Figure 3.5 Creating an Ejb-jar file.

An Ejb-jar can contain artifacts for more than one enterprise beans. If your
bean class and/or local/remote business interfaces are dependent on other
user classes, then the Ejb-jar file must also contain them. Also remember that
an EJB 3.0 Ejb-jar can contain pre-EJB 3.0 beans along with the new beans. This
means that an Ejb-jar can contain EJB home and E]JB object interfaces, old-style
bean classes, and so on.

Upon creating an Ejb-jar, you will need to deploy it within the container. It
is at this time that various container artifacts, such as stubs, skeletons, wrapper
classes, and so on, are generated to provide an environment suitable to the
bean’s existence. Also during this time the container reads the deployment
descriptor and/or the deployment metadata to generate the container artifacts
in accordance with the services requested by the bean provider. All containers
provide some kind of a deployment tool for deploying Ejb-jar within the con-
tainer. Once the Ejb-jar is deployed, the deployer can then tweak and tune the
beans.

Example of EJB 3.0 Bean

So far in this chapter we have explained several important aspects of EJB
development and deployment and how they have been simplified a lot in EJB
3.0. However, what better way to realize the extent of simplicity than to wit-
ness the code itself?

The New Enterprise JavaBean 83

We will undertake a very simple exercise of developing and deploying the
proverbial HelloBean. It is a stateless session bean that has one method in its
remote business interface, hello (), which when called returns a greeting to
the client. The following are the steps involved in this exercise:

1. Write the Java code for the business interface, only making it remote in
this case, and the bean class.

2. Compile the Java sources in step 1.
3. Provide a deployment descriptor.

4. Create the Ejb-jar file, containing the classes generated in step 2, using
the jar utility or tools provided by your container.

5. Deploy the Ejb-jar file on the container, either using auto-deploy feature
(if container supports it) or by using a container provided deployment
tool.

6. Check your container to verify the EJB’s deployment.

7. Write and execute a client to check the functioning of the bean.

Now let us go through the programming artifacts one by one.

The Business Interface

The business interface, Hello, is a very straightforward PO]JI consisting of

method declaration for hello (). Source 3.1 is a listing of Hello. java.
package examples.session.stateless;

/**
* This is the Hello business interface.
*/

public interface Hello {
public String hello();
}

Source 3.1 Hello.java.

The Bean Class

The bean class, HelloBean, is also a straightforward POJO consisting of an
implementation of hello (). In addition, it also has annotations that config-
ures the bean appropriately. Source 3.2 shows the listing of HelloBean. java.

84

Chapter 3

package examples.session.stateless;

import javax.ejb.Remote;
import javax.ejb.Stateless;

/**
* Stateless session bean.
*/
@Stateless
@Remote (Hello.class)
public class HelloBean implements Hello {
public String hello() {
System.out.println("hello()") ;
return "Hello, World!";

Source 3.2 HelloBean.java.

Notice the two annotations—@Stateless and @Remote—in Hello
Bean.java. @Stateless annotation configures the bean as a stateless
session bean, whereas @Remote annotation lets us configure the bean’s sup-
port for remote client view via the remote business interface Hello. Instead of
using deployment descriptor to specify these, we use annotations. Had we
cared to, we could have put in much more deployment configuration infor-
mation using annotations, for transaction, security, access to other resources,
and so on, for our bean. In the following chapters, you will see a lot of exam-
ples where we do use metadata for this purpose, too.

The Deployment Descriptor

In this example, we do make use of deployment descriptor, although not very
meaningfully. Our deployment descriptor is just a skeleton, as shown in
Source 3.3.

<?xml version="1.0" encoding="UTF-8" 2>

<ejb-jar xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.0org/2001/XMLSchema-
instance"xsi:schemalocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/ejb-jar_3_0.xsd"
version="3.0">

<enterprise-beans>

</enterprise-beans>

</ejb-jar>

Source 3.3 Ejb-jarxml.

The New Enterprise JavaBean

85

As you can see, this deployment descriptor is not used to specify any mean-
ingful configuration. Where previously we would have declared the business
interface and bean class and the like for an EJB in a deployment descriptor,
now we use annotations in the bean class to do the same. In fact, we would
have been able to deploy this bean even without one, but we left it here to
showcase how the deployment descriptor can be rendered redundant by use
of deployment annotations.

The Client

Now let us see how a Java application client of EJB 3.0 invokes the hello ()
method on the bean. Source 3.4 shows the listing of HelloClient. java.

package examples.session.stateless;

import javax.naming.Context;
import javax.naming.InitialContext;

/**
* This class is an example of client code which invokes
* methods on a simple, remote stateless session bean.
*/

public class HelloClient {

public static void main(String[] args) throws Exception {
/*
* Obtain the JNDI initial context.
*
* The initial context is a starting point for
* connecting to a JNDI tree.

*/
Context ctx = new InitialContext();
Hello hello = (Hello)

ctx.lookup ("examples.session.stateless.Hello") ;

/*
* Call the hello() method on the bean.
* We then print the result to the screen.
*/

System.out.println(hello.hello()) ;

Source 3.4 HelloClient.java.

86

Chapter 3

The client code is fairly simple. Although we are required to work with the
JNDI interfaces given that HelloClient is a standalone Java client, had this
been a client deployed within the container’s managed environment we could
have used the injection mechanism to make container inject the reference to
HelloBean. This would have even further simplified the client code.

When one compares the code for E]B 3.0 bean to that for the EJB 2.1 bean
provided in Chapter 2, one cannot help but feel awe for the extent to which the
complexity of development and deployment has been reduced. We have bun-
dled the code for this example in the code that accompanies this book.

l'mﬂj All the code bundled with this book can be downloaded from
www.wiley.com/go/sriganesh. The code is configured to run on the
open source Glassfish Application Server, which forms the basis of the Java EE
5 reference implementation. The code can be built and executed by running the
packaged Ant scripts. Each code sample comes with a Readme . txt,
describing the various steps needed to compile, package, deploy, and execute
the code samples.

Summary of Terms

For your convenience, we now list the definitions of each term we’ve used so
far. As you read future chapters, refer to these definitions whenever you need
quick clarification. You might want to bookmark this page.

The enterprise bean instance is a plain old Java object instance of an enter-
prise bean class. It contains business method implementations of the
methods defined in the remote/local business interface, for session
beans.

The business interface is a plain old Java interface that enumerates the busi-
ness methods exposed by the enterprise bean. Depending on the client
view supported by the bean, the business interface can be further classi-
fied into a local business interface or a remote business interface.

The deployment descriptor is an XML file that specifies the middleware
requirements for your bean. You use the deployment descriptor to
inform the container about the services you need for the bean, such as
transaction services, security, and so on. Alternatively, you can specify
the middleware requirements using deployment annotations within the
bean class as well.

The Ejb-jar file is the packaging unit for an enterprise bean, consisting of all
the above artifacts. An E]JB 3.0 Ejb-jar file can also consist of the old-style
beans, if your application uses components defined using pre-EJB 3.0
technologies.

The New Enterprise JavaBean

87

The vendor-specific deployment descriptor lets you specify your bean’s needs
for proprietary container services such as clustering, load balancing, and
so on. A vendor can alternatively provide deployment metadata for these
services, which, like standard metadata, can be used within the bean
class to specify the configuration for these services. The vendor-specific
deployment descriptor’s definition changes from vendor to vendor.

Summary

We began this chapter by providing a real-world application example that can
be designed using enterprise beans, and then introduced you to the various
concepts surrounding EJB development, such as containers, types of beans, the
wire protocol of EJB—RMI-IIOP, and the EJB environment. We then provided a
comprehensive discussion on the various new approaches adopted by the EJB
Expert Group in simplifying the EJB 3.0 development and deployment. Finally,
we journeyed through the development of the elementary HelloBean E]B.

This chapter marks an end to the first part of this book. In this part, we
extensively introduced you to EJB technology. In Part I, we accomplished two
objectives:

1. Established a good understanding for the core concepts of EJB
architecture—such as components and component frameworks; distrib-
uted computing; middleware services; fundamental technologies such
as RMI-IIOP, JNDI, and Java annotations; various roles involved in EJB
application development life cycle; the service-oriented architecture
and its synergy with EJB framework; the role of E]JB vis-a-vis the Java
EE technology, and much much more.

2. Provided a strong understanding of the encumbrances of previous ver-
sions of EJB technology and how its complexity prevented developers
from achieving higher productivity. This discussion was then followed
by introduction to EJB 3.0 technology and how it tries to take the com-
plexity out of the EJB development and deployment equation. We pro-
vided examples of both, old-style EJB and the new EJB, to explain to the
reader why certain decisions to change things in EJB 3.0 were made.

We begin Part Il with a chapter on session beans, followed by a chapter each
on session bean-based Web services, the Persistence API, and message-
driven beans. Whereas Part I endeavored to set the stage right for understand-
ing EJB technology, Part II strives to provide further details on this. We hope
you enjoy the journey!

PART

The Triad of Beans
| Entiti

In Part II of this book, we’ll focus on the development details for implement-
ing an EJB application. We’ll discuss the two types of enterprise beans: session
beans (Chapter 4) and message driven beans (Chapter 7). We’ll also explore
their subtypes: stateless session beans, stateful session beans, and session
beans as Web services (Chapter 5). Not only will we cover each of these con-
ceptually, but we'll also write an example for each bean type. In addition, we
cover in detail the new Java Persistence API defined entity programming,
again with examples, in Chapter 6. We'll end Part II with a discussion in
Chapter 8 of various other functionalities of EJB technology such as access
to the environment, interceptors, and resource injection.

Part IT is essential for those of you who are ready to go deep into EJB pro-
gramming fundamentals. It provides essential groundwork for the more
advanced topics such as transactions, EJB design and performance best
practices, advanced persistence concepts, and so on, which are coming in
Part III.

Mastering Esterprise
JavaBeans 3.0

Click here to purchase this book.

http://www.amazon.com/gp/product/0471785415/ref=sr_11_1/103-1174895-6545420?%5Fencoding=UTF8
jpiscitelli
cover

Introduction to Session Beans

A session bean performs work on behalf of client code that is calling it. Session
beans are reusable components that contain logic for business processes. For
example, a session bean can perform price quoting, order entry, video com-
pression, banking transactions, stock trades, database operations, complex cal-
culations, and more.

Let’s examine the characteristics of session beans in detail and then code up
a stateful session bean.

Session Bean Lifetime

A key difference between session beans and other bean types is the scope of
their lives. A session bean instance is a relatively short-lived object. It has
roughly the lifetime equivalent of a session or of the client code that is calling
the session bean. Session bean instances are not shared between multiple
clients, and they do not represent data in a database.

For example, if the client code contacted a session bean to perform order
entry logic, the EJB container is responsible for creating an instance of that ses-
sion bean component. When the client later disconnects, the application server
may destroy the session bean instance. From the client’s point of view, the
bean’s life starts after the client obtains a reference, and it ends when the

91

92

Chapter 4

client’s session ends. There are no guarantees about the existence of the bean
instance before the client session begins or after the client session ends.

A client’s session duration could be as long as a browser window is open,
perhaps connecting to an e-commerce site with deployed session beans. It
could also be as long as your Java applet is running, as long as a standalone
application is open, or as long as another bean is using your bean.

The length of the client’s session generally determines how long a session
bean is in use—that is where the term session bean originated. The EJB con-
tainer manages the bean’s life cycle and is empowered to destroy session
beans if clients time out. If your client code is using your beans for 10 minutes,
your session beans might live for minutes or hours, but probably not weeks,
months, or years. Typically, session beans do not survive application server
crashes, nor do they survive machine crashes. They are in-memory objects that
live and die with their surrounding environments.

In contrast, entity beans can live for months or even years because entity
beans are persistent objects. Entity beans are part of a durable, permanent stor-
age, such as a database. Entity beans can be constructed in memory from data-
base data, and they can survive for long periods of time.

Session beans are nonpersistent. This means that session beans are not saved
to permanent storage, whereas entity beans are. Note that session beans can
perform database operations, but the session bean itself is not a persistent
object.

Session Bean Subtypes

All enterprise beans hold conversations with clients at some level. A conversa-
tion is an interaction between a client and a bean, and it is composed of a num-
ber of method calls between the client and the bean. A conversation spans a
business process for the client, such as configuring a Frame Relay switch, pur-
chasing goods over the Internet, or entering information about a new cus-
tomer.

The two subtypes of session beans are stateless session beans and stateful ses-
sion beans. Each is used to model different types of these conversations.

Stateless Session Beans

Some business processes naturally lend themselves to a single request conver-
sation. A single request business process is one that does not require state to be
maintained across method invocations.

A stateless session bean is a bean that holds conversations that span a single
method call. They are stateless because they do not hold state that would be

Introduction to Session Beans

93

client-visible between invocations. After each method call, the container may
choose to destroy a stateless session bean, or recreate it, clearing out all infor-
mation pertaining to past invocations. It also may choose to keep your
instance around, perhaps reusing it for all clients who want to use the same
session bean class. The exact algorithm is container-specific. The point to take
away is this: Expect your bean to forget everything after each method call, and
thus retain no conversational state from method to method. If your bean hap-
pens to hang around longer, then great—but that’s your container’s decision,
and you shouldn’t rely on it.

For a stateless session bean to be useful to a client, the client must pass all
client data that the bean needs as parameters to business logic methods. Alter-
natively, the bean can retrieve the data it needs from an external source, such
as a database.

Stateless really means no conversational state. Stateless session beans
can contain state that is not specific to any one client, such as a database
connection factory that all clients would use. You can keep this around in a
private variable. As long as you're willing to lose the data in your private
variable at any time, you'll be fine.

An example of a stateless session bean is a high-performance engine that
solves complex mathematical operations on a given input, such as compres-
sion of audio or video data. The client could pass in a buffer of uncompressed
data, as well as a compression factor. The bean returns a compressed buffer
and is then available to service a different client. The business process spanned
one method request. The bean does not retain any state from previous
requests.

Another example of a stateless session bean is a credit card verification com-
ponent. The verifier bean takes a credit card number, expiration date, card-
holder’s name, and dollar amount as input. The verifier then returns a yes or
no answer, depending on whether the card holder’s credit is valid. Once the
bean completes this task, it is available to service a different client and retains
no past knowledge from the original client.

Because stateless session beans hold no conversational state, all instances of
the same stateless session bean class are equivalent and indistinguishable to a
client. It does not matter who has called a stateless session bean in the past,
since a stateless session bean retains no state knowledge about its history. This
means that any stateless session bean can service any client request because
they are all exactly the same. In fact, stateless session beans can be pooled,
reused, and swapped from one client to another client on each method call! We
show this in Figure 4.1. Instance pooling is the prime technique used by con-
tainer vendors to implement efficient bean processing.

94

Chapter 4

Client

Bean
Instance

Bean
Instance

\ . Business

Interface

invoke,Q Inséﬁle

Stateless Session Bean Pool
Figure 4.1 Stateless session bean pooling.

Since EJB 2.1, stateless session beans can also provide Web services inter-
faces to clients. We will examine this important option in detail in Chapter 5.

Stateful Session Beans

Some business processes are naturally drawn-out conversations over several
requests. An example is an e-commerce Web store. As a user peruses an online
e-commerce Web site, the user can add products to the online shopping cart.
Each time the user adds a product, we perform another request. The conse-
quence of such a business process is that the components must track the user’s
state (such as a shopping cart state) from request to request.

Another example of a drawn-out business process is a banking application.
You may have code representing a bank teller who deals with a particular
client for a long period of time. That teller may perform a number of banking
transactions on behalf of the client, such as checking the account balance,
depositing funds, and making a withdrawal.

A stateful session bean is a bean that is designed to service business processes
that span multiple method requests or transactions. To accomplish this, state-
ful session beans retain state on behalf of an individual client. If a stateful ses-
sion bean’s state is changed during a method invocation, that same state will
be available to that same client upon the following invocation. Stateful session
beans are a little more sophisticated than their simpler stateless cousins, so
let’s take a closer look at them in the next section.

Special Characteristics of Stateful Session Beans

So far, we’ve seen session beans in general. We also coded up a simple stateless
session bean to the old EJB 2.1 API in Chapter 2. Now let’s look at the trickier
flavor, stateful session beans.

Introduction to Session Beans

95

Achieving the Effect of Pooling with Stateful Beans

With stateful session beans, pooling is not as simple as with stateless session
beans. When a client invokes a method on a bean, the client is starting a con-
versation with the bean, and the conversational state stored in the bean must be
available for that same client’s next method request. Therefore, the container
cannot easily pool beans and dynamically assign them to handle arbitrary
client method requests, since each bean is storing state on behalf of a particu-
lar client. But we still need to achieve the effect of pooling for stateful session
beans so that we can conserve resources and enhance the overall scalability of
the system. After all, we only have a finite amount of available resources, such
as memory, database connections, and socket connections. If the conversa-
tional state that the beans are holding is large, the E]JB server could easily run
out of resources. This was not a problem with stateless session beans because
the container could pool only a few beans to service thousands of clients.

This problem should sound quite familiar to operating systems gurus.
Whenever you run an application on a computer, you have only a fixed
amount of physical memory in which to run. The operating system still must
provide a way for many applications to run, even if the applications take up
more aggregate memory than is available physically. To provide for this, oper-
ating systems use your hard disk as an extension of physical memory. This
effectively extends your system’s amount of virtual memory. When an applica-
tion goes idle, its memory can be swapped out from physical memory and onto
the hard disk. When the application becomes active again, any needed data is
swapped in from the hard disk and into physical memory. This type of swap-
ping happens often when switching between applications (called context
switching).

EJB containers exploit this very paradigm to conserve stateful session bean
resources. To limit the number of stateful session bean instances in memory,
the container can swap out a stateful bean, saving its conversational state to a
hard disk or other storage. This is called passivation. After passivating a state-
ful bean, the conversational state is safely stored away, allowing resources like
memory to be reclaimed. When the original client invokes a method, the pas-
sivated conversational state is swapped in to a bean. This is called activation.
This bean now resumes the conversation with the original client. Note that the
bean that receives the activated state may not be the original bean instance. But
that’s all right because the new instance resumes its conversation from the
point where the original instance was passivated.

Thus, EJB does indeed support the effect of pooling stateful session beans.
Only a few instances can be in memory when there are actually many clients.
But this pooling effect does not come for free—the passivation/activation
steps could entail an input/output bottleneck. Contrast this to stateless session
beans, which are easily pooled because there is no state to save.

96

Chapter 4

How does the container decide which beans to activate and which beans to
passivate? The answer is specific to each container. Most containers employ a
least recently used (LRU) passivation strategy, which simply means to passivate
the bean that has been called the least recently. This is a good algorithm
because remote clients have the habit of disconnecting from the network, leav-
ing beans stranded without a client, ready to be passivated. If a bean hasn’t
been invoked in a while, the container writes it to disk.

Passivation can occur at any time, as long as a bean is not involved in a
method call. It’s up to the container to decide when passivation makes sense.
There is one exception to this rule: Any bean involved in a transaction (see
Chapter 10) cannot be passivated until the transaction completes.

To activate beans, most containers commonly use a just-in-time algorithm.
Just in time means that beans should be activated on demand, as client
requests come in. If a client request comes in, but that client’s conversation has
been passivated, the container activates the bean on demand, reading the pas-
sivated state back into memory.

In general, passivation and activation are not useful for stateless session
beans. Stateless beans do not have any state to passivate/activate, so the con-
tainer can simply destroy stateless beans arbitrarily.

The Rules Governing Conversational State

More rigorously, the conversational state of a bean follows the rules laid out by
Java object serialization. At passivation time the container uses object serializa-
tion (or an equivalent protocol) to convert the bean’s conversational state to a
bit-blob and write the state out to disk. This safely tucks the state away. The
bean instance (which still exists) can be reassigned to a different client, and can
hold a brand-new conversation with that new client.

Activation reverses the process: A serialized blob that had been written to
storage is read back into memory and converted to in-memory bean data.

For every Java object that is part of a bean’s conversational state, the previ-
ous algorithm is reapplied recursively on those objects. Thus, object serializa-
tion constructs an entire graph of data referred to by the main bean. Note that
while your beans must follow the rules for object serialization, the EJB con-
tainer itself does not necessarily need to use the default serialization protocol;
it could use a custom protocol to allow for flexibility and differentiation
between container vendors.

More concretely, every member variable in a bean is considered to be part of
the bean’s conversational state if one of the following is true:

m The member variable is a nontransient primitive type.

m The member variable is a nontransient Java object (extends java
.lang.Object).

Introduction to Session Beans

97

Your bean might also hold references to container-implemented objects. The
container must preserve each of the following upon passivation/activation:

m References to other beans’ local or remote business interfaces

m References to other beans’ local or remote home interfaces (for code
using the EJB 2.1 client view)

m References to the SessionContext object, the UserTransaction, an
EntityManager or EntityManagerFactory object, or a Timer
object (see Chapter 12)

m JNDI naming contexts

For example, let’s say you have the following stateful session bean code:

@Stateful public class MySessionBean
{
// State variables
private Long myLong;
private MySessionBeanRemoteInterface mySessionBean;
private javax.naming.Context envContext;
// Business methods

}

The container must retain the values of the preceding member variables
across passivation and activation operations.

In many cases, the container will simply do this without your code having
to bother, but sometimes your beans may contain state that is not covered by
this contract with the container. For example, if your bean holds JDBC connec-
tions or open sockets or other nonserializable objects, then the container will
not be able to properly activate and passivate the bean without a little assis-
tance from the bean itself.

This assistance comes in the form of bean code that the container can call
back during activation and passivation. The bean provider (that is, we, the
developers) can provide this code as either individual callback methods in the
bean, or as one or more separate callback listener classes. As you might expect
by this time, we will mark the code as callback code using metadata annota-
tions, or in the deployment descriptor files.

Activation and Passivation Callbacks

Let’s now look at what actually happens to your bean during passivation and
activation. When an EJB container passivates a bean, the container writes the
bean’s conversational state to secondary storage, such as a file or database. The
container informs the bean that it’s about to perform passivation by calling the
bean’s optional PrePassivate callback method. The PrePassivate callback

98

Chapter 4

is a method that is marked with the @PrePassivate annotation. The container
uses this callback method to warn the bean that its held conversational state is
about to be swapped out.

It’s important that the container inform the bean using PrePassivate so
that the bean can relinquish held resources that the container cannot handle
itself. These held resources include database connections, open sockets, open
files, or other resources that it doesn’t make sense to save to disk or that can’t
be transparently saved using object serialization. The E]JB container calls the
PrePassivate method to give the bean a chance to release these resources or
deal with the resources as the bean sees fit. Once the container’s PrePassi-
vate callback method into your bean is complete, your bean must be in a state
suitable for passivation. For example:

@Stateful
public class MyBean {
@PrePassivate
public void passivate() {
<close socket connections, etc...>

}

}

The passivation process is shown in Figure 4.2. This is a typical stateful bean
passivation scenario. The client has invoked a method on a bean’s business
interface that does not have a bean tied to it in memory. The container’s pool
size of beans has been reached. Thus, the container needs to passivate a bean
before handling this client’s request.

Exactly the opposite process occurs during the activation process. The seri-
alized conversational state is read back into memory, and the container recon-
structs the in-memory state using object serialization or the equivalent. The
container then calls the bean’s optional PostActivate callback method. The
PostActivate callback method gives the bean a chance to restore the open
resources it released during PrePassivate. For example:

@Stateful
public class MyBean {
@PostActivate
public void activate() {
<open socket connections, etc...>

}

}

The activation process is shown in Figure 4.3. This is a typical just-in-time
stateful bean activation scenario. The client has invoked a method on an EJB
object whose stateful bean had been passivated.

Introduction to Session Beans

Client

Figure 4.2 Passivation of a stateful bean.

Client

Figure 4.3 Activation of a stateful bean.

M)
‘/O'{'eé 2: pick the least N
@t/,o ‘/.r/,, recently used bean "
M Business 3: call N Bean
Remote Interface @PrePassivate Instance
4: serialize N
Interface bean state ”
wn
ol Other
g3 Bean
218, Instances
HE
N
g
= A typical bean passivation scenario. AN

%
"049 3: reconstruct bean N
() 6(/; 7
/)OO’ L 3 .
g " Business 4: call . Bean
Interface @PostActivated Instance
Remote) .
5: invoke business method
Interface >
N
S Other
52 Bean
2ls Instances
e
=
o
Y

The client has invoked a method on
a business interface reference that
does not have a bean instance tied
to it in memory. The container’s
pool size of bean instances been
reached. Thus the container needs
to passivate a bean before handling
this client’s request.

A typical just-in-time statefule session
bean activation scenario. The client has
invoked a method on a business
interface reference whose stateful bean
had been passivated.

100 Chapter 4

The code snippets that we just saw all showed a simple method in the bean
class itself. You will see an example of a separate callback listener class in the
section “The Count Bean’s Callback Interceptor” later in this chapter.

You don’t need to worry about providing methods annotated as Pre
Passivate and PostActivate callbacks unless you are using open
resources, such as socket connections or database connections, that must be
reestablished after activation.

.m The following rules apply to the life-cycle callback methods:

m They take the form public void <METHOD () > in the bean class.

m They take the form public void <METHOD (BeanClass bean) >
in a callback listener class for bean class BeanClass.

m They must not throw application exceptions, but may throw runtime
exceptions. If thrown within a transaction, it will cause the transaction
to roll back.

m There is no dependency injection for callback listener classes.

Summary of Callback Methods

Table 4.1 summarizes the life-cycle callbacks for session bean classes. All of
these are optional, so you need to provide implementations only if your bean
needs to take part in the management of its life cycle.

A Simple Stateful Session Bean

Let’s put our stateful session bean knowledge to use by programming a sim-
ple stateful bean. Our bean will be a counter bean, and it will be responsible for
simply counting up one by one. The current count will be stored within the
bean and will increment as client requests arrive. Thus, our bean will be state-
ful and will hold a multimethod conversation with a particular client.

The Count Bean’s Remote Interface

First let’s define our bean’s remote business interface. The code is shown in
Source 4.1.

‘pajedo||e
aney Aew noA sad1nosal [je 9914

‘pajedo||e
aney Aew noA sadinosal [je 9914

‘paAosisap si ueaq

InoA a10§aq pue paysiuly
Sey poylaw aA0WaY D
Aue 19ye Aj91RIpaWIWLI

‘uoiPnIIsap 1oy ueaq InoA asedaid ‘uoipnJIsap Joj ueaq InoA asedaid Jaureluod ayy Aq pajjed Aonsegaid®
‘(ueaq InoA
Spaau Jual]d e 3snedaq
"9]DAISSDd.1d Suunp "Pa1eAIOR JOU dIB SURS(UOISSS ysip wouj ul paddems)
pasesjal 9soyj Sse Yans ‘spasu SS9|91E]S "91B]S |RUOIESISAUOD paleAiloe s ueaq JnoA
ueaq InoA sad1nosal Aue ainboy ou sl 213y} asnedaq pasnun laye Ajpieipaww pajjed 9IDAIPYISO4 D
‘(sueaq pajenuelsul Auew
00} 2.Je 318y} asnedaq
‘pajenissed jou ale sueag UOISSIS ysip 01 1no paddems)
"uipjoy aq Aew SS9[91R]S "91P1S [RUOIESIDAUOD paienissed si ueaq INoA
ueaq INoA s321n0sal Aue aseajay ou sl 213y} 9snedaq pasnun a1049q Ajp1eIpaww pajje) 8IDAISSDYRId®
‘ul passed ‘ul passed
sanjen juswnsie 3y} 0} s9|qelieA sanjen juswnsie 3y} 0} s9|qeleA 'sse[> ueaq ay}
Jaquiaw 3umas se yons ‘spasu Jaquiaw Sumas se yons ‘spasu JO Sdue)SUl MBU B pajeaId
ueaq InoA uonezijeriul Aue wiopsd ueaq InoA uonezijenul Aue wiopad SBY JSUIRIUOD 3UY} Jaye pajjed 1PN1ISU0DISO4D

(SNv3d NOISS3S 11n431VLS)

NOILLVINIWITdINI TVIIdAL

(SNv3d NOISS3S SSIT13LVLS)
NOILLVINIWITdINI TVIIdAL

NOILdI¥DS3a

NOLLYLONY

S9sSB|) URAg UOISSAS 10} SHPeq||eD) SPAD-9)I

'Y 9jqel

102 Chapter 4

package examples.session.stateful;

/**
* The business interface - a plain Java interface with only
* business methods.
*/

public interface Count {

/**
* Increments the counter by 1
*/

public int count() ;

/**
* Sets the counter to val
* @param val
*/

public void set(int wval);

/**
* removes the counter
*/

public void remove() ;

Source 4.1 Count.java.

Our business interface defines three business methods, count (), set (),
and remove (), which we will implement in the enterprise bean class. For
those familiar with prior versions of E]JB, note that the business interface is an
ordinary Java interface that does not extend any EJB-specific framework inter-
faces. EJB3 imposes no restrictions on interface design, so our business inter-
face could have one or more superinterfaces.

Also note that, although we intend to use the business interface remotely,
the interface does not extend java.rmi.Remote, and that our business
methods do not declare the java.rmi.RemoteException. We will instead
declare it as a remote business interface in the implementation class Count-
Bean. java below.

The Count Bean

Our bean implementation has a business method, count (), which is respon-
sible for incrementing an integer member variable, called val. The set ()
method is used to initialize and reset the counter. The remove () method,
finally, ends the conversation with the bean. The conversational state is the
val member variable. Source 4.2 shows the code for our counter bean.

Introduction to Session Beans

103

package examples.session.stateful;

import javax.ejb.*;

/**

*

*/

A Stateful Session Bean Class that shows the basics of
how to write a stateful session bean.

This Bean is initialized to some integer value. It has a
business method which increments the value.

The annotations below declare that:

this is a Stateful Session Bean

the bean's remote business interface is <code>Count</code>

any lifecycle callbacks go to the class
<code>CountCallbacks</code>

@Stateful
@Remote (Count.class)

@Interceptors (CountCallbacks.class)

public class CountBean implements Count {

/** The current counter is our conversational state. */
private int val;

/**
* The count () business method.
*/
public int count() {
System.out.println("count()");

return ++val;

/**
* The set() business method.
*/
public void set (int val) {
this.val = val;
System.out.println("set ()");

/**
* The remove method is annotated so that the container knows
* it can remove the bean after this method returns.

*/

@Remove

Source 4.2 CountBean.java. (continued)

104 Chapter 4

}

public void remove() {
System.out.println("remove()") ;

}

Source 4.2 (continued)

Note the following about our bean:

m The bean is a plain Java class adorned with a few metadata annotations.

If we had used a deployment descriptor to hold the information con-
veyed by these annotations, the code would contain nothing else but
business method implementations.

The bean class implements the business interface. While this is not sur-
prising, it is not actually required: a session bean class may simply
declare rather than implement its remote or local interface using the
@Remote or @Local annotations (or the deployment descriptor). We
recommend that you always implement the business interface for clar-
ity and compile-time error checking. This also lets you reuse both your
business interface and implementation outside of an EJB container.

In the example, we declare Count as our remote business interface.
Without the explicit declaration, a business interface would have been
assumed to be local as long as there was only one business interface. If
the bean class has more than one business interface, these interfaces all
need to be explicitly declared as either remote or local.

The val member variable obeys the rules for conversational state
because it is serializable. Thus, it lasts across method calls and is auto-
matically preserved during passivation/activation. Because there is no
other state, there is not really any reason to implement life-cycle call-
backs. We still do this, but for demonstration purposes only.

The @Remove annotation tells the container that after calling remove ()
the client does not need the session bean anymore so the container may
destroy the bean.

The Count Bean'’s Callback Interceptor

To complete our stateful bean code, we define the simple life-cycle callback
interceptor class that was already declared using the @Interceptors anno-
tation on the bean class. The code for our callback interceptor is in Source 4.3.

Introduction to Session Beans

105

package examples.session.stateful;

import javax.ejb.PostActivate;

import javax.ejb.PrePassivate;

import javax.ejb.PostConstruct;

import javax.ejb.PreDestroy;

/**

*

*

*

*/

This class is a lifecycle callback interceptor for the Count
bean. The callback methods simply print a message when
invoked by the container.

public class CountCallbacks {

/**
* Called by the container after construction
*/
@PostConstruct
public void construct (InvocationContext ctx) {
System.out.println("cb:construct()") ;
}
/**
* Called by the container after activation
*/
@QPostActivate
public void activate (InvocationContext ctx) {
System.out.println("cb:activate()") ;

/**
* Called by the container before passivation
*/
@PrePassivate
public void passivate (InvocationContext ctx) {
System.out.println("cb:passivate()");
}
/**
* Called by the container before destruction
*/
@PreDestroy
public void destroy(InvocationContext ctx) {
System.out.println("cb:destroy () ") ;

Source 4.3 CountCallbacks.java.

106 Chapter 4

The Count Bean'’s Deployment Descriptor

As an alternative to annotating the bean class, we could have relied on an XML
deployment descriptor file exclusively. The deployment descriptor settings
that are equivalent to the bean class annotations shown above are listed in
Source 4.4.

<?xml version="1.0" encoding="UTF-8" ?>

<ejb-jar xmlns="http://java.sun.com/xml/ns/javaee" version="3.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd">
<description>Stateful Session Bean Example</description>
<display-name>Stateful Session Bean Example</display-name>
<enterprise-beans>
<session>
<ejb-name>CountBean</ejb-name>
<business-remote>examples.session.stateful_dd.Count
</business-remote>
<ejb-class>examples.session.stateful_dd.CountBean</ejb-class>
<session-type>Stateful</session-type>
<transaction-type>Container</transaction-type>
</session>

</enterprise-beans>

<interceptors>
<interceptor>
<interceptor-class>examples.session.stateful_dd.CountCallbacks
</interceptor-class>
<post-construct>
<lifecycle-callback-method>construct
</lifecycle-callback-method>
</post-construct>
<post-activate>
<lifecycle-callback-method>activate</lifecycle-callback-method>
</post-activate>
<pre-passivate>
<lifecycle-callback-method>passivate
</lifecycle-callback-method>
</pre-passivate>
</interceptor>

</interceptors>

<assembly-descriptor>
<interceptor-binding>
<ejb-name>CountBean</ejb-name>
<interceptor-class>examples.session.stateful_dd.CountCallbacks
</interceptor-class>

Source 4.4 ejb-jar.xml. (continued)

Introduction to Session Beans

107

</interceptor-binding>
</assembly-descriptor>
</ejb-jar>

Source 4.4 (continued)

Note that a deployment descriptor file, if present, overrides any metadata
annotations on the bean class. The rationale here is that it should be possible to
declare EJB properties without access to the source code.

If you need to refer to the specifics of the deployment descriptor syntax, you
may need to either consult the EJB 3.0 specification itself or use the XML
schema file for EJB 3 descriptors. This schema is available online at http://
java.sun.com/xml/ns/j2ee/ejb-jar_3_0.xsd.

The Count Bean'’s Proprietary Descriptor and Ejb-jar File

To complete the component, we need to write any proprietary files that the
application server may require and package those files and the bean together
into an Ejb-jar file. These steps are similar to our Hello, World! example.

One special setting we will try to make (which is vendor-specific) is to force
the container to limit the number of bean instances that it will keep active to
two beans. Note that this may or may not be possible with your particular
application server. We will then create three beans and observe how the con-
tainer passivates instances to service requests.

To save space, in future examples we’ll consider that the proprietary
descriptors, the Ejb-jar file, and the deployment itself are implied steps. If
you're really curious about how this is achieved, take a look at the source code
accompanying the book.

The Count Bean'’s Client Code

Now that our bean is deployed, we can write some Java code to test our beans.
Our client code performs the following steps:

1. We acquire a JNDI initial context.
2. We locate a reference to the bean’s business interface using JNDI.

3. We lookup three different count beans. Thus, we are creating three dif-
ferent conversations and are simulating three different clients.

4. We limited the number of active bean instances in the EJB server to two
beans, so during the previous step some of the three beans must have
been passivated. We print out a message during the PrePassivate
callback to illustrate this.

108 Chapter 4

5. We call count () on each bean instance. This forces the container to
activate the instances, restoring the conversations to memory once
again. We print out a message during the PostActivate callback to
illustrate this.

6. Finally, all the beans are removed.

The code appears in Source 4.5.

package examples.session.stateful;

import javax.naming.*;

/**

* This class is a simple client for a stateful session bean.

* To illustrate how passivation works, configure your EJB server

* to allow only 2 stateful session beans in memory. (Consult your

* vendor documentation for details on how to do this.) We create

* 3 beans in this example to see how and when beans are passivated.

*/

public class CountClient {

public static final int noOfClients = 3;

public static void main(String[] args) {
try {

/* Get a reference to the bean */
Context ctx = new InitialContext (System.getProperties());

/* An array to hold the Count beans */
Count count[] = new Count[noOfClients];
int countval = 0;

/* Create and count () on each member of array */
System.out.println("Instantiating beans...");
for (int i = 0; i < noOfClients; i++) {

count[i] = (Count) ctx.lookup(Count.class.getName()) ;

/* initialize each bean to the current count value */
count[1].set (countval) ;

/* Add 1 and print */
countVal = count[i].count();
System.out.println (countVval) ;

/* Sleep for 1/2 second */
Thread.sleep(100) ;

Source 4.5 CountClient.java. (continued)

Introduction to Session Beans

109

/*

* Let's call count() on each bean to make sure the

* beans were passivated and activated properly.
*/

System.out.println("Calling count() on beans...");

for (int i = 0; i < noOfClients; i++) {

/* Add 1 and print */
countVal = count[i].count () ;
System.out.println (countVal) ;

/* let the container dispose of the bean */

count[i].remove () ;

/* Sleep */
Thread.sleep (50) ;
}

} catch (Exception e) {
e.printStackTrace() ;

Source 4.5 (continued)

Running the Client

To run the client, you need to know the parameters your JNDI service provider
uses. This should also be part of your container’s documentation. See the

book’s accompanying source code for scripts.

Client-Side Output
After running the client, we see the following output:

Instantiating beans...

1

2

3

Calling count() on beans...
2

3

4

110 Chapter 4

We first created three beans and then called count () on each. As expected,
the beans incremented their values by one each during the second pass, so out-
put is as expected. But were our beans really passivated and activated? Let’s
check the server log.

Server-Side Output

As mentioned earlier, we configured the server to only allow two bean
instances to be active at a time using vendor-specific configuration means. If
the container log now yields the following results:

cb:construct ()
set ()

count ()
cb:construct ()
set ()

count ()
cb:construct ()
set ()

count ()
count ()

remove ()
cb:destroy ()
count ()

remove ()
cb:destroy ()
count ()

remove ()

cb:destroy ()

Then, as you can see from the passivation/activation messages in the log,
the container is indeed passivating and activating beans to conserve system
resources. Because the client-side output is correct, each of our beans’ conver-
sational state was retained properly.

Life-Cycle Diagrams for Session Beans

Now that we’ve written a complete stateless session bean (in Chapter 2) and a
complete stateful session bean (in this chapter), let’s see what’s happening
behind the scenes.

Figure 4.4 shows the life cycle of a stateless session bean inside the container.
Note that in this diagram, the client is not calling methods on the bean, since
the client never accesses a bean directly. (The client always goes through the
container.) In the diagram, the container is calling methods on the bean.

Introduction to Session Beans

Container decides it
needs more instances
in the pool to service

clients. Bean Instance
does not exist

\
\ A
\

N
\

1. new instance() PreDestroy callback, if any
2. dependency injection, if any N
3. PostConstruct callback, if any \

N\
\
\
\

Y

Container decides it
does not need so
many instances in the
pool anymore.

Pool of equivalent,
method-ready
bean instances

Business mM
/

/
/
/
/

Any client calls a
business method on
any bean’s business
interface.

Figure 4.4 The life cycle of a stateless session bean.

Let’s walk through this diagram:

1. At first, the bean instance does not exist. Perhaps the application
server has just started up.

2. The container decides it wants to instantiate a new bean. When does
the container decide it wants to instantiate a new bean? It depends on the
container’s policy for pooling beans. The container may decide to instanti-
ate 10 beans all at once when the application server first starts because
you told the container to do so using the vendor-specific files that you
ship with your bean. Each of those beans are equivalent (because they are
stateless), and they can be reused for many different clients.

3. The container instantiates your bean. The container calls
Class.newInstance ("HelloBean.class") on your session bean
class, which is the dynamic equivalent of calling new HelloBean ().
The container does this so that the container is not hard-coded to any

112 Chapter 4

specific bean name; the container is generic and works with any bean.
This action calls your bean’s default constructor, which can do any nec-
essary initialization.

4. The container injects any required context dependencies. Context
dependencies can be declared using metadata annotations or XML
descriptor files so the container knows what other objects are required
by the bean class and can provide them. We'll discuss dependency
injection in detail in Chapter 8.

5. The container calls the optional PostConstruct callback method.
This gives the bean instance a chance to perform additional initializa-
tion. Note that because the stateless session beans” PostConstruct
callback methods take no parameters, clients never supply any critical
information that bean instances need to start up. EJB containers can
exploit this and precreate instances of your session beans. In general
when a client creates or destroys a bean, that action might not necessar-
ily correspond with literally creating or destroying in-memory bean
objects, because the EJB container manages their life cycles to allow for
pooling between heterogeneous clients.

6. The container can call business methods on your bean on behalf of
clients. The container can call as many business methods as it wants to
call. Each business method could originate from a completely different
client because all bean instances are treated exactly the same. All state-
less session beans think they are in the same state after a method call;
they are effectively unaware that previous method calls happened.
Therefore, the container can dynamically reassign beans to client
requests at the per-method level. A different stateless session bean can
service each method call from a client. Of course, the actual implementa-
tion of reassigning beans to clients is container-specific.

7. Finally, the container calls the PreDestroy callback methods. When
the container is about to remove your session bean instance, it calls
your bean’s PreDestroy callback methods. PreDestroy is a clean-up
method, alerting your bean that it is about to be destroyed and allowing
it to end its life gracefully. It takes no parameters. Your implementation
of PreDestroy can prepare your bean for destruction. This means you
need to free all resources you may have allocated.

Figure 4.5 shows the life cycle of a stateful session bean. Remember that in
the diagram, the container (not the client) is calling methods on our bean
instance.

Introduction to Session Beans 113

Bean Instance
does not exist

T
1. new instance() PreDestroy (opt.) . .
2. dependency injection (opt.)

3. PostConstruct (opt.) A client called the
remove method or
. . timed out
Client obtained a The container’s limit

reference to the of instantiated beans is
business interface reached and the bean

was chosen as a victim
(.

Client's call business)
methods on the bean’s Ready
business interface <

_/ PostActivate (opt.)

PrePassivate (opt.)

Passive

A client called a methodB
on a passivated bean’s
business interface, so
container must swap it
back in.

Figure 4.5 Life cycle of a stateful session bean.

The life cycle for stateful session beans is similar to that of stateless session
beans. The big differences are as follows:

m There is no pool of equivalent instances because each instance contains
state.

m There are transitions for passivating and activating conversational state.

DON'T RELY ON @PREDESTROY

Your container can call the @PreDestroy method at any time, even if the
container decides that the bean’s life has expired (perhaps due to a very long
timeout). Note that the container may never call your bean’s @PreDestroy
method, for example if the container crashes or if a critical exception occurs.
You must be prepared for this contingency. For example, if your bean performs
shopping cart operations, it might store temporary shopping cart data in a
database. Your application should provide a utility that runs periodically to
remove any abandoned shopping carts from the database because otherwise
the database resources associated with the abandoned shopping carts will
never be freed.

114 Chapter 4

Summary

In this chapter, you learned the general concepts behind session beans. You
learned about achieving instance pooling with session beans, activation, and
passivation. You wrote a stateful session bean that counted up and touched on
session beans’ life cycle.

In the next chapter, we will continue our inspection of session beans with
another thrilling experience: We will let our session bean expose a Web service
interface!

Writing Session Bean
Web Services

One of the most important enhancements introduced by EJB 2.1 was the sup-
port for Web services. EJB 3.0 now makes writing and using Web services both
simpler and more flexible.

In this chapter, we will discuss central Web services concepts and then
explain how EJB supports the writing of Web service implementations and
Web services clients. We will show how EJB enables you to build Web services
from stateless session beans and take a closer look at the Java API for XML Web
services (JAX-WS) that enables you to access Web services from Java clients.

Web Services Concepts

Let’s take a quick look at some fundamental concepts. As mentioned in Chap-
ter 1, Web services are a way of building a Service-Oriented Architecture (SOA).
SOA is an architectural approach to structuring large-scale, distributed sys-
tems that integrate heterogeneous applications behind service interfaces.

Figure 5.1 shows the basic model of a service lookup in a Service-Oriented
Architecture as supported by Web services technologies:

m A service provider creates an abstract service definition that can publish
in a service registry. With Web services, the description is a Web Services

115

116 Chapter 5

Definition Language (WSDL) file, and the registry follows the Universal
Description, Discovery, and Integration (UDDI) standard.

m A service requestor can find the service description, possibly using a set
of selection criteria to query the registry.

m If a suitable description is found, the requestor can bind to and use the
service.

You can find simple examples of Web services collected on Web sites such as
xmethods.org, for example, a service to determine if a given Internet
domain name is taken, or to convert temperature values from Fahrenheit to
Celsius. More realistic Web services are built today in larger-scale, in-house
architectures that interconnect existing, heterogeneous applications, for exam-
ple, a billing application and a report generator.

A service interface is similar to an object interface, but the contract between
the interface and its clients is more flexible, and the client and the service
implementation are less closely coupled, than in EJB or other distribution plat-
forms. This looser coupling allows client and service implementations to run on
very different platforms, for example, a Microsoft .NET client could access a
service running in a JavaEE application server. Also, services are generally
coarser-grained entities than objects are. From a client perspective, their life
cycles are more static because services don’t just pop up and go away but stay
around longer than your average object, even if services are implemented
using object technology.

Service
Description

Service Registry

Find Publish

WSDL + UDDI

WSDL + UDDI

Service
Description

Service Requestor Service Provider

Figure 5.1 Service-Oriented Architecture with Web services.

Writing Session Bean Web Services

SOAs emphasize modularity through standardized interfaces, flexibility
through looser coupling, and extensibility through using XML. All of this is
important in B2B scenarios, which are the primary targets of Web services.
Web services are not just another RPC mechanism for your intranet applica-
tions but rather a great help in settings where no single middleware platform
is applicable.

As an example, consider the B2B relationships between a car manufacturer
and its suppliers. Each of these companies has its own IT infrastructure and set
of applications, such as payroll, inventory, order processing, and so on. Also,
each supplier builds parts for more than just a single car manufacturer, and
each manufacturer buys parts from different suppliers. In a situation like this,
it is highly unlikely that any of the involved parties will be able to switch to a
specific middleware for the sake of the business relationship with just a single
partner. For any given supplier, building a middleware X adapter (for example
CORBA) to its order-processing application to interoperate with customer A,
and then building another adapter Y (say, MQSeries) to interoperate with cus-
tomer B, and so on is going to be too much effort and too expensive.

This is what standardization efforts in the past (such as EDI) tried but failed
to tackle on a larger scale. Web services can thus be seen as a new attempt at
building universally agreed-upon standards that hide the differences behind
standardized interfaces. This time, the standards are going to be based on
XML and on established Internet protocols.

So why do we talk about integration and interoperability so much in the
context of Web services? Aren’t EJBs interoperable already, thanks to the stan-
dardization of the RMI/IIOP protocol and the container and bean APIs? E]JBs
are interoperable in the sense of vendor and platform independence: there are
Java EE/E]B products from many different vendors that run on different plat-
forms and still talk to each other. These containers can host your beans no mat-
ter which product they were written for, so you also get portability. But there
is language dependency: E]Bs are coded in Java and nothing else, so you can-
not create interoperable bean implementations written in different languages.

On the one hand, this is great because of Java’s portability (write once run
anywhere). On the other hand, portability is not always an issue, and you may
actually need a specific language for your project if you wanted to leverage,
say, a large amount of C++ or COBOL code for business objects that your com-
pany has investments in. With EJB, a common approach is to build wrapper
beans that talk to an adapter in C++, most likely based on CORBA. Another
way of putting this is to say that EJBs prescribe not only the component inter-
faces and client contracts but also an implementation model. With Web ser-
vices, there is no single implementation framework; a contract with a Web
service involves only its interface. Web services interfaces are defined in the
Web Services Description Language (WSDL). Web services can be implemented
in any language. Of course, we will be building them with EJB in this book, so
they will be written in Java.

118 Chapter 5

Web Services Standards

The set of de facto standards that make up Web services today can be summa-
rized in a simple equation:

Web Services = WSDL + SOAP + UDDI

Let’s take a quick look at WSDL and SOAP. We won’t cover UDDI here
because it is not necessarily required: Note that the actual service usage in Fig-
ure 5.1 does not depend on the existence of UDDI. The requestor may actually
have known the service and its endpoint address without the registry. Also
note that the registry is not simply a naming service but supports queries for
services that obey a given predicate. At this stage in the life of Web services,
however, it is unclear whether dynamic service lookups in UDDI registry will
ever happen on a larger scale than within enterprises. It did not happen with
similar concepts that were available earlier, such as CORBA Trading Service.

m If you have been around in distributed computing for a while, some of
the technology in the Web services arena will give you a feeling of déja vu.
Figure 5.1, for example, looks a lot like the RM-ODP trader and later CORBA
Trading Service. Many aspects that Web services address are not new per se but
have simply not been solved on a larger scale.

WsSDL

To give you a first impression of a service description in WSDL, following is
the definition of a HelloWorld service like the one we used in Chapter 3.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<definitions targetNamespace="http://ws.session.examples/"
name="Greeter" xmlns:tns="http://ws.session.examples/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns="http://schemas.xmlsoap.org/wsdl/">
<types>
<xsd:schema>
<xsd:import namespace="http://ws.session.examples/"
schemalocation="Greeter_schemal.xsd" />
</xsd:schema>
</types>
<message name="hello">
<part name="parameters" element="tns:hello"/>
</message>
<message name="helloResponse">
<part name="parameters" element="tns:helloResponse"/>
</message>
<portType name="HelloBean">
<operation name="hello">

Writing Session Bean Web Services

119

<input message="tns:hello"/>
<output message="tns:helloResponse"/>
</operation>
</portType>
<binding name="GreeterPortBinding" type="tns:HelloBean">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http"
style="document" />
<operation name="hello">
<soap:operation soapAction=""/>
<input>
<goap:body use="literal"/>
</input>
<output>
<soap:body use="literal"/>
</output>
</operation>
</binding>
<service name="Greeter">
<port name="GreeterPort" binding="tns:GreeterPortBinding">
<soap:address location="http://gorilla:80/Greeter"/>
</port>
</service>

</definitions>

Some good news first before we look at the details: Relax. You don’t have to
write this XML document yourself. This interface description was automati-
cally generated from an EJB using a generator tool.

A number of things are worth noting about the WSDL.:

m The number of language concepts used here is larger than in Java. We
have a service that provides one or more ports at an address. Ports repre-
sent the service interfaces and have bindings to protocols.

m The service description includes an endpoint address. The WSDL is
thus like a Java interface and an object reference joined together. In
other words, Web services do not have distinct identities. They are not
objects and must be viewed as modules. There is no client-visible state,
and you cannot compare two references for equality!

m Operations are specified in terms of input and output messages
rather than parameters and return values. These have to be repre-
sented as elements (“parts”) of input and output messages.

m The binding for the service is a SOAP binding. There can be other bind-
ings in theory, but in practice SOAP is the only available option today. Also
note that the soap :binding has an attribute style="document",
so there must be other possible styles. Currently, the only other style for
exchanging SOAP messages is rpc-style, which simply represents the
called operation slightly different in the SOAP message’s body.

120 Chapter 5

SOAP

The SOAP protocol defines an XML message format for Web services and their
clients. Until version 1.1, SOAP was an acronym for Simple Object Access Proto-
col, but it was turned into a proper name for version 1.2 of the standard. That
SOAP starts with the three letters SOA is sheer coincidence. As we just men-
tioned, the targets of SOAP messages (both services and clients) are not objects
in the object-oriented sense, so the acronym was a misnomer anyway.

The SOAP message format is very simple. In a message exchange between a
client and the Greeter service, the request message would look like this:

POST /Greeter HTTP/1.1

Content-Type: text/xml; charset="utf-8"
Content-Length: 398

SOAPAction: ""

Host: gorilla:8080

<?xml version="1.0" ?>
<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:nsl="http://ws.session.examples/">
<soapenv:Body>
<nsl:hello>
</nsl:hello>
</soapenv:Body>
</soapenv:Envelope>

This is an actual message as sent over the wire. As you can see, the message
has two parts, an HTTP POST request header, and an XML document in the
HTTP payload. This XML document is a SOAP envelope, which represents a
request. The envelope contains a body element, which in turn contains the
hello element that represents the operation call.

The reply message is just as simple:

HTTP/1.1 200 OK

SOAPAction: ""

Content-Type: text/xml;charset=utf-8
Transfer-Encoding: chunked

<?xml version="1.0" ?>
<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:nsl="http://ws.session.examples/">
<soapenv:Body>
<nsl:helloResponse>
<return>Hello,World!</return>
</nsl:helloResponse>

Writing Session Bean Web Services

121

</soapenv:Body>
</soapenv:Envelope>

Again, there is the HTTP header and an XML document that contains a SOAP
envelope. This time, the SOAP body represents the result of the operation call.

The two messages reproduced here serve to illustrate another key term that
is often used in the context of Web services. The SOAP protocol is extremely
lightweight in the sense that it is very simple to use and does not make many
assumptions about the behavior of clients and services. The SOAP protocol is
not lightweight in terms of compactness and high performance. If uncom-
pressed, there is a large transmission overhead when compared to binary rep-
resentations, for example in CORBA’s IIOP protocol. The XML parsing
required to marshal and unmarshal messages can also become CPU-intensive
for larger messages. But this is beside the point: Web services are not designed
to deliver hitherto unknown performance but to enable integration where
high-performance middleware is much less useful than lightweight protocols
that can be implemented easily by simple scripts. (For an interesting discus-
sion of scripting languages as middleware, refer to Steve Vinoski’s article on
Middleware Dark Matter available at www . iona.com/hyplan/vinoski.)

XML Artifacts and Platform Independence

Web services help with the integration of heterogeneous, distributed systems
by using standardized XML documents for many different aspects of service
design, deployment, lookup, and usage that leverages a broad array of open
standards and sophisticated tools that are widely available. Many of the tools,
like Apache Axis SOAP, IBM WSDLA4]J toolkit, and JBoss Application Server,
are also in the open source arena.

In a sense, the XML usage that we just looked at is perhaps the biggest tech-
nological advantage here because many of the practical virtues, like loose cou-
pling and platform independence, follow from XML itself and the way the
different XML technologies are combined. XML documents are also self-
describing in that they contain a description of their structure in their markup
tags. This does not mean that you will be able to understand arbitrary docu-
ments without any prior knowledge. What it does mean is that you can easily
skip parts of a message that you are not concerned with and don’t understand,
and just deal with those parts that do concern you. This may sound trivial at
first, but it has important consequences in that this enables the decoupling of
applications and middleware.

To understand this point, recall that clients of your beans have to use a fixed
component interface. If that interface changes because a parameter is added to
a method signature, you will not only have to rebuild, reassemble, and rede-
ploy your beans, but your clients will also have to be recompiled. This is not

122

Chapter 5

loose coupling because you cannot develop the different components of your
application individually. If one piece changes, the others have to change, too.
Applications are not as flexibly extensible as we would like. With IIOP-based
request messages, all parties must have complete type information because
they are not able to demarshal messages otherwise. There is no skipping of
unknown parts of a message in IIOP. These restrictions do not exist with inter-
faces written in XML and with XML messages.

XML also enables you to write extensible specifications (after all, that’s the X
in XML): Data types in interface definitions can contain extensibility points
from the outset. These extensibility points make use of a wildcard any type
and, optional elements in sequences, and so on. Future versions of a service,
while still servicing the clients written to the original interface, may fill in com-
plex data records in these places for the benefit of more current client applica-
tions. If your end of the application does not rely on it, you don’t need to care.

To summarize this approach more generally, you could say that Web ser-
vices leave many details open for mutual agreement between the parties that
will be actually involved, whereas other middleware systems, such as
CORBA, have sought to define stricter, inherent semantics as part of their
models. This means that to use Web services successfully in practice, you have
to fill in these details. It also means that there is more room for refinement and
thus wider applicability.

Implementing a Web Service

The Java EE model for Web services provides a seamless Java perspective on
Web services, both for the service implementations and its clients. The model
is relatively simple to use and allows you to deal with SOAP in the same way
you deal with RMI or RMI/IIOP, which is to entrust all the details to the lower
transport layers and happily ignore them for your business logic. The first
thing to note is that your Web services, like your beans, are managed for you
completely by the container.

The JSR 921 specification Web Services for Java EE defines the programming
model for Web services. This specification uses the term port component for the
server-side view of a Web service. A port component is a portable Java imple-
mentation of a service endpoint interface (a port) and comprises a Java map-
ping of the service interface and an implementation bean.

Port components are deployed into and live in containers. Writing a Web
service using EJB requires creating one or more port components as stateless
session beans. A big advantage of the way the Web services programming
model is defined is that you can easily expose existing session beans as Web
services. This is what we will do in the remainder of this chapter.

The concrete client and server APIs and the mapping between Java
and WSDL are defined in JSR 224, Java API for XML Web Services (JAX-WS).

Writing Session Bean Web Services

123

JAX-WS supercedes the earlier JAX-RPC standards and is not specific to Web
services with E]Bs, so you can implement Web services even without EJB by
relying on the server-side APIs of JAX-WS.

There are basically two ways to implement a Web service:

m Start with a Java class and let the container generate the WSDL and any
other required mapped XML artifacts.

m Start with a (new or preexisting) WSDL file and let development tools
generate the required Java classes.

To leverage the large investments that we made in Chapter 3 and to demon-
strate the simplest possible approach, we will take our HelloWorld session bean
and make it available as a Web service using the “start from Java” approach.

The great news is that no additional coding is required. The only thing that
our session bean is missing is a declaration as a Web service. Here’s the
HelloBean, adorned with a metadata annotation that turns it into a Web service
implementation.

package examples.session.ws;

import javax.ejb.Stateless;
import javax.jws.WebMethod;
import javax.jws.WebService;

@Stateless
@WebService (serviceName="Greeter", portName="GreeterPort")
public class HelloBean {

@WebMethod

public String hello() {
System.out.println("hello()") ;
return "Hello, World!";

As you can see, the implementation has not changed. The only important
changes are the @WebService annotation on the class and the @WebMethod
annotation on the hello () method. In the example, the @WebService anno-
tation has two members. The serviceName and portName members tell the
container the name of the Web service and the name of the port. These names
reappear in the generated WSDL file. In fact, you have already seen them in the
WSDL file presented earlier in this chapter. Here is the relevant snippet again:

<service name="Greeter">
<port name="GreeterPort" binding="tns:GreeterPortBinding">
<soap:address location="http://gorilla:80/Greeter"/>

124 Chapter 5

</port>

</service>

Note two things about this example. First, the Hel1loBean (also called ser-
vice implementation bean) does not need to implement any specific interfaces
to function as a Web service implementation. You can implement a service end-
point interface if you like and denote it using the endpointInterface mem-
ber of the @WebService annotation, but this is not required. The client
contract is defined in terms of the WSDL description that is generated from
these annotations, so a separate Java interface is not necessary. If one is used,
the JAX-WS specification states the following rules:

m The service endpoint interface must be a public, outer Java interface
that includes a @WebService annotation.

m The interface may extend java.rmi.Remote either directly or indi-
rectly, but need not.

m All methods are mapped to WSDL operations and may throw
java.rmi.RemoteException but are not required to.

m The method parameters and return types must be the Java types sup-
ported by the JAX-RPC mapping.

Second, the @WebMethod annotation is also optional. If no such annotation
is present, all methods of the service implementation bean (or the service end-
point interface, if any) will be exposed in the WSDL. If a @WebMethod annota-
tion is used, then only those methods that are marked with it are exposed. The
annotation types that can be used for Web services are defined in a separate
specification document: JSR 181, Web Services Metadata. For further details on
these annotations please turn to Appendix B.

After applying these annotation to declare the bean as a Web service we only
need to redeploy the application, which now contains a port component. The
EJB container will know how to dispatch incoming SOAP messages to the bean
implementation and also how to map incoming XML data to Java. The same will
happen on the way back: The container just knows how to map the Java return
values back into XML, how to build a SOAP response message, and where to
send it. The actual mapping rules (“binding”) between XML data and Java are
defined in yet another JSR, the Java Architecture for XML Binding (JAXB), which is
available as JSR 222.

The JAXB specification defines a mapping between a set of supported Java
types and XML schema types. The Java types directly supported by JAXB are the
primitive types boolean, byte, double, float, int, long, short, and their wrapper classes.
In addition, the following nonprimitive types are directly supported by JAXB:

java.lang.String

java.math.BigDecimal

Writing Session Bean Web Services

125

java.math.BigInteger
java.net.URI
java.util.Calendar
java.util.Date

javax.xml .namespace.QName
java.net .URI

javax.xml .datatype.XMLGregorianCalendar
javax.xml.datatype.Duration
java.lang.Object
java.awt.Image
javax.activation.DataHandler
javax.xml.transform. Source

java.util.UUID

WSDL and the XML/Java Mapping

You have seen the WSDL description of the HelloWorld Web service already. If
you are building new Web services, you can start with a WSDL description of
your service and write WSDL directly and then use a WSDL compiler to gen-
erate the service endpoint interface in Java. Alternatively, all Java Web services
platforms and SOAP toolkits provide tools to derive WSDL descriptions auto-
matically from Java endpoint interfaces or service implementation beans.

Packaging and Deploying a Web Service Session Bean

The packaging of a Web service implementation as a stateless session bean is
an extension of the packaging for regular stateless session beans, that is, an
Ejb-jar archive. This file contains the usual set of Java classes, plus the service
endpoint interface class.

The EJB server requires extra information to be able to dispatch incoming
SOAP messages to your bean. First, it needs to know the Java class that will
handle these calls. As you saw, this information can be expressed using anno-
tations. Optionally, you can provide a WSDL file. If present, the WSDL file is
provided in the META-INF directory of the Ejb-jar archive.

As an alternative to using annotations, the information can be provided
in an additional descriptor file, the webservices.xml file, which is also
added to the Ejb-jar archive’s META-INF directory. Your specific Java EE prod-
uct may provide vendor-specific deployment tools to generate this file. The
webservices.xml file for the HelloWorld service is reproduced here:

126 Chapter 5

<?xml version="1.0" encoding="UTF-8"?>
<webservices xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" version="1.2"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://www.ibm.com/webservices/xsd/javaee_web_services_1_2.xsd">
<webservice-description>
<display-name>Greeter</display-name>
<webservice-description-name>Greeter
</webservice-description-name>
<wsdl-file>META-INF/wsdl/Greeter.wsdl</wsdl-file>
<port-component>
<port-component-name>HelloBean</port-component-name>
<wsdl-port xmlns:nsl="http://ws.session.examples/">
nsl:GreeterPort
</wsdl-port>
<service-endpoint-interface>
examples.session.ws.HelloBean
</service-endpoint-interface>
<wsdl-service xmlns="http://ws.session.examples/">
GreeterPort
</wsdl-service>
<service-impl-bean>
<ejb-link>HelloBean</ejb-1link>
</service-impl-bean>
</port-component>
</webservice-description>
</webservices>

The webservices.xml file tells the container where to look for the WSDL
file in the package in the <wsdl-file> element and defines the Web service
interface and implementation package, the port component. The <port-
component> definition lists the fully qualified Java class name of the service
endpoint interface and the name of the implementation bean. The simple
name is sufficient here as the container already knows the bean details from
the ejb-jar.xml file. The port component is linked to the Web service’s port
using the <wsdl-port> element, which gives the name of the port that this
port component implements.

With this, we're actually done! The container has all the information that it
needs to link the abstract concept of a Web service as defined in WSDL to the
port component that we have just defined by adding a service endpoint inter-
face to the existing HelloBean.

Implementing a Web Service Client

Web services clients in Java EE are very similar to regular bean clients. They
come in two flavors:

Writing Session Bean Web Services

127

m Standalone JAX-WS clients without JNDI access for service lookup

m Java EE clients (both Web clients and standalone) that can access
client-side JNDI contexts

Standalone clients without JNDI access, such as remote Java clients not run-
ning inside an application server, can be coded using one of two approaches.
The first approach is called proxy and retrieves a WSDL description at runtime
to generate the dynamic proxy from it. This approach relies on the client’s
knowledge of the service endpoint address URL and not just a symbolic
lookup name as with JNDL

The second option relies on Dispatch objects and is basically a dynamic invo-
cation interface (DII) to create call objects at runtime, which allows you to
build dynamic bridges and to live without any prior knowledge of a service’s
WSDL. We do not cover this style of programming here as it is low level and
cumbersome to use, and beneficial only in limited cases. With the Dispatch
approach, your client code has to create SOAP call objects (dispatch objects)
and explicitly embed parameters before sending them.

The following example shows the code for a standalone, remote client to our
simple HelloWorld Web service:

package examples.session.ws;
import java.net.URL;

import javax.xml.namespace.QName;

import javax.xml.ws.Service;

* This is an example of a standalone JAX-WS client. To compile,
* it requires some XML artifacts to be generated from the service's
* WSDL. This is done in the build file.

* The mapped XML classes used here are
* 1. the HelloBean port type class (this is NOT the bean impl. class!)
* 2. the Greeter service class
*/
public class JAXWSClient {

static String host = "localhost";
static String portType = "HelloBean";
static String serviceName = "Greeter";
static String serviceEndpointAddress =
"http://" + host + ":8080/" + serviceName;
static String nameSpace = "http://ws.session.examples";

public static void main(String[] args) throws Exception {

URL wsdlLocation =

128 Chapter 5

new URL (serviceEndpointAddress + "/" + portType + "?WSDL");
QName serviceNameQ = new QName (nameSpace, serviceName) ;

// dynamic service usage

Service service = Service.create(wsdlLocation, serviceNameQ) ;
HelloBean firstGreeterPort = service.getPort (HelloBean.class) ;
System.out.println("l: " + firstGreeterPort.hello());

// static service usage

Greeter greeter = new Greeter();

HelloBean secondGreeterPort = greeter.getGreeterPort() ;
System.out.println("2: " +secondGreeterPort.hello());

The example shows two slightly different ways of using service proxies,
where the first uses generic methods in the Service class to obtain a port object
while the second uses a generated service proxy class Greeter with a type-
specific getGreeterPort () method. The Greeter class is generated
from the WSDL file using vendor-specific tools.

Java EE client code that is running in a client container, for example a
servlet, can be shielded from the actual service endpoint address by using
JNDI lookups instead. The client container’s local JNDI context provides the
binding from the service endpoint address to a service name according to the
client’s deployment descriptor. The exact configuration of the client container
is vendor-specific.

This concludes our simple programming example for Web services in EJB.
While the example itself is far from realistic or even prototypical for a Web ser-
vice, it is useful to show how you can turn something into a Web service after
it has been coded, and how EJB supports generating the necessary XML scaf-
folding without your having to worry about it. You will see another example
of a Web service in action in Chapter 18.

Summary

In this chapter, we provided a basic overview of the concepts and technologies
required to use and build Web services with EJB. This completes our introduction
to session beans. We have covered a lot of ground, going from stateless to stateful
session beans and back again to stateless beans that implement Web services.

In the next chapters, you'll learn about the more complex (and also quite
interesting) entities. Turn the page and read on!

Java Persistence:
Programming with Entities

Any nontrivial enterprise application needs to handle persistent data of one
kind or another. EJB has long had a component model for persistent objects, but
over the years it has become apparent that these components—entity beans—
have many practical disadvantages. With version 3.0 of the EJB specification, a
completely new persistence technology can now be used. This new persistence
layer has been long awaited in the industry and is called Java Persistence.

Java Persistence is a separate specification document of more than 220 pages
and has been separated from the core EJB specification, even though it was
prepared by the same expert group. It is one of the most important innovations
available for EJB 3.0 and it provides a POJO programming model for persistent
objects that is based on entities.

Entities are not an enhancement of the entity beans known from previous
versions of EJB but rather a completely new programming concept. The new
Java Persistence specification:

m Provides a standard object-relational (OR) mapping which integrates
many of the concepts that were found in popular persistence frame-
works such as Hibernate and JDO

m [s not tied to the Java EE container and can be tested and used in J2SE
environments

m Defines a service provider interface so that different persistence
providers can be used without affecting the entity code

129

130 Chapter 6

While the older entity beans are still required to be supported by a 3.0-com-
pliant EJB container, the new Java Persistence API is concerned only with enti-
ties. We concentrate on entities exclusively in this book. We recommend that
you do the same and write any new code to this APL If you need to maintain
legacy beans and hence need information on pre-3.0 entity beans, please refer
to the third edition of this book, Mastering Enterprise JavaBeans, Third Edition
(ISBN 0-7645-7682-8), which is freely accessible online.

In this chapter, we’ll provide an overview of the most important concepts in
Java Persistence. We first cover the concept of OR mapping to give you a solid
foundation before we embark on the programming concepts found in Java
Persistence, and on their integration in EJB 3.0. Some more advanced concepts,
such as relationships and support for inheritance and polymorphism, will be
covered in Chapter 9.

Object-Relational Mapping

The simplest way to persist objects in Java is to use Java’s native serialization
API that lets you write objects to files. For enterprise data, this is usually insuf-
ficient as data persisted in this way is not efficiently searchable, nor is concur-
rent access protected by transactions.

Another popular way to store Java objects is to use a traditional relational
database management system (RDBMS) such as Oracle, Microsoft SQL Server,
DB2, or open source alternatives such as MySQL, PostgreSQL, or Derby. Rather
than serialize an object as a complete bit blob, we would decompose each object
into its constituent parts and store each part separately. For example, for a bank
account object, the bank account number could be stored in one relational data-
base field and the bank account balance in another field. When you save your
Java objects, you would use JDBC to map the object data into a relational data-
base. When you want to load your objects from the database, you would
instantiate an object from that class, read the data in from the database, and
then populate that object instance’s fields with the relational data read in. This
is shown in Figure 6.1.

This mapping of objects to relational databases is a technology called object-
relational mapping. It is the act of converting and unconverting in-memory
objects to relational data. An object-relational (OR) mapper may map your
objects to any kind of relational database schema. For example, a simple
object-relational mapping engine might map a Java class to a SQL table defin-
ition. An instance of that class would map to a row in that table, while fields in
that instance would map to individual cells in that row. This is shown in Fig-
ure 6.2. You'll see more advanced cases of mapping data with relationships to
other data in Chapter 9.

Java Persistence: Programming with Entities

131

Bank Account

String accountID
String ownerName
double balance

/" Database API

| Such as JDBCor |
sQL) !

Bank Account
Table

Relational Database
Figure 6.1 Object-relational mapping.

Object-relational mapping is a much more sophisticated mechanism of per-
sisting objects than the simple object serialization offered by the Java language.
By decomposing your Java objects as relational data, you can issue arbitrary
queries for information. For example, you can search through all the database
records that have an account balance entry greater than $1,000 and load only
the objects that fulfill this query. More advanced queries are also possible. You
can also visually inspect the database data because it is not stored as bit-blobs,
which is great for debugging or auditing.

132 Chapter 6

Account Class

String accountlD
String ownerName
double balance

Account Instance

\\

Z - _
accountiD | ownerName balance % accountlD =1

| ownerName = Ray Combs
- / balance = 1000
1 <=1 Ray Combs <= 1000 <1
2 Bob Barker 1500
3 Monty Haul 2750

Account Table

Relational Database
Figure 6.2 An example of object-relational mapping.

Mapping objects to relational data can be done in two ways. You can either
handcraft this mapping in your code or use an object-relational mapping prod-
uct, such as Oracle TopLink, or open source tools, such as Hibernate, to auto-
mate or facilitate this mapping. These tools have become increasingly popular.
An automated mapper would create data definitions in the DDL (data defini-
tion language) of the target platform from either Java classes or from separate
mapping description. Handcrafted mappings using a database access API
such as JDBC are becoming less frequently used because the cost of develop-
ing and maintaining an object-relational mapping layer is significant.

The Sun Java Data Objects (JDO) specification, available as JSR 12 from the
Java Community Process (JCP) web site at www . jcp . org, defines portable APIs
to a persistence layer that is conceptually neutral to the database technology
used to support it. It can thus be implemented by vendors of relational and
object-oriented databases.

The new Java Persistence specification finally defines a standardized object-
relational mapping and requires compliant products to implement it. Because
it incorporates many proven concepts, there is now a broad industry consen-
sus on a portable programming model for persistent Java objects. We will
explore this standardized mapping in some detail in this chapter. The great

Java Persistence: Programming with Entities

133

news is that this model, by combining the best features of its predecessor prod-
ucts and making use of Java metadata annotations, is both flexible, powerful,
and comparatively easy to use.

Now that we’ve set the scene for persistence mechanisms, let’s take a look at
how the new entity concept is used in EJB.

What Is an Entity?

In multi-tier enterprise applications you will typically find two different kinds
of objects:

m Application logic components. These components provide methods
that perform common tasks. Their tasks might include the following:

m Computing the price of an order
m Billing a customer’s credit card
m Computing the inverse of a matrix

Note that these components represent actions (they’re verbs). They are
well suited to handling business processes.

Session beans model these application logic components very well.
They often contain interesting algorithms and logic to perform applica-
tion tasks. Session beans represent work being performed for a user as a
session, which includes any workflow logic.

m Persistent data objects. These are objects that can be rendered into per-
sistent storage by a persistence mechanism. These kinds of objects rep-
resent data—simple or complex information that you'd like saved.
Examples here include:

m Bank account information, such as account number and balance

m Human resources data, such as names, departments, and salaries of
employees

m [ead-tracking information, such as names, addresses, and phone
numbers of prospective customers that you want to keep track of
over time

Note that these objects represent people, places, and things (they're
nouns). They are well suited to handling long-lived business data.

Persistent objects are called entities in the new Java Persistence specification.
Entities are plain old Java objects (POJOs) that are persisted to durable storage,
such as a database or legacy system. Entities store data as fields, such as bank
account numbers and bank account balances. They also have methods associ-
ated with them, such as getAccountNumber () and getBalance (). For a
full discussion of when to (and when not to) use entities, see Chapter 13.

134 Chapter 6

FOR THE RECORD: ENTITIES

When we talk about entities as a new concept in the rest of this chapter, we
always mean new as a programming concept for persistent objects. As a term
for modeling persistent data, “entity” has been used at least since 1976 when
Peter Chen proposed the classic Entity-Relationship Model (ERM) in one of the
most influential papers in computer science (Peter Chen, “The Entity-
Relationship Model - Toward a Unified View of Data,” ACM Transactions on
Database Systems, Vol. 1, No. 1, March 1976).

You might question the need for such persistent data components. Why
should we deal with our business data as objects, rather than deal with raw
database data, such as relational rows? The answer is simple: It is handy to
treat data as objects because they can be easily handled and managed and
because they are represented in a compact manner. We can group related data
in a unified object and factor out common attributes in an inheritance hierar-
chy. We associate some simple methods with that data, such as compression or
other data-related activities.

Entities versus Session Beans

As already pointed out, entities are not E]Bs and can be used even in J2SE envi-
ronments. It is still useful to draw a quick comparison between entities and
session beans to highlight some specifics. The big differences between session
beans and entities are that:

m Entities have a client-visible, persistent identity (the primary key) that is
distinct from their object reference.

m Entities have persistent, client-visible state.
m Entities are not remotely accessible.

m An entity’s lifetime may be completely independent of an application’s
lifetime.

Different entities can be distinguished by comparing their identities. Clients
can refer to individual entities by using that identity, pass it as a handle to
other applications, and thus share common entities with other clients. All this
is not possible with session beans.

On the other hand, session beans permit both local and remote clients, with
the container handling remote accesses. Entities are purely local objects and
cannot be directly accessed remotely.

Lifetime is another huge difference between session beans and entities. Enti-
ties can have a much longer life cycle than a client’s session, perhaps years
long, depending on how long the data sits in the database. In fact, the database
records representing an object could have existed before its owner even

Java Persistence: Programming with Entities

135

decided to go with a Java-based solution, because a database structure can be
language-independent. Likewise, that data may still be used when the owner
of the data has long moved away from Java to what may the hottest technol-
ogy in one or two decades from now. This makes sense—you definitely would
want your bank account to last for a few years, regardless of technology
changes at your bank.

Entities are not only longlasting; they survive critical failures, such as appli-
cation servers crashing, or even databases crashing. This is because entities are
just representations of data in a permanent, fault-tolerant, underlying storage.
If a machine crashes, the entity can be reconstructed in memory. All we need to
do is look it up again, which transparently instantiates an entity instance with
fields that contain the data read in from the database.

In summary, you should think of an entity as an in-memory Java represen-
tation of persistent data that:

m Jsloaded from storage and has its field populated with the stored data
m Can be modified in-memory to change the values of data

m Can be saved back, thus updating the database data

Persistence Provider

In some ways, entities are analogous to serializable Java objects. Serializable
objects can be rendered into a bit-blob by the serialization mechanism and then
saved in a persistent store. The mechanism to transfer entity information back
and forth between the Java object and the database is implemented within
your persistence provider. The persistence provider is typically tailored to a rela-
tional database but could also use an object database. Which particular imple-
mentation is used is transparent to the entity. In fact, the Java Persistence
specification defines a Persistence Provider SPI to allow any conformant
provider implementation to be plugged into the application runtime. In a Java
EE environment, that is your container.

The persistence provider implementation worries about the proper time to
load and store your data. It also automatically figures out when each of your
instances needs to be refreshed, depending on the current transactional state
(see Chapter 10). You don’t have to worry about synchronizing your objects
with the underlying database: The persistence provider black box handles it
for you.

Entity Classes

Entities are similar to other EJB components in that they are implemented in a
plain Java class and can have metadata annotations or an XML deployment
descriptor. However, entities are not specific to EJB or even Java EE—the Java

136 Chapter 6

Persistence specification defined entities specifically so that they can be used
in both Java EE and J2SE environments.

It is about time we actually get to see an entity class. Source 6.1 shows a sim-
ple example.

package examples.entity.intro;

import java.io.Serializable;
import javax.persistence.Entity;
import javax.persistence.Id;

/**

* This demo entity represents a Bank Account.

* <p>

* The entity is not a remote object and can only be accessed locally by
* clients. However, it is made serializable so that instances can be

* passed by value to remote clients for local inspection.

* <p>

* Access to persistent state is by direct field access.

*/

@Entity
public class Account implements Serializable {

// The account number is the primary key
@Id

public int accountNumber;

public String ownerName;

public int balance;

/xx

* Entities must have a public no-arg constructor

*/
public Account () {
// our own simple primary key generation
accountNumber = (int) System.nanoTime () ;
}
/**

* Deposit a given amount
* @param amount
*/
public void deposit (int amount) {
balance += amount;

/**

* Withdraw a given amount, or 0 if it is larger than the balance

Source 6.1 Account.java. (continued)

Java Persistence: Programming with Entities 137

* @param amount
* @return The amount that was withdrawn
*/
public int withdraw(int amount) {
if (amount > balance) {
return O;
} else {
balance -= amount;
return amount;

}

Source 6.1 (continued)

A few things are worth pointing out here:

m The entity class is a plain Java class that does not extend any frame-
work classes or interfaces. It does not even have to implement
java.io.Serializable. In the example, the class implements
Serializable so that an entity instance can also be used as a simple
data record and transferred as an argument in remote invocations.
Remember that the entity itself does not provide a remote interface.

m The entity class maps to a data definition in a relational database
schema, that is, a relational table definition. At runtime, an entity
instance of that class will map to a row in that table. The Java Persis-
tence API defines a standardized mapping from entity classes to rela-
tional database tables and allows you to control this mapping through
annotations or XML descriptors.

In the example, the standard mapper would create a table ACCOUNT
with columns for all fields of the entity class.

m An entity must declare a primary key. We do this by marking the
accountNumber field with the @Id annotation. As a consequence, the
OR-mapper would define a primary key constraint for the mapped
ACCOUNTNUMBER column.

The primary key makes every entity different. In the example, if you
have one million bank account entity instances, each bank account
needs to have a unique ID (such as a bank account integer number) that
can never be repeated in any other bank account.

In some advanced cases, when the entity represents a complex relation-
ship, the primary key might be an entire object. The Java Persistence
API gives you the flexibility to define what your unique identifier is by

138 Chapter 6

including a primary key class with your entity. The rule is that your
primary key class must be public, have a public constructor, and be
serializable.

m Access to the entity’s persistent state is by direct field access. An entity’s
state can also be accessed using JavaBean-style set and get methods.
The persistence provider can determine which access style is used by
looking at how annotations are applied. In Source 6.1, the @Id annota-
tion is applied to a field, so we have field access.

m The entity can expose business methods, such as a method to decrease a
bank account balance, to manipulate or access that data. Like a session
bean class, an entity class can also declare some standard callback meth-
ods or a callback listener class. The persistence provider will call these
methods appropriately to manage the entity. We will see examples later.

Accessing Entities in the Persistence Context

Now that we have the Java code for an entity class, how do we actually use it
in an EJB environment? Since an entity cannot be accessed remotely, the only
option that we have is to deploy it locally and use it from either J2SE code out-
side a container, or from session or message-driven beans living in an EJB
container.

Either way, client code must first retrieve a particular entity instance from the
persistence context or create one and add it to the persistence context. The per-
sistence context is the connection between your in-memory instances and the
database. It is manipulated through a new API, the Ent i tyManager interface.
Let’s look at an example (please note that we have omitted the bean’s Bank
interface for brevity here as it does not convey any additional information):

package examples.entity.intro;

import java.util.List;

import javax.ejb.Stateless;

import javax.ejb.Remote;

import javax.persistence.PersistenceContext;
import javax.persistence.EntityManager;
import javax.persistence.Query;

/**

* Stateless session bean facade for account entities,
* remotely accessible
*/

@Stateless

Source 6.2 BankBean.java. (continued)

Java Persistence: Programming with Entities

139

@Remote (Bank.class)
public class BankBean implements Bank {

/** the entity manager object, injected by the container */
@PersistenceContext
private EntityManager manager;

public List<Account> listAccounts() {
Query query = manager.createQuery ("SELECT a FROM Account a");
return query.getResultList();

public Account openAccount (String ownerName) {
Account account = new Account () ;
account.ownerName = ownerName;
manager .persist (account) ;

return account;

public int getBalance (int accountNumber) ({
Account account = manager.find(Account.class, accountNumber) ;

return account.balance;

public void deposit (int accountNumber, int amount) {
Account account = manager.find(Account.class, accountNumber) ;
account.deposit (amount) ;

public int withdraw(int accountNumber, int amount) {
Account account = manager.find(Account.class, accountNumber) ;
return account.withdraw (amount) ;

public void close(int accountNumber) {
Account account = manager.find(Account.class, accountNumber) ;
manager .remove (account) ;

Source 6.2 (continued)

Let’s first examine the openAccount () method: When a new account is
needed, we simply create a new instance. The new entity instance does not ini-
tially have a persistent identity and is not associated with the persistence con-
text. At this stage, the database knows nothing about the entity, and if we quit
the application at this stage, nothing will be written to the persistent storage.

140 Chapter 6

To add the new entity to the persistence context we need to call the Entity-
Manager’s persist () method. The entity is now scheduled for synchroniza-
tion with the database and will get written to disk when the transaction
commits. This state in the entity’s life cycle is called the managed state. The
entity will remain in the managed state until either the persistence context
ends or it is explicitly removed from that context.

In the example, we are using a stateless session bean without any additional
annotations for transaction management or persistence context lifetime, so the
following defaults apply:

m The persistence context lifetime has transaction scope, so the persistence
context ends when the transaction is committed or rolls back.

m Transaction management uses container-managed transactions with the
required transaction attribute (see Chapter 10 for details). This means
that any business method will get invoked by the container in the con-
text of a transaction (either an existing or a new one).

These two bullets imply that our persistence context ends when the method
returns because that is when the transaction ends. At this stage, the connection
between all managed entities and the entity manager is removed and the enti-
ties change to the detached state.

In the detached state, entity state is not synchronized with the database. So,
how do we change the account so that the database is actually updated? We
need to do two things: get a new persistence context, and transfer the entity to
the managed state again.

PERSISTENCE CONTEXT TYPE

The persistence context that is associated with an entity manager can be one of
two types, which determines the lifetime of the context. These types are
transaction-scoped or extended. Within a Java EE container, the typical use for
transaction-scoped persistence contexts is with stateless session beans, and
extended persistence contexts are used from stateful session beans.

A transaction-scoped persistence context ends when the enclosing
transaction ends. At this point, all entities in the persistence context become
detached.

An extended persistence context ends when the enclosing stateful session
bean is removed by the container. The entities remain managed across several
invocations of the bean’s business methods and can be modified even outside
of transactions.

Java Persistence: Programming with Entities

141

With the transaction-scoped persistence context lifetime in the example, a
new persistence context is set up in the entity manager every time an entity
manager operation is invoked and no persistence context exists. Our
BankBean looks up an account entity instance each time getBalance(),
deposit (), or withdraw () is called. This entity lookup is performed by
calling the £ind () method of the EntityManager instance, using the entity
class and the account number as arguments. Implicitly, the entity manager is
associated with a new persistence context each time.

Because we do not store a reference to an entity instance anywhere but look
them up each time, the entity that is found through the EntityManager is
already in the managed state. Any changes to the internal state of the entity are
synchronized with the database when the transaction is committed.

Extended Persistence Context

We will explain the entity life cycle in a little more detail in a minute, but let’s
tirst look at another example of accessing entities. In this example, we'll use a
stateful session bean as a fagade for the entity. This bean can keep the retrieved
account entity around in its internal session state and thus avoid the lookup
overhead on each access. Here is the example code, again omitting the bean’s
separate interface for brevity:

package examples.entity.intro;

import javax.ejb.Remote;

import javax.ejb.Stateful;

import javax.persistence.EntityManager;

import javax.persistence.PersistenceContext;
import javax.persistence.PersistenceContextType;

/**

* Stateful session bean facade for account entities, remotely
* accessible

*/

@Stateful
@Remote (AccountInterface.class)
public class AccountBean implements AccountInterface {

/** The entity manager, injected by the container */

@PersistenceContext (type=PersistenceContextType.EXTENDED,
unitName="intro")

private EntityManager manager;

private Account account = null;

public void open(int accountNumber) {

142 Chapter 6

account = manager.find(Account.class, accountNumber) ;
if (account == null) {
account = new Account() ;
account.ownerName = "anonymous";
account.accountNumber = accountNumber;
manager .persist (account) ;

public int getBalance() {
if (account==null)
throw new IllegalStateException() ;
return account.balance;

public void deposit (int amount) {
if (account==null)
throw new IllegalStateException() ;
account .deposit (amount) ;

public int withdraw(int amount) {
if (account==null)
throw new IllegalStateException() ;
return account.withdraw (amount) ;

Note the use of the EXTENDED persistence context type that we declared on
the entity manager. Without this annotation, keeping the account entity
instance around in the session state would be pointless: the entity would be
detached every time the persistence context ends and need to be reattached (or
merged) into a new persistence context for each new access.

With the extended persistence context type, the entity stays managed
because the persistence context spans multiple transactions and ends only
when the bean is removed. Hence, the individual methods in the example do
not need to retrieve the account entity each time using the EntityMan-
ager. find () method but simply check that the account has been obtained at
all in the session. If not, an I1legalStateException is raised.

Which kind of session bean and persistence context is more suitable depends
on the expected usage of the entity data: If clients retrieve multiple entities and
then interact with that same set of entities through a number of invocations, it
may be better to hold onto these instances in a stateful session bean. If a single
client always only accesses an entity once, then there is no need to build up
client state, and a stateless session bean would be more suitable.

Java Persistence: Programming with Entities

143

Packaging and Deploying Entity Classes

Entity classes are packaged and deployed in persistence units. A persistence
unit is a logical grouping of entity classes, mapping metadata, and database-
related configuration data.

A persistence unit is defined in a special descriptor file, the persis-
tence.xml file, which is simply added to the META-INF directory of an arbi-
trary archive, such as an Ejb-jar, .ear, or .war file, or in a plain jar file.
Without a persistence.xml file somewhere in an application, there will be
no persistence units, and without at least one persistence unit no entity man-
ager can be obtained and used.

Here’s the simplest possible example of a persistence.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence">
<persistence-unit name="intro"/>

</persistence>

At a minimum, we must provide one persistence-unit element
together with a name attribute as a child of the persistence element. The
persistence.xml file may contain more than one persistence unit defini-
tion, but if there is only one visible in the application, it need not be referenced
explicitly in the unitName field of the @PersistenceContext annotation.
If the persistence.xml file does not list any entity classes explicitly, all
entity classes contained in the same archive as the persistence.xml file
will be considered members of the persistence unit.

The persistence-unit element has a few other possible attributes and
child elements. These are all optional, however, if the defaults are okay. These are:

<description> An optional text.

<provider> Fully qualified class name of the persistence provider’s
implementation of the SPI class javax.persistence. spi.Persis-
tenceProvider. The <provider> element must be present in a J2SE
environment, or when provider-specific behavior is required by the
application.

<transaction-type> An attribute of the <persistence-unit> ele-
ment. The value of this element is either JTA or RESOURCE_LOCAL.
JTA is the default.

<jta-data-source>, <non-jta-data-source> Specifies the JNDI
name of the data source that is to be used by the persistence provider. If
undefined, it must be defined by the deployer, or the contained must
provide a default.

144 Chapter 6

<mapping-file> OR-mapping information for the entity classes in the
persistence unit can be taken from class annotations, but it may also be
specified in an XML mapping file called orm.xml in the same META-
INF directory where the persistence.xml file is located. The <map-
ping-file> element can list one or more alternative or additional XML
mapping files to be used for OR mapping.

The mapping files explicitly list entity classes. These will be available in
the persistence unit.

<jar-file>, <class> These elements list the archives to search for
entity classes (or the entity classes themselves) that are available in the
persistence unit.

<exclude-unlisted-classes> If this element is present, only the
entity classes or archives that are explicitly listed using the <mapping-
file>, <jar-file>, or <class> elements will be available in the
persistence unit.

<properties> Vendor-specific configuration properties for the persis-
tence unit. If there are properties that are not recognized by the persis-
tence provider, they must be ignored.

The EntityManager API

As we showed earlier in this chapter, the EntityManager is the interface that
lets you access the entities in your application’s persistence context. Within a
persistence context, all entity identities are unique and map to a single entity
instance. This section will provide more details on the EntityManager AP, the
entity life cycle, and query facilities.

There are two options for client code that needs to use an EntityManager:

m With a container-managed EntityManager, the container runtime is
responsible for determining and providing the EntityManager for an
application. The container injects the EntityManager, as shown in our
simple example when we used the @PersistenceContext annota-
tion on the manager field. Alternatively, an EntityManager can also be
obtained from the SessionContext using its lookup () method.

m With an application-managed EntityManager, the application is responsi-
ble for creating an EntityManager instance itself. This is done using an
EntityManagerFactory interface.

The complete EntityManager API provides methods for three different
kinds of operations:

Java Persistence: Programming with Entities

145

m Entity life-cycle management
m Database synchronization operations

m Entity lookup and queries

Let’s look at each of these in turn.

Entity Life Cycle

The life of an entity instance has two main aspects: its relationship to a specific
persistence context, and the synchronization of its state with the database. The
EntityManager distinguishes between four states in the life cycle of an entity:

m new. The entity instance was created in memory, but is not yet associ-
ated with either a persistent identity in the database or a persistence
context. This is the state that our Account entity was in right after cre-
ation. Changes in the entity state are not synchronized with the data-
base at this stage.

m managed. The entity has a persistent identity in the database and is cur-
rently associated with a persistence context. Our Account entity was in
the managed state after the persist () method was called. Changes to
the entity will be synchronized with the database when transactions are
committed or when synchronization is explicitly triggered using the
flush () operation.

m detached. The entity does have a persistent identity but is not or is no
longer associated with the persistence context.

m removed. The entity is currently associated with a persistence context
but has been scheduled for removal from the database.

Figure 6.3 shows these four states and the transitions between them as
EntityManager operations are called.

new()

persist()
refresh()

remove()
managed ”(removed
persist()

Persistence
context
ends

merge()

detached

Figure 6.3 Entity life cycle.

146 Chapter 6

Here’s the relevant part of the EntityManager API:

package javax.persistence;

public interface EntityManager {
/** Make a new instance managed and persistent. */
public void persist (Object entity);

/** Merge the state of the given entity into the current
persistence context. */
public <T> T merge(T entity);

/** Remove the instance from the database. */
public void remove (Object entity) ;

/** Check if the instance is managed in the current persistence
context. */
public boolean contains (Object entity) ;

// cont'd...

To destroy an entity’s data in the database, the client must call remove ().
Note that remove () does not mean the in-memory entity instance is actually
going to be destroyed; remove () schedules only database data for removal.
The remove () operation ignores entities that are new or already removed,
and only works on managed entities. Calling remove () on a detached entity
will raise an IllegalArgumentException. The actual deletion from the
database happens when the transaction is committed, or when flush() is
called. Database synchronization is explained in more detail below.

The merge () operation allows you to bring detached entities back to the
persistence context. Remember that entities are detached when the persistence
context ends. In the stateless session bean example, this happens whenever a
business method returns. Entities also get detached when they are delivered to
clients as serializable objects.

Let’s quickly reexamine the first example’s openAccount () method:

public Account openAccount (String ownerName) {
Account account = new Account () ;
account.ownerName = ownerName;
manager .persist (account) ;
return account;

The entity that is returned from the method is detached from the persistence
context. A client of our BankBean could now locally change that Account
entity, but that would not result in any database updates. To persist those
changes, we would need to merge the entity back and make it managed again.

Java Persistence: Programming with Entities

147

This can be done simply by allowing the client to pass that entity back, and by
calling merge () on our entity manager.
Here’s an additional business method for our BankBean that does just that:

public void update (Account detachedAccount) {
Account managedAccount = manager.merge (detachedAccount) ;

}

Note that the merge () operation returns a managed entity. The entity man-
agedAccount is a different entity instance than the argument detached
Account in all cases where detachedAccount is not already a managed entity.

Life-Cycle Callbacks

Just as with E]Bs, we can define life-cycle callbacks for entities that get invoked
when the entity makes a transition to another life-cycle stage. Bear in mind,
however, that this does not mean that entities are EJBs: These callbacks are not
invoked by the EJB container but rather by the persistence provider.

The Java Persistence API specification defines the following life-cycle events
for entities:

m PrePersist
PostPersist
PreRemove
PostRemove
PreUpdate
PostUpdate

PostLoad

To designate a callback method for any of the events, we simply apply the
appropriate annotation to a method. For example, to react when an entity is
persisted, we could use the @PrePersist annotation on a new method in the
entity class Account:

@PrePersist
void prePersist () {
System.out.println("prePersist called!");

}

Rather than annotating the entity methods with these life-cycle annotations,
we can define a separate listener class for life-cycle events on Account
entities. To declare that separate class as the entity class’s listener, the follow-
ing annotation would be used on the Account class:

148 Chapter 6

@Entity
@EntityListeners (AccountListener.class)
public class Account ...

Finally, here’s the prePersist () callback method in the AccountLis-
tener class:

@PrePersist
void prePersist (Account a) {
System.out.println("pre persist " + a);

}

Note the difference in the method signature: Unlike the callback method in
the entity class, the callback method in the listener class takes an entity argu-
ment. When invoked, this argument will be set to the entity that triggered the
life-cycle event.

Database Synchronization

Updates to local entities are generally synchronized with the underlying data-
base at transaction commit time. However, it is sometimes important to syn-
chronize even before the transaction is committed. For example, when entity
state changes have been made, these might influence the result of a query in
the same transaction. In this case, it may be necessary to enforce synchroniza-
tion before the query is executed.

This is controlled by setting the flush mode. The flush mode can be set on spe-
cific methods or fields using metadata annotations, or globally on the persis-
tence context using the setFlushMode () operation. The available options
are COMMIT for synchronization at commit time only, or AUTO for synchro-
nization of state at both commit time and before query execution.

The flush () operation enforces synchronization of the state of all entities
in the persistence context but does not involve a refresh of state from the data-
base. To refresh, the refresh () operation must be invoked explicitly.

Here are the relevant operations in the EntityManager’s interface:

public interface EntityManager {
/** Synchronize the persistence context to the underlying
database. */
public void flush();

/** Set the flush mode that applies to all objects contained
in the persistence context. */

public void setFlushMode (FlushModeType flushMode) ;

/** Get the flush mode that applies to all objects contained

Java Persistence: Programming with Entities

149

in the persistence context. */
public FlushModeType getFlushMode() ;

/** Refresh the state of the instance from the database,
overwriting changes made to the entity, if any. */
public void refresh(Object entity);

// to be cont'd...

Direct Entity Data Manipulation

Usually you will create, destroy, and find entity data by using the entity man-
ager. But you can interact with entities another way, too: by directly modifying
the underlying database where the data is stored. For example, if your entity
instances are being mapped to a relational database, you can simply delete the
rows of the database corresponding to an entity instance (see Figure 6.4). You
can also create new entity data and modify existing data by directly touching
the database. A situation like this might arise if you have to share the data with
an existing system that touches a database directly.

This raises another important question: What happens if two applications
concurrently access the same entity data?

Persistence Provider

7 - > N\
Entity . Exisiting App)
AN 7/

O/R Mapping Direct Database Modifications

Entity Date

Relational Database
Figure 6.4 Modifying an entity's database representation directly.

150 Chapter 6

Concurrent Access and Locking

Concurrent access to data in the database is always protected by transaction iso-
lation, so you need not design additional concurrency controls to protect your
data in your applications if transactions are used appropriately. Unless you
make specific provisions, your entities will be protected by container-managed
transactions using the isolation levels that are configured for your persistence
provider and/or EJB container’s transaction service.

However, it is important to understand the concurrency control require-
ments and semantics of your applications. We discuss transactions and their
different isolation levels in detail in Chapter 10 and strongly recommend that
you make yourself familiar with this subject if there is the slightest chance that
your entity data may be accessed from concurrently executing transactions.

Making the right decisions and assumptions has bearings on the overall per-
formance of your application: setting the maximum transaction isolation level
(SERIALIZABLE) may degrade performance and even lead to deadlock situa-
tions, whereas insufficient isolation (e.g., READ UNCOMMITTED isolation) may
lead to inconsistent data and incorrect application behavior.

The Java Persistence specification defines two important features that can be
tuned for entities that are accessed concurrently:

m Optimistic locking using a version attribute

m Explicit read and write locks

Optimistic locking is actually a misnomer as it means that data is not locked
for concurrency control at all. Rather, applications are free to access and
update data any time. Potential write conflicts that are due to concurrent mod-
ifications of the same data are not detected until transaction commit time. At
this stage, the first transaction is allowed to commit, and subsequent transac-
tions that are in conflict with the first one are simply rolled back.

This behavior is appropriate if conflicts are rare because it imposes minimal
overhead on those accesses that don’t conflict, and it allows for a high degree
of concurrency that will be required for scalable applications. On the down-
side, applications need to handle those cases where conflicts do occur. Note
that optimistic locking does not rule out nonrepeatable reads. Only updates
that are based on state obtained from a nonrepeatable read would be detected.

This behavior may sound familiar to you if you are using a source code
version control systems like CVS or Subversion, which are based on the same
principle: Let users work on their own copy of the data and write to the
repository whenever they want. Conflicts are not excluded a priori by locking
source files but detected later. If there are conflicts, let users deal with them,
that is, manually merge conflicting regions of source code. The larger the code
base and the size of your team, the more likely you are using this strategy.

Java Persistence: Programming with Entities

151

The Java Persistence specification assumes that the transaction isolation
level is configured no higher than READ COMMITTED by default, and that write
operations to the database may be deferred until transaction commit time. In
such a setting, read data is not guaranteed nor required to be consistent. (In a
minute we’ll discuss how you can get these consistency guarantees if you need
them.) But how do you detect when a conflicting write operation is being com-
mitted, or if a detached entity is being merged back in whose persistent state
was updated in the meantime? If optimistic locking is to be offered in a portable
way, there must be a mechanism for conflict detection that is vendor-neutral.

The solution is a version attribute for those entities that want to use opti-
mistic locking. This attribute is not added automatically by the persistence
provider to your entity tables because you may either not care for this service,
or you may prefer to obtain it in a vendor-specific way from your persistence
provider. In a portable application, however, you must mark an attribute using
the @Version annotation in each entity class that you wish to enable for opti-
mistic locking control.

In the Account example, we could add the following line of code:

@Entity

public class Account implements Serializable {
@Version
public int version;
/] ...

The persistence provider will then check the @Version attribute to detect
concurrent modifications and increment it each time an update occurs. This
way, it can detect that an update is based on stale data. The type of the @ver-
sion attribute must be one of int, java.lang.Integer, short,
java.lang.Short, long, java.lang.Long, java.sgl.Timestamp.
Note that you should never explicitly modify this attribute yourself because
that might lead to undefined behavior.

As we said earlier, optimistic locking actually does not lock any data at all
and only detects conflicts when data is eventually written to the database. It
does not prevent nonrepeatable or phantom reads. If this is not sufficient for
your application, you have two options:

m You can globally set a stricter transaction isolation level that provides
stronger consistency guarantees than optimistic locking. This, however,
reduces concurrency and increases the concurrency control overhead
incurred by database operations

= You may use application-level locks in those places where stricter con-
sistency is required. This option is harder to get right, but it preserves
the performance and scalability advantages of optimistic locking.

152

Chapter 6

The locks supported by the EntityManager API have two modes: READ and
WRITE. They can be set on individual, versioned entities using the EntityMan-
ager’s lock () method like this:

manager.lock (account, LockMode.WRITE) ;

Both kinds of locks, when set on an entity, prevent dirty and nonrepeatable
reads of that entity’s data. Figure 6.5 shows a dirty read problem:

In Figure 6.5, T2 will see an uncommitted, dirty read if the transaction isola-
tion is READ UNCOMMITTED and no locks are set. T2 sees the account .bal-
ance value after T1 has withdrawn the amount, but before the transaction is
caused to roll back by the exception, so the account balance that is printed out
is $100,000 lower than its actual value. This situation would have been
avoided if the account entity had first been locked by T2.

Figure 6.6 shows an unrepeatable read, again in T2.

In Figure 6.6, the number of results that the query produces in T2 is different
each time. This is due to the concurrent modification in T1, which reduces the
number of accounts that meet the search criterion. T2 sees these changes even
if the isolation level is READ COMMITTED because T1 does in fact commit its
changes. The only way that this problem can be prevented is if T1 first acquires
a write lock on the entity.

The difference between read and write lock semantics is that calling the
EntityManager.lock (account, LockMode.WRITE) forces an update of
the version attribute for the account entity.

T1 T2

account=
manager.find(Account.class, 1234);

//update
account.withdraw(100,000);
manager.flush()

// find and read data
account =
manager.find(Account.class, 1234);

System.out.printin(account.balance);

// trigger rollback
throw new RuntimeException();

Figure 6.5 Dirty read in transaction T2.

Java Persistence: Programming with Entities 153

T1 T2

account= Query query = manager.createQuery(
manager.find(Account.class, 1234); “SELECT a FROM Account a
WHERE a.balance > 1000”);

System.out.printin(”Got” +
query.getResultList().size() + “
records.”);

account.withdraw(100,000); // ...

System.out.printin("Got” +
query.getResultList().size() + “
records.”);

Figure 6.6 Unrepeatable Read in T2.

Entity Lookup and Query API

You'll rarely start your applications by creating completely new entities from
scratch and feeding these into a database. In most cases, there will be preexist-
ing data that you want to access in entities. To identify that data before we can
reference it as entity instances, we need to either directly address individual
data items using a primary key, or execute a query that returns a set of data
based on the query conditions that we provide.

The EntityManager provides the £ind () operation to address data using
primary keys. It will return a managed entity of the correct entity class when it
can determine that the provided primary key belongs to that entity calls and
points to a data item of that class in the database. Otherwise, it will return null.

Here’s the signature of the £ind () operation. You already saw it in action
in our stateless session bean example above.

/** Find by primary key. */
public <T> T find(Class<T> entityClass, Object primaryKey) ;

Finding a single entity by its primary key is straightforward, but in many
situations we either don’t know the primary key, or we need more than one
result, or need to specify one or more search conditions. In all these cases, we
would want to formulate a guery. There are a number of options that we have
for creating queries using the EntityManager API, but the general steps are
always the same:

m Obtain an instance of javax.persistence.Query from the
EntityManager

m Customize the query object, if necessary, by setting query parameters or
an upper limit for the result set size

m Execute the query

154 Chapter 6

The first step is done using the EntityManager, while the last two steps use
the Query interface.

The EntityManager lets us choose between queries written in EJB-QL or
native SQL. EJB-QL is an object query language that is syntactically very simi-
lar to SQL. It is explained in more detail in Chapter 9 and in Appendix D. For
the moment, the most important difference between EJB-QL and SQL is that
EJB-QL uses entities for its data model and is guaranteed to be completely
portable across databases. Although an ISO standard, SQL is often not
portable in practice because of the various vendor-specific extras and different
SQL dialects that exist.

The two EntityManager operations for creating queries in EJB-QL or SQL
are the following;:

/** Create a Query for executing an EJB QL statement. */
public Query createQuery(String ejbglString) ;

/** Create a Query for executing a native SQL statement. */
public Query createNativeQuery (String sqglString) ;

Here is an example of a simple EJB-QL query that returns all Account enti-
ties in the database:

public List<Account> listAccounts() {
Query query = manager.createQuery ("SELECT a FROM Account a");
return query.getResultList();

Because native queries may return data other than entities, there are a num-
ber of overloaded variants of createNativeQuery () that can be used to
map SQL result data to entities:

public Query createNativeQuery (String sqglString, Class resultClass);

public Query createNativeQuery (String sglString,
String resultSetMapping) ;

Named Queries

The queries that we get with these operations are called dynamic queries
because their construction happens at runtime when the calling code is actu-
ally executed. These queries are defined by the entity provider and only used
by that code. In cases where a single query is used throughout the whole per-
sistence unit or where it must be possible for the deployer or administrator to
change the query, we need to use static or named queries.

Java Persistence: Programming with Entities

155

The EntityManager operation to create a query object from an external,
named query string is the following;:

/** Create a named query (in EJB QL or native SQL) */
public Query createNamedQuery (String name) ;

This operation requires that a named query already be defined, and it could
be used in our listAccounts() method like this:

public List<Account> listAccounts() {
Query query = manager.createNamedQuery ("findThem") ;
return query.getResultList();

}

In this example, the EntityManager will simply look up the definition of the
query that was defined under the given name "findThem" and return it as a
new Query object.

Finally, here’s an example definition for the "findThem" query that was
defined using the @NamedQuery annotation on the entity class:

@Entity
@NamedQuery (name="findThem", queryString="SELECT a FROM Account a")
public class Account implements Serializable {...}

In this chapter, we’ve taken the first steps toward developing with the new
Java Persistence API. We started by discussing persistence mechanisms and
object/relational mapping. We then looked at what an entity is (and what it is
not), and explained entity classes, their annotations, persistence contexts, and
deployment. We also covered entity life cycles, the EntityManager API, con-
currency issues, and queries.

But there is more to come on entities. In Chapter 9, you'll learn more about
advanced OR mapping, relationships, and inheritance. Chapter 10 provides
more background on transactions. By the time you're through, you'll be armed
to create your own entities in enterprise deployments.

Introduction to
Message-Driven Beans

In this chapter you will learn how E]JB supports messaging, which is a light-
weight vehicle for communications. Messaging is more appropriate than syn-
chronous invocations in certain scenarios. You'll look at message-driven beans,
special beans that can be accessed via messaging.

Specifically, you'll learn:

m How to implement messaging, including an overview of asynchronous
behavior and message-oriented middleware (MOM)

m How to use the Java Message Service (JMS), the underlying MOM
framework for J]MS-based message-driven beans

m What the features of message-driven beans are and how message-
driven beans compare with entity and session beans

m How to develop message-driven beans, including advanced topics such
as gotchas and possible solutions

Motivations for Messaging

In previous chapters, you learned how to code session and entity beans—dis-
tributed components that are accessed using RMI-IIOP. RMI-IIOP is a tradi-
tional, heavyweight way to call components, and it is appropriate in most

157

158 Chapter 7

settings. However, several areas are challenging for RMI-IIOP. Here are just
four examples:

Asynchrony. A typical RMI-IIOP client must wait (or block) while the
server performs its processing. Only when the server completes its work
does the client receive a return result, which enables it to continue pro-
cessing.

Decoupling. An RMI-IIOP client has to know the individual servers it
wants to use. The client directly addresses them in its communications
using object references. The client and servers are closely coupled—you
cannot simply remove a server from the system without directly impact-
ing the clients.

Reliability. When an RMI-IIOP client calls the server, the latter has to be
running. If the server crashes or the network crashes, data may be lost
and the client cannot perform its intended operation.

Support for multiple senders and receivers. RMI-IIOP limits you to a sin-
gle client talking to a single server at any given time. There is no built-in
functionality for multiple clients to broadcast events to multiple servers.

Messaging is an alternative to remote method invocations (see Figure 7.1).
The idea behind messaging is that a middleman sits between the client and the
server. (As you know, a layer of indirection solves every problem in computer
science.) This middleman receives messages from one or more message produic-
ers and broadcasts those messages to one or more message consumers. Because
of this middleman, the producer can send a message and then continue pro-
cessing. He can optionally be notified of the response later when the consumer
finishes. This is called asynchronous programming

Remote Method Invocations:

Application Application
Messaging:
Application Message Application
Middleware

Figure 7.1 Remote method invocations versus messaging.

Introduction to Message-Driven Beans

159

Messaging addresses the four previous concerns with RMI-IIOP as follows:

Nonblocking request processing. A messaging client does not need to
block when executing a request. As an example, when you purchase a
book using the Amazon.com’s one-click order functionality, you can con-
tinue browsing the site without waiting to see if your credit card is
authorized. Unless something goes wrong, Amazon.com sends you a
confirmation e-mail afterward. This type of fire-and-forget system can
be coded using messaging. When the user clicks to buy the book, a mes-
sage is sent that results in credit card processing later. The user can con-
tinue to browse.

Decoupling. In a message-oriented middleware system, the message
sender does not need to know the message receivers; it only addresses
the messaging system when sending messages. Message senders are
thus decoupled from consumers and continue to work regardless of
changes to consumers.

Reliability. If your message-oriented middleware supports guaranteed
delivery, you can send a message and know for sure that it will reach its
destination, even if the consumer is temporarily not available. You send
the message to the MOM middleman, which routes the message to the
consumer when he comes back alive. With RMI-IIOP, this is not possible
because there is no middleman. If the server is down, an exception is
thrown.

Support for multiple senders and receivers. Most message-oriented mid-
dleware products can accept messages from many senders and broad-
cast them to many receivers. This enables you to have multinary
communications.

Note that messaging also has many disadvantages. Performance, for one,
can be slower in many circumstances due to the overhead of having the mes-
saging middleman. For a complete comparison of when to (and when not to)
use messaging, see Chapter 13.

Message-oriented middleware (MOM) is a term used to refer to any infrastruc-
ture that supports messaging. A variety of products are considered to have a
MOM-based architecture. Examples include Tibco Rendezvous, IBM Web-
Sphere MQ, BEA Tuxedo/Q, Sun Java System Messaging Server, Microsoft
MSMQ), Sonic Software SonicMQ, and FioranoMQ. These products can give
you a whole host of value-added services, such as guaranteed message deliv-
ery, fault tolerance, load balancing of destinations, subscriber throttling of
message consumption, inactive subscribers, support for SOAP over JMS, and
much, much more. By allowing the MOM server to address these infrastruc-
ture issues, you can focus on the business task at hand.

160 Chapter 7

The Java Message Service (JMS)

Over the years, MOM systems have evolved in a proprietary way. Each prod-
uct has its own API, which creates vendor lock-in because code is not portable
to other messaging systems. It also hurts developers, because they need to
relearn each messaging product’s proprietary APL

The Java Message Service (JMS) is a messaging standard, designed to elimi-
nate many of the disadvantages that MOM-based products faced over past
years. JMS has two parts: an AP], for which you write code to send and receive
messages, and a Service Provider Interface (SPI) where you plug in JMS
providers. A JMS provider knows how to talk to a specific MOM implementa-
tion. The JMS promise is that you can learn the JMS API once and reuse your
messaging code with different plug-and-play MOM implementations (an idea
similar to the other J2EE APIs, such as JNDI or JDBC).

Let’s explore the JMS API and see how to write a simple JMS program that
publishes messages.

HOW DOES GUARANTEED MESSAGE DELIVERY WORK?

With guaranteed message delivery, the MOM system persists your messages to
a file, database, or other store. Your message resides in the persistent store
until it's sent to a message consumer, and the message consumer
acknowledges the consumption of the message. If the acknowledgment of a
message is not received in a reasonable amount of time, the message remains
on the persistent store and is redelivered.

This feature is beneficial when the message consumer is brought down on a
regular basis for maintenance, and lost messages are unacceptable. This is
especially true in industries such as financial services, where messages
represent securities changing hands.

A variation on the guaranteed message delivery theme is certified message
delivery. Certified message delivery not only ensures the delivery of a message
from a producer to a consumer but also generates a consumption receipt that
is delivered to the message originator, indicating a successful consumption of
the message. Certified message delivery is used by producers to better manage
communication with consumers.

Another variation of guaranteed message delivery is called store and forward.
Store and forward enables a message producer to successfully send a message
to an inactive MOM system. The producer transparently spools the message to a
local store until the MOM system is reactivated, at which point the message is
delivered to the MOM system and forwarded to any available consumers.
Guaranteed message delivery without the store-and-forward option requires
producers to send messages to active MOM systems, but consumers do not have
to be active. Store and forward with guaranteed message delivery allows
messages to be sent whether MOM systems or consumers are active or inactive.

Introduction to Message-Driven Beans

161

Messaging Domains

When you perform messaging, you first need to decide on a messaging style
or domain. The types of domains are:

Publish/subscribe (pub/sub). Publish/subscribe messaging is analogous
to watching television: Many TV stations broadcast their signals, and
many people listen to those broadcasts. Thus, with publish/subscribe,
you can have many message producers talking to many message con-
sumers. In this sense, the pub/sub domain is an implementation of a
distributed event-driven processing model. Subscribers (listeners) regis-
ter their interest in a particular event fopic. Publishers (event sources)
create messages (events) that are distributed to all of the subscribers (lis-
teners). Producers aren’t hard-coded to know the specific consumers
interested in receiving its messages; rather, the MOM system maintains
the subscriber list.

Point-to-point (PTP). Point-to-point messaging is analogous to placing an
order in an online store: Some person will pick up your order, carry it
out, and then delete it. Thus, with point-to-point, you can have only a
single consumer for each message. Multiple consumers can grab mes-
sages off the queue, but any given message is consumed exactly once. In
this sense, point-to-point is a special case of publish/subscribe. Multiple
producers can send messages to the queue, but each message is deliv-
ered only to a single consumer. The way this works is that publishers
send messages directly to the consumer or to a centralized queue. Mes-
sages are typically distributed off the queue in a first in, first out (FIFO)
order, but this isn’t ensured.

Figure 7.2 shows the difference between publish/subscribe and point-to-
point.

.]ma Another domain called request/reply is less broadly used than the
others. The request/reply domain is analogous to RMI-IIOP. It requires any
producer that generates a message to receive a reply message from the
consumer at some later point in time. Typically, most MOM architectures
implement a request/reply paradigm asynchronously using the technologies
supplied in the point-to-point and publish/subscribe domains.

162 Chapter 7

Publish/Subscribe:

Producer 1 Consumer 1

Topic

Producer 2 Consumer 2

Point-to-Point:

Producer 1

Queue Consumer 1

Producer 2

Figure 7.2 Publish/subscribe versus point-to-point.

The JMS API

Using the JMS API is more involved than RMI-IIOP: You need to become
familiar with a few different interfaces to get going. Low-level topology issues,
such as networking protocol, message format and structure, and server loca-
tion, are mostly abstracted from the developer.

The JMS programming model is shown in Figure 7.3. It is explained in the
list that follows:

Introduction to Message-Driven Beans 163

MS Server
JMS Driver Client Runtime)
Queuel
2: Create JMS Connection DDDD
Connection Factory
Serialized Queue2

Message
Communication DDDD
|7 IMs Connection —1’<i> Topic1
3: Create
Session DDDD
/

5: Create
Client —Producer —= JMS Session
or Consumer

. . 6: Send or
1: Retrieve Receive JMS Producer
IMS Drlvgr Message N or
(Connection
E JMS Consumer
actory)
4: Lookup

JMS Destination

"N

<>

Naming Service
Such as LDAP

Figure 7.3 Client view of a JMS system.

1. Locate the JMS Provider’s ConnectionFactory instance. You first
need to get access to the JMS provider of the particular MOM product
you're using. For this, you need to establish a connection using a
ConnectionFactory instance. You can get hold of Connection
Factory by looking it up in JNDI. An administrator will typically create
and configure the ConnectionFactory for the JMS client’s use.

2. Create a JMS connection. A JMS Connection is an active connection
to the JMS provider, managing the low-level network communications
(similar to a JDBC connection). You use the ConnectionFactory to
get a Connection. If you're in a large deployment, this connection
might be load balanced across a group of machines.

164 Chapter 7

3. Create a JMS session. A JMS Session is a helper object that you use
when sending and receiving messages. It serves as a factory for mes-
sage consumers and producers, and also enables you to encapsulate
your messages in transactions. You use the Connection to get a
Session.

4. Locate the JMS destination. A JMS Destination is the channel to
which you're sending or from which you're receiving messages. Locat-
ing the right destination is analogous to tuning into the right channel
when watching television or answering the correct phone, so that you
get the messages you desire. Your deployer typically sets up the desti-
nation in advance by using your JMS provider’s tools, so that the desti-
nation is permanently set up. Your code looks up that destination using
JNDI. This enables your programs to use the destination over and over
again at runtime.

5. Create a JMS producer or a JMS consumer. If you want to send mes-
sages, you need to call a JMS object to pass it your messages. This object
is called producer. To receive messages, you call a JMS object and ask it
for a message. This object is called the Consumer object. You use the
Sessionand Destination to get ahold of a producer or a consumer
object.

6. Send or receive your message. If you're producing, you first need to
put your message together. There are many different types of messages,
such as text, bytes, streams, objects, and maps. After you instantiate
your message, you send it using the Producer object. If, on the other
hand, you're receiving messages, you first receive a message using the
Consumer object, and then crack it open (depending on the message
type) and see what is in it.

Everything we just learned applies to both publish/subscribe and point-to-
point messaging. The words in monofont in the preceding process represent
actual JMS interface names. There are two different flavors of those interfaces,
and the flavor you use depends on if you're using publish/subscribe or point-
to-point. See Table 7.1 for a list.

.IEEE As you can see from Table 7.1, point-to-point has two types of message
consumers: a receiver and a browser. What do you think these are for? And why
does publish/subscribe have only one type of consumer?

Introduction to Message-Driven Beans

165

Table 7.1 The Two Flavors of JMS Interfaces

PARENT INTERFACE POINT-TO-POINT PUB/SUB
ConnectionFactory QueueConnection TopicConnection
Factory Factory
Connection QueueConnection TopicConnection
Destination Queue Topic
Session QueueSession TopicSession
MessageProducer QueueSender TopicPublisher
MessageConsumer QueueReceiver, TopicSubscriber
QueueBrowser

As an example, the code for a client application that publishes a Text
Message to a topic using publish/subscribe is provided in Source 7.1.

package examples.messaging;

import javax.jms.*;

import javax.naming.InitialContext;
public class LogClient {

public static void main(String[] args) throws Exception {
// Initialize JNDI
InitialContext ctx = new InitialContext (System.getProperties());

// 1: Lookup connection factory

TopicConnectionFactory factory =
(TopicConnectionFactory) ctx.lookup
("jms/TopicConnectionFactory") ;

// 2: Use connection factory to create JMS connection
TopicConnection connection = factory.createTopicConnection() ;

// 3: Use connection to create a session
TopicSession session =
connection.createTopicSession

(false, Session.AUTO_ACKNOWLEDGE) ;

// 4: Lookup destination
Topic topic = (Topic)ctx.lookup("jms/Topic") ;

// 5: Create a message publisher

Source 7.1 TopicClient.java. (continued)

166 Chapter 7

TopicPublisher publisher = session.createPublisher (topic);

// 6: Create and publish a message
TextMessage msg = session.createTextMessage () ;
msg.setText ("This is a test message.");
publisher.send (msg) ;

// finish

publisher.close() ;

System.out.println("Message published. Please check application
server's console to see the response from MDB.") ;

}

Source 7.1 (continued)

Most of Source 7.1 is self-explanatory. Here are the answers to a few ques-
tions you might have:

m The parameters to InitialContext should be your JNDI provider
information. If your JMS provider is integrated into your EJB server, the
JNDI parameters should be the same as those you use when you look
up an EJB. You specify this via the command line using the -D switch to
the java runtime, or in a jndi .properties file. See the book’s
accompanying source code for example scripts.

m Qur JNDI name for the TopicConnectionFactory is jms/Topic
ConnectionFactory, but it could be anything—it depends on your
container’s policy and also where you choose to place it using your
container’s tools.

m When we create a Session, we pass two parameters: false, which
indicates that we don’t want to use transactions (see Chapter 10 for
more on transactions), and Session.AUTO_ACKNOWLEDGE, which
indicates how we should acknowledge messages that we receive. Since
our code is sending (not receiving) messages, this parameter doesn’t
matter. If you're curious about how message acknowledgment works,
see Table 7.2 later in this chapter.

Note that this example does not illustrate point-to-point. The point-to-point
code is basically the same, except we use the point-to-point interfaces listed in
Table 7.1. We'll leave the point-to-point example as an exercise for you.

Note, too, that this example does not demonstrate any consumption logic.
Although message consumption is an important concept, it’s not relevant to
our discussion, because message-driven beans effectively act as our message
consumers.

Introduction to Message-Driven Beans

167

SINGLE-THREADED VERSUS MULTITHREADED BEANS

One great benefit of EJB is that you don’t need to write thread-safe code. You
design your enterprise beans as single-threaded components and never need to
worry about thread synchronization when concurrent clients access your
component. In order to service concurrent client requests, your EJB container
automatically instantiates multiple instances of your component.

The container’s thread services can be both a benefit and a restriction. The
benefit is that you don’t need to worry about race conditions or deadlock in
your application code. The restriction is that some problems lend themselves
well to multithreaded programming, and that class of problems cannot be
easily solved in an EJB environment.

So why doesn'’t the EJB specification allow for multithreaded beans? EJB is
intended to relieve the component developers’ worry about threads or thread
synchronization. The EJB container handles those issues for you by load
balancing client requests to multiple instances of a single-threaded component.
An EJB server provides a highly scalable environment for single-threaded
components.

If the EJB specification allowed for beans to control threads, a Pandora’s box
of problems would result. For example, an EJB container would have a very
hard time controlling transactions if beans were randomly starting and
stopping threads, especially because transaction information is often
associated with a thread.

The bottom line is that EJB was not meant to be a Swiss army knife, solving
every problem in existence. It was designed to assist with server-side business
problems, which are largely single-threaded. For applications that absolutely
must be multithreaded, EJB may not be the correct choice of distributed object
architectures.

You should now know enough about JMS to be productive with message-
driven beans. If you want to learn more about JMS, a free JMS tutorial is
included in the Java EE tutorial available at http://java.sun.com/
j2ee/1.4/docs/tutorial/doc. Rather than repeating this information,
let’s cover some more interesting topics—JMS-EJB integration, advanced
message-driven bean topics, and gotchas.

Integrating JMS with EJB

JMS-EJB integration is a compelling idea. It allows EJB components to benefit
from the value proposition of messaging, such as nonblocking clients and
multinary communications.

To understand the motivations behind introducing another type of bean to
consume messages in an EJB application, let us contemplate for a moment

168 Chapter 7

what other approaches we could have taken and whether they would have
worked:

Using a Java object that receives JMS messages to call EJB components.
Rather than coming up with a whole new type of bean, the Java commu-
nity could have promoted the idea of a Java object that can receive mes-
sages and in turn call the appropriate EJB components, such as session
beans and entity beans. The problems with this approach are:

m You'd need to write special code to register yourself as a listener for
JMS messages. This is a decent amount of code (as we demonstrated
previously).

m To increase the throughput of message consumption, you would
have to write the multithreading logic such that you can listen to the
messages in multiple threads. However, writing multithreaded
applications is not a trivial task for a business application developer.

m Your Java object would need some way of starting up, since it
wrapped your other EJB components. If the class ran within the con-
tainer, you would need to use an E]JB server-specific startup class to
activate your Java object when the EJB server came up. This is not
portable because the E]JB specification does not define a standard
way of activating a given logic.

m As a plain Java object, our J]MS message listener wouldn’t receive
any services from an EJB container, such as automatic life-cycle man-
agement, clustering, pooling, and transactions. You would need to
hard-code this yourself, which is difficult and error-prone.

= You would need to hard-code the JMS destination name in your Java
object, which hurts reusability, or get the destination information
from disk (such as with property files), which requires extra effort.

Reuse an existing type of EJB component somehow to receive JMS mes-
sages. Another option could have been to shoehorn session beans or
entity beans into receiving JMS messages. Problems with this approach
include:

m Threading. If a message arrives for a bean while it’s processing
other requests, how can it take that message, given that EJB does not
allow components to be multithreaded?

m Life-cycle management. If a JMS message arrives and there are no
beans, how does the container know to create a bean?

Introduction to Message-Driven Beans

169

PLUGGABLE MESSAGE PROVIDERS

A message-driven bean can be defined to consume messages of a given
messaging type in accordance with the message listener interface it employs,
that is, JMS-based message-driven beans will implement the
javax.jms.MessageListener interface and so on. In EJB 2.0, message-driven
beans supported consumption of JMS messages only. You could not receive
non-JMS messages, such as asynchronous enterprise information
system-specific message. This has changed in the EJB 2.1 standard so that the
message-driven bean can employ different listener interfaces to consume
different message types in addition to JMS.

This is achieved with the help of Java EE Connector Architecture 1.5. The
connector architecture defines message inflow contracts to enable resource
adapters to asynchronously deliver messages to message endpoints residing in
the application server independent of the specific messaging type or messaging
semantics. So in practice, we can write resource adapters that act as message
providers. Resource adapters are standard Java EE components and hence, can
be plugged into any Java EE-compliant application server. As a result, resource
adapters capable of delivering messages to message endpoints, such as
message-driven beans, can be plugged into any Java EE-compliant application
server as well. This is widely known as message provider pluggability.

For example, imagine a scenario where you want your EJB application to
receive EbXML messages. Using JAX-RPC is not a choice here since it supports
only SOAP 1.1 messages. Besides, JAX-RPC does not support asynchronous
messaging. In this case, connector architecture-based message
providers/resource adapters can be extremely handy. We can write an EbXML
message provider using the connector architecture such that it provides a
specific messaging listener interface, say, com.xyz .messaging. EbXML
MessageListener, which can be implemented by message-driven beans so as
to enable their receiving EbXML messages.

This is a powerful concept—any enterprise information system can effectively
send any type of messages to a message-driven bean endpoint via Java EE
connector architecture-based resource adapters. All message providers from
EJB 2.1 onwards, regardless of whether they consume JMS messages or not, are
resource adapters based on Java EE Connector Architecture 1.5. In Chapter 15
we discuss Java EE connector architecture and provide guidance toward
developing resource adapters that consume messages.

What Is a Message-Driven Bean?

A message-driven bean is a special EJB component that can receive J]MS mes-
sages as well as other types of messages. See the sidebar “Pluggable Message
Providers” to find out more about how message-driven beans can be used to
consume messages other than JMS. A message-driven bean is invoked by the
container upon arrival of a message at the destination or endpoint that is ser-
viced by the message-driven bean.

170 Chapter 7

A message-driven bean is decoupled from any clients that send messages to
it. A client cannot access a message-driven bean through a business interface. In fact, a
client cannot identify a message-driven bean and directly interact with it at all!
The only way that clients can interact with message-driven beans is through the
messaging system. You will have to use message provider—specific API, such as
JMS, to send messages from clients, which in turn would be received by the
message-driven beans (see Figure 7.4).

The following are some major characteristics of message-driven beans.

m A message-driven bean does not have a remote or local business
interface. You do not call message-driven beans using an object-oriented
remote method invocation interface. In fact, you don’t call them at all—
the container does. Message-driven beans process messages that can
come from any messaging client, such as an MQSeries client, an MSMQ
client, a message provider/resource adapter, or a Java EE client using the
JMS API. Message-driven beans, along with appropriate message
providers, can thus consume any valid message.

E)B Server

Message-Driven
Bean Pool

Sends /

Publishes
Client JMS Destination

Message-Driven
Bean Instances

Ry

The EJB container is a
consumer of messages
from JMS Destination as
specified by the deployer
in the deployment
descriptor.

Figure 7.4 A client sending messages to JMS message-driven beans.

Introduction to Message-Driven Beans 171

m Message-driven beans support generic listener methods for message
delivery. Message-driven beans are merely receiving messages from a
destination or a resource adapter and do not know anything about
what’s inside the messages. The listener interface implemented by mes-
sage-driven beans typically has a method (or methods) called by an EJB
container upon arrival of a message, or by the resource adapter (via
application server). The JMS message listener interface, javax. jms
.MessageListener has only one method, called onMessage (). This
method accepts a J]MS Message, which could represent anything—a
BytesMessage, ObjectMessage, TextMessage, StreamMessage,
or MapMessage. In a typical implementation of onMessage (), the
message is cracked open at runtime and its contents are examined,
perhaps with the help of a bunch of if statements. In formal terms, you
don’t get compile-time type-checking of messages that are consumed;
rather, you need to use the instanceof operator to determine the
exact type of a consumed message at runtime. This also means that
you need to be careful to make sure that the message you receive is
intended for you. In comparison, session or entity beans can support
strongly typed business methods. Type checking can be performed at
compile time to ensure that clients are properly using a given interface.

m Message-driven bean listener method(s) generally do not have return
values. Although the E]JB specification does not restrict a message-
driven bean listener method from returning a value to the client, certain
messaging types might not be suitable for this. For example, consider
the listener interface of a messaging type that supports asynchronous
messaging, such as JMS. In this case, due to the asynchronous interac-
tion between message producers and consumers, the message produc-
ers don’t wait for your message-driven bean to respond. As a result, it
doesn’t make sense for the onMessage () listener method on the
javax.jms.MessageListener interface to return a value. The good
news is that using several design patterns, it is possible to send a
response to an asynchronous message producer. We discuss this later in
this chapter.

m Message-driven beans might not send exceptions back to clients.
Although E]B does not restrict message-driven bean listener interface
methods from throwing application exceptions, certain messaging
types might not be able to throw these exceptions to the clients. Again
consider the example of a listener interface of a messaging type that
supports asynchronous messaging, such as JMS. In this case, message
producers won’t wait for your message-driven bean to send a response
because the interaction is asynchronous. Therefore clients can’t receive
any exceptions. All message listener interfaces, however, can generate

172 Chapter 7

system exceptions regardless of the messaging semantics (synchronous
versus asynchronous) because the container (rather than the client) han-
dles system exceptions. The only exception to this rule is the
java.rmi.RemoteException, which message-driven beans are
explicitly forbidden to throw.

m Message-driven beans are stateless. Message-driven beans hold no
conversational state and have no client-visible identity. In this sense,
they are similar to stateless session beans because the container can
similarly treat each message-driven bean instance as equivalent to all
other instances. Thus, multiple instances of the bean can process multi-
ple messages from a JMS destination or a resource adapter concurrently.

m Message-driven beans are single-threaded. A single message-driven
bean can process only one message at a time. The container is responsi-
ble for serializing messages to a single message-driven bean, so there is
no need for synchronization code in the bean class. It is the container’s
responsibility to provide concurrent message consumption by pooling
multiple message-driven bean instances, but the container is not
required to deliver messages to multiple concurrent beans in any spe-
cific order. Hence, applications should not rely on message order.

JMS MESSAGE-DRIVEN BEANS AND DURABLE-NONDURABLE
SUBSCRIBERS

A durable subscription to a topic means that a JMS subscriber receives all
messages, even if the subscriber is inactive. If a message is sent to a topic that
has an inactive durable subscriber, the message is persisted and delivered
when the durable subscriber is once again active. A nondurable subscription to
a topic means the subscriber receives only messages that are published while
the subscriber is active. Any messages delivered while the subscriber is inactive
are lost. Since a JMS message-driven bean is essentially a consumer, it can
register itself as a durable or nondurable subscriber to messages published to a
topic. Durability allows persistent messages to be sent to a topic even though
the application server hosting the JMS message-driven bean consumer has
crashed. The messages will persist until the crashed application server restarts
and the durable subscriber message-driven bean container positively
acknowledges consumption of all of the stored messages.

Introduction to Message-Driven Beans

173

Developing Message-Driven Beans

Let’s now take a look at what’s involved in developing message-driven beans.
The subsequent sections focus on JMS message-driven beans. To a great extent,
the programming model for developing other types of message-driven beans
will be quite similar to that for JMS message-driven beans.

The Semantics

JMS message-driven beans are classes that implement two interfaces: javax
.Jms.MessageListener and, optionally, javax.ejb.MessageDriven
Bean. In previous versions of the EJB spec, implementing the Message
DrivenBean interface was mandatory, but this requirement was relaxed in
EJB 3.0. Additionally, every JMS message-driven bean implementation class
must provide a no-arg constructor. Here is what the javax.jms
.MessageListener interface looks like:

public interface javax.jms.MessageListener {

public void onMessage (Message message) ;

And this is what the javax.ejb.MessageDrivenBean interface looks
like:

public interface javax.ejb.MessageDrivenBean
extends javax.ejb.EnterpriseBean {

public void ejbRemove ()
throws EJBException;

public void setMessageDrivenContext (MessageDrivenContext ctx)
throws EJBException;
}

The two methods in this interface have the following semantics:

m setMessageDrivenContext (). The container will call this method
after creating the bean instance and pass a reference to a Message
DrivenContext object to the bean. This interface, in turn, provides
methods that allow the bean to control transactional behavior and to
access the Timer Service, which we explain in Chapter 12. A message-
driven bean can also acquire a reference to the MessageDrivenContext
using dependency injection. The bean would only need to declare a
dependency on the MessageDrivenContext by using the @Resource
annotation.

174 Chapter 7

m cjbRemove (). In E]JB 2.1, this was a mandatory life-cycle callback
method that all message-driven beans had to implement. In EJB 3.0, life-
cycle callbacks are optional and can be declared using the @PostCon-
struct and @PreDestroy annotations. If the ejbRemove () method is
present in a message-driven bean class, it is treated as the @PreDestroy
callback, and no other method may be annotated with this annotation.

Given this simple description, you can see that developing JMS message-
driven beans is significantly less complicated than developing session or
entity beans. The number of methods that have to be implemented is less than
with session or entity beans.

The life cycle of a message-driven bean is also very straightforward. Figure
7.5 illustrates the life cycle of a message-driven bean.

A message-driven bean is either in the does not exist state or in the pooled state.
When a container decides to add another instance to its pool, it creates a new
instance and performs any required dependency injection, such as passing its
MessageDrivenContext object. If any @PostConstruct life-cycle call-
backs are declared, these will then be called. Depending on its configuration
parameters, the application server will likely create an initial pool of beans at
startup time and then increase the size of the pool as the quantity of messages
increases. A container will remove an instance from the pool and destroy it at
system shutdown or when the container decides it needs to decrease the size of
the pool to conserve memory. If the container decides to take an instance out of
the bean pool, it calls the bean’s @PreDestroy () method.

does not exist

1. new instance() PreDestroy callback, if any
2. dependency injection, if any
3. PostConstruct callback, if any

Y

Method-ready

pool
The life cycle of a
message-driven bean.
All calls shown are
from the container to
the bean instance. onMessage()

Figure 7.5 Life cycle of a message-driven bean.

Introduction to Message-Driven Beans

175

A Simple Example

Let’s apply our knowledge and construct a simple bean that logs text messages
to the screen. In the future, you could generalize this bean and make it into a
generic logging facility, where you have different log levels, depending on the
urgency of the log.

This is a trivial example and not demonstrative of real-world systems. It is,
however, a good template to use when writing your own beans. If you want to
see a real-world message-driven bean in action that uses other EJB compo-
nents, see the application example in Chapter 18, along with the book’s accom-
panying source code. As we will see when writing this bean, the rules for
writing JMS message-driven beans are simple.

The Bean Implementation Class

Since message-driven beans do not have business interfaces associated with
them, we can completely skip designing a public interface to our bean. We can
get right to the heart of development of this bean and write the implementa-
tion class. The code for the implementation class is shown in Source 7.2.

package examples.messaging;

import javax.jms.*;
import javax.ejb.*;
import javax.annotation.*;

@MessageDriven (activationConfig = {
@ActivationConfigProperty (propertyName = "destinationType",
propertyValue = "javax.jms.Topic")

1)
public class LogBean implements MessageListener {

public LogBean () {
System.out.println("LogBean created") ;

public void onMessage (Message msg) {
if (msg instanceof TextMessage) {
TextMessage tm = (TextMessage) msg;
try {
String text = tm.getText();
System.out.println("Received new message : " + text);
} catch (JMSException e) {
e.printStackTrace() ;

Source 7.2 LogBean.java. (continued)

176 Chapter 7

}

@PreDestroy
public void remove() {
System.out.println("LogBean destroyed.");
}
}

Source 7.2 (continued)

This is the most basic message-driven bean. Notice the following;:

m QOur bean is declared as a message-driven bean with the @Message
Driven annotation.

m The bean is not coded for a specific queue or topic. Rather, it is associ-
ated with a specific destination at deployment time. The activation
config property "destinationType" of the @MessageDriven
annotation (or alternatively, the deployment descriptor) can be used
to determine whether a topic or a queue is consumed. This is specified
by setting the property value to either "javax. jms.Queue" or
"javax.jms.Topic".

m Our bean implements the javax. jms.MessageListener interface
that provides the methods necessary for JMS message consumption.

m The bean is stateless and does not contain any client-specific state that
spans messages. Therefore each bean is identical and has an identical
initialization method—a simple constructor that takes no arguments.

m The onMessage () method receives a message and casts it to type
TextMessage. TextMessage is a particular type of JMS message that
has methods for getting and setting the text as the body of the message.
After down-casting the input parameter, the method prints out the con-
tent of the message, if any exists.

m When this bean is being destroyed, there is nothing to clean up so we
have a very simple @PreDestroy method.

l'mﬂj A message-driven bean can register itself with the EJB Timer Service for
time-based notifications by implementing the javax.ejb.TimedObject
interface apart from the message listener interface, or by declaring a timeout
callback method with the @Timeout annotation. The container will invoke the
bean instance’s e jbTimeout () method or the timeout callback upon timer
expiration.

Introduction to Message-Driven Beans 177

The Deployment Descriptor

As an alternative to annotating your message-driven bean, a deployment
descriptor file can be packaged along with the bean class. Message-driven
beans have only a couple of deployment descriptor tags applicable to them.
The portion of the deployment descriptor relevant to our simple J]MS message-
driven bean is shown in Source 7.3.

<?xml version="1.0" encoding="UTF-8" ?>
<ejb-jar xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" version="3.0"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd">
<enterprise-beans>
gl==
For each message-driven bean that is located in an
ejb-jar file, you have to define a <message-driven> entry
in the deployment descriptor.
===
<message-driven>
<!-- The nickname for the bean could be used later in DD -->
<ejb-name>LogBeanDD</ejb-name>

<!-- The fully qualified package name of the bean class -->
<ejb-class>examples.messaging.dd.LogBean</ejb-class>
<messaging-type>javax.jms.Messagelistener</messaging-type>

<!-- The type of transaction supported (see Chapter 10) -->
<transaction-type>Bean</transaction-type>

<!-- Whether I'm listening to a topic or a gueue -->
<message-destination-type>javax.jms.Topic
</message-destination-type>
<!-- further details -->
<activation-config>
<activation-config-property>
<activation-config-property-name>
destinationType
</activation-config-property-name>
<activation-config-property-value>
javax.jms.Topic
</activation-config-property-value>
</activation-config-property>
</activation-config>
</message-driven>
</enterprise-beans>
</ejb-jar>

Source 7.3 ejb-jar.xml for the simple bean.

178 Chapter 7

More Metadata: Activation Configuration Properties

Table 7.2 contains definitions for additional metadata unique to JMS message-
driven beans. These properties can be provided either in the deployment
descriptor or in the activationConfig part of the @MessageDriven annotation.
Just glance over it now—it’s not important to fully understand them if you're
just starting to learn message-driven beans. See Appendix C for a complete
deployment descriptor reference.

.m EJB 2.1 introduced new <activation-config-property> elements in the
deployment descriptors, specifically to configure message-driven beans. These
elements are meant to represent operational information pertaining to
message-driven beans, JMS or others, in the deployment descriptors. In the
case of JMS message-driven beans, these elements are used to specify their
specific operational requirements, such as type of subscription to topics, type
of destination, and so on.

As you can see, you can either use annotations or develop the correspond-
ing deployment descriptor for JMS message-driven beans. In addition to the
characteristics that are definable for all message-driven beans, application
server vendors can provide value-added extensions in an application
server—specific deployment descriptor. For example, an application server
vendor may provide a deployment descriptor parameter that defines the max-
imum size of the message-driven bean pool or another parameter that defines
its initial size.

A question that you may be asking now is, “Exactly how does the applica-
tion server bind a JMS message-driven bean container to a specific topic or
queue?” If you look closely at the deployment descriptor provided in Source
7.3, the <message-destination-type> tag specifies whether the bean
should consume queue or topic messages; however, it never indicates which
topic or queue the J]MS message-driven bean container should bind to. This is
done purposely to make JMS message-driven beans portable across applica-
tion servers. Since the names of actual topics and queues deployed into a J]MS
server are application server—specific, the mapping of a bean’s container to a
specific JMS server destination has to be done in an application server—specific
deployment descriptor. Most EJB vendors are expected to have a custom
deployment descriptor that binds the bean to a specific destination.

(panunuon)

<A112doxd-PTIUOD-UOTIRATIOR />

<onTen-A319doxd-HTJUOD-UOTIRATIDR/ >

otdog - swl - xeael
<onTea-A3119doxd-HTJUOCD-UOTILATIOE>
<sureu-A319doxd-HBTIUOCD-UOTIRATIOE />

9dALUuOoTleuUTlSSP

<oweu-A319doad-6TFUOD-UOTIRATIOR> ‘} 9p1Luano ued 1akojdap y3noyy uana
Joydudsap juswahojdap ay3 ur Sumas
<A3x9doad-HTIUOD-UOTIRATIOE> sy} apinoid pinoys Jadojanap ueaq ayj
-21do} e 1o ananb e wolj sadessaw
(voTdog - swf-xeael, = anteplirsdord SWNSUO) |[IM Ueaq UsALP-93essaw
+ ,odALuoTIRUT]SOP, = sureNAjxadoxd SIAIr B J19Yy1aym o0} se 19hojdap

) £319d01dbTJUODUOTIRATIOYD ayj sasinpe Sumes adAy uoneunsap ayj adAy uoneunsag

11dINVX3 NOlLdI¥dS3a ALITYNOILONNL

uonelouuy udALaSessa|N® ayj 10 Se] <uanlp-a8essaw> ay} 1oy s)uswalaqns jeuondo TL 3jqel

‘piepuels g6 TOS 9U3 Jo 19sqns e

SI Yo1ym ‘xejuds 10339]9s a8essaw Joy sajni 939|dwod
Joy juysoop/swl/sypnpoid/wod-uns-eael//:dny

1@ uonedyads S Y} 995 "uoisnjuod uisied

TINX PloAR 03 ‘Uo13S YIvdD e ul sy} deim o} pasu
noA uayj sudis (>) ueyy ss9| 1o (<) ueyy 193eal8

asn noA § -a1ow pue ‘(JON/JO/ANY) siojesado
[e2180] Dnawy3Le Se Yons ‘|jam se a1ay Ayjeuorpuny
YII-T0S paiedijdwod 210w Sy} 3sn URD NOA 910N

<A112doxd-PTIUOD-UOTIRATIOR />

<onfTen-A3radord-HTJUOD-UOTIRATIDR/ >
,9I9A9S , =TOADTHOT ANV ,bOT,=2dALSHL
<onTea-A3119doxd-HTJUOCD-UOTILATIOE>
<suweu-A3xsdoxd-pPTIUOD-UOTIRATIOR />
Jo0309T9sobessau
<suweu-Aj3rsdord-HTJuUuoD-UOTIRATIOE>
<Aja9doad-HTIUOD-UOTIRATIDE>

(. ,2I20A0S,=TOADTHOT
ANV POoT., = 9dALSHL . =onTeAk3iasdoad
‘ J0309Tosebessau, =sweNAjaadoxd
) A319d0oIdh TIUODUOTIRATIOYH

11dINVX3

"PaJaAI[ap 1B 10)I3|9S By} Ydrew
ey} s1opeay yum sadessawl AjuQ 101duosap
juswAo|dap sy} ul paulap LRI 10)33S
a8essaw sy} saljdde Jaurejuod ay) ‘a8essaw
9Y} S9AI9231 UOIIRUNSAP SIAIf SY1 USYAN
-a8essaw ay} Sulpuas aloyaq (.oI248S,

‘W I®a97T60T,) Ayasdoxgbutaigiss:
sbessaw |ed y3iw JusipP

SINT 8y} ‘sjdwexa 104 “IdV SINf 9y} Suisn
sadessawl SN uo spjaly Japeay dn sias
JUBIPD SINIF INOA 1511} ‘S101D3[as d8essaw asn
0] 98essawl ay} Ul }S19)Ul OU dARY IRy}
SJUaI[> 0} paIaAIRp sa8essall Jo Jaquinu
9y} Supnpai Aq souewiopad |jeiano
aseanul Asyy !|npismod Alan aie s109)as
a8essap\ "ueaq InoA 0} Juas ale sadessaw
UoIYm ‘sHwi| 10 ‘s1a)1j 1031099s a8essawl

NOlLdI¥dS3a

10)09|9s ww_mwmw_\/_

ALITYNOILONNL

(ponunuod) T'L 3|qeL

(panunuoo)

<A3xsdoad-HBTFUOD-UOTIRATIOR />

<onTea-A319doxd-HTJUOD-UOTIRATIOR />
SbpasTMmouyde-03NY
<anTen-A3r1sdoxd-HBTIUCDO-UOTIRATIOE>

<sweu-A319doxd-HTIUOD-UOTIRATIOR />
SpoNsbpsTmoudoe
<aweu-A319dord-BFTIJUOD-UOTIRATIOE>

<A3a12doxd-PTIUOD-UOTIRATIOE>
(w2bpaTmoudoe-03Nny, =onTealiazsdoad

!, OpPONLbpa TMmous e , =suweNAjaadoad
) A1 12doxdbTIUODUOTIRATIOVH

1dINVX3

"sadessaw a3ed1dnp
9]e13]0} ued NoA yi Ajuo siyy asn pjnoys
noA -a8essaw ajed1jdnp e noA Sulpuas
uoIeunsSap SIAIf 9Y3 JO dsl 8y} uni noA

‘ySnous 1se} sadessawl sy} adpajmoude
jou Aew Y duIs -dwiy Suissadold

pue sa21nosai palinbai ay) spuly 31 uaym
pue os 3ulop 31| s[93} 3 uaym a3essaw e
a8pajmousoe 03 JaulRju0d 3y} smojje Suimas
abpsmousde-3o-sdna ay] ‘pauin}al
Ajnyssadons sey poysw () efessspuo
s,ueaq uaALIp-98essawl SAIM 9Y3 Uaym
a8essal e 98pajmous]oe 0} Jauleuod

ay) sao10) Sumas abpajmouyop-ony ayL

‘sadessawl abpajmouydD 0 J2UIRIU0D BY} ||}

0} paau NoA ‘suoipesuel) pageuew-ueaq
8uisn ale noA Ji ‘al0ja1ay] "uonpesuel} By}
SpISINO s1N220 a8essaw 3y} jo uondwnsuod
9y} ‘sny} ‘ueaq InoA 0} pasanlep usdq

sey a3essaw ay} JoYe spud pue suidaq
pue ‘ueaq noA ulym SINdD0 uolpesues)
3y} ‘(suonppsup.y pabpupw-ubaq paj|ed)
suorpesuel} umo InoA weiSoid noA §
-ananb ay} uo ypeq ind Ajjeonewolne si
a8essaw 2y} “peq S||o4 uolpesuel} Ay} i
asnedaq ‘uay} Juswdpajmoude a3essawl
10} paau ou sI 3JaY] "uolpesuel} e ul

NoA 0} 98essaw ay} SIAAISP 19UIRIUOD

2y} uay} ‘(o1 493dey) ul paqudsap
suonopsup.y pabpupw-1auipjuod paj|ed)
suolpesuel} djpuey Jauleyuod 3y} 39| NoA §|

NOILdI¥DS3a

Juswpajmoude a3essa|y

ALITYNOILONNA

(ponunuod) T'L d1qer

<A319doad-HTIJUOD-UOTIRATIDR />
<onrTea-A3119doxd-HTJUOD-UOTIRATIDR />

STqeINQUON
<anTes-A3rsdoxd-HBTIUOCDO-UOTIRATIOE>

<dweu-A319doId-HTIUOD-UOTIRATIDR/> Jsuondunsqgns ajgpinpuopn-a|gping
AJTTTgeanquotidraosqns pup subag :m_.tQ-mmmemS\
<aureu-Aj3ra9doxd-HTJUOD-UOTIRATIDE> SWI, ‘leqapis ay} ul m:o_aa_humn_:m
<A319doxd-BTIJUOD-UOTIRATIOE> 9|qelnpuou pue 3|qelnp ssnJsIp
(voTgeanguoN, =enTeplizedoxd 9\ "2dA1 s|qeinpuou Jo adAy ajqeinp
"w KZ3TTTqRInqUOTIdTIOSANS , =dureNAj 1adoad 40 J3YuL 3q ued sa1do} woyy sadessaw

) A312d0IdBTIUODUOTIRATIOYH SWNSU0D }eY} sueaq uaALp-a8essawl SN[Ayjigesnp uonduosgns

I1dINVYX3 NOILdI¥DS3a ALITYNOILONNA

(panunuod) T'L 3qeL

Introduction to Message-Driven Beans

183

The Client Program

The client application for the simple JMS message-driven bean example is the
JMS client we developed earlier in this chapter in Source 7.1. This shows you
the power of message-driven beans—our client is solely a JMS client, and the
application is never the wiser that a JMS message-driven bean is consuming
the messages.

If you'd like to try this example yourself, see the book’s accompanying
source code for compilation and deployment scripts.

Advanced Concepts

So far, we have discussed the mechanics of developing JMS message-driven
beans. Now let’s take a closer look at the support that containers can give for
JMS message-driven beans. We'll see how they might integrate with transac-
tions, provide advanced JMS features, and behave in a clustered environment.

Transactions

JMS message-driven beans do not run in the same transaction as the producer
who sends the message, because there are typically two transactions associ-
ated with every durable J]MS message (one transaction for the producer to put
the message on the queue and another transaction for the JMS message-driven
bean to get the message off the queue). It is theoretically impossible for the JMS
message-driven bean to participate in the same transaction (and hence the
same unit of work) as the producer, because until the producer commits the
transaction, the message wouldn’t even appear on the queue!

For a complete discussion of transactions and how they apply to JMS message-
driven beans, see Chapter 10.

Security

JMS message-driven beans do not receive the security identity of the producer
who sends the message, because there is no standard way to stick security
information into a JMS message. Therefore you cannot perform EJB security
operations (described in Chapter 11) with JMS message-driven beans.

Load Balancing

Clustering message-driven beans is quite different than clustering session or
entity beans (see Chapter 16). With session and entity beans, your requests are
load balanced across a group of containers. The load-balancing algorithm
guesses which server is the least burdened server and pushes requests out to

184 Chapter 7

that server. It's guessing because the client’s RMI-IIOP runtime can never
know for sure which server is the least burdened, because all load-balancing
algorithms are approximation algorithms based on imperfect historical data.
This is called a push model because we are pushing requests out to the server,
and the server has no say about which requests it receives.

With JMS message-driven beans, producers put messages onto a destina-
tion. The messages reside in the destination until a consumer takes the mes-
sages off of the destination, or (if the messages are nondurable) the server
hosting the destination crashes. This is a pull model, since the message resides
on the destination until a consumer asks for it. The containers contend (fight)
to get the next available message on the destination.

Thus, JMS message-driven beans feature an ideal load-balancing paradigm
and distribute the load more smoothly than session or entity beans do. The
server that is the least burdened and asks for a message gets the message. The
trade-off for this optimal load balancing is that messaging has extra overhead
because a destination “middleman” sits between the client and the server.

Duplicate Consumption in a Cluster

Since JMS topics use the publish/subscribe model, it’s possible that a message
sent to a JMS topic will be delivered to more than one consumer. Many con-
tainers will create a pool of many message-driven bean instances to process
multiple messages concurrently, so some concern can arise around message-
driven bean containers that subscribe to JMS topics.

In particular, if a JMS message-driven bean container has pooled five
instances of its message-driven bean type and is subscribed to the DogTopic,
how many consumers will consume a message sent to the DogTopic topic?
Will the message be consumed by each JMS message-driven bean instance in
the container or just once by a single JMS message-driven bean? The answer is
simple: A container that subscribes to a topic consumes any given message
only once. This means that for the five instances that the container created to
concurrently process messages, only one of the instances will receive any par-
ticular message, freeing up the other instances to process other messages that
have been sent to the DogTopic.

Be careful, though. Each container that binds to a particular topic will con-
sume a JMS message sent to that topic. The JMS subsystem will treat each JMS
message-driven bean container as a separate subscriber to the message. This
means that if the same JMS message-driven bean is deployed to many con-
tainers in a cluster, then each deployment of the JMS message-driven bean will
consume a message from the topic it subscribes to. If this is not the behavior
you want, and you need to consume messages exactly once, you should con-
sider deploying a queue instead of a topic.

For JMS message-driven beans that bind to a queue, the JMS server will
deliver any message on the queue to only one consumer. Each container

Introduction to Message-Driven Beans 185

registers as a consumer to the queue, and the JMS server load balances mes-
sages to consumers based on availability. JMS message-driven beans that bind
to queues that are deployed in a cluster are ideal for scalable processing of
messages. For example, if you have two servers in your cluster and 50 mes-
sages on a queue, each server will consume on average 25 messages—as
opposed to a single server responsible for consuming 50 messages.

JMS message-driven beans in a cluster are shown in Figure 7.6. Notice that
many JMS message-driven beans process the same JMS message from Topic
#1. Also notice that only a single bean processes any given message from
Queue #1.

Serverl
Message-Driven
Bean Pool
= O
Queuel-M1
Since messages from a queue M Dri
are delivered only to one = 0 essage Driven
consumer, the queue can have Topic1-M1 Bean Instances
multiple messages processed
concurrently by different servers
in a cluster!
Server2
JMS Server
Message-Driven
Queuel — i Bean Pool
ueuel-M2
SEmE) <0
Message Driven
. = u Bean Instances
Topicl Topicl-M1
CICICIET i
Server3
i . Message-Driven
ince messages from a topic can
Bean Pool
be consumed by more than one = O
client, each message-driven bean Queuel-M3
container that binds to a given
topic will receive each message.
Message Driven
= U Bean Instances
Topic1-M1

Figure 7.6 JMS message-driven beans in a cluster.

186 Chapter 7

JMS Message-Driven Bean Gotchas

Although developing JMS message-driven beans is a straightforward process,
many dark corners and caveats can be encountered unknowingly. In this sec-
tion, we uncover some of these JMS message-driven demons and suggest solu-
tions to help speed you on your way to successful implementation.

Message Ordering

A JMS server does not guarantee delivery of messages to a pool of JMS message-
driven beans in any particular order. The container likely attempts to deliver
messages in an order that doesn’t impact the concurrency of message process-
ing, but there is no guarantee as to the order that the beans actually process the
message. Therefore JMS message-driven beans should be prepared to process
messages that are not in sequence. For example, a message adding a second
hamburger to a fast food order might be processed before the message indi-
cating that a new fast food order with a hamburger should be created. Bean
developers must take these scenarios into account and handle them appropri-
ately.

Missed @PreDestroy Calls

As with session and entity beans, you are not guaranteed that the container
will call your @PreDestroy life-cycle callback method when your bean is
destroyed. In particular, if there is a system crash or a crash from within the
EJB container, any active message-driven bean instances are destroyed with-
out going through the proper life-cycle shutdown. Additionally, for any
method that throws a system exception, such as EJBException, the callback
method is not invoked. Developers should be alert to this fact and perform any
relevant clean-up before throwing a system exception.

Developers should also be aware that the @PreDestroy life-cycle callback
is invoked by the container only when the container no longer needs that
instance. Many containers pool the necessary number of message-driven bean
instances needed to handle concurrently multiple messages. The limits on the
minimum and maximum size of the message-driven bean pool are typically
set in an application server—specific deployment descriptor. A container adds
and removes message-driven bean instances to and from the pool as appropri-
ate. However, since message-driven beans are extremely lightweight objects, a
container generally destroys a message-driven bean instance only when the
EJB itself is being undeployed (the whole EJB component is being unde-
ployed). For most systems, the only time container undeployment occurs is at
system shutdown or when an administrator decides to undeploy the compo-
nent. The important point here is that message-driven bean containers are

Introduction to Message-Driven Beans

187

rarely undeployed, and therefore message-driven instances are rarely
destroyed. As a general rule of thumb, the @PreDestroy method is rarely
invoked.

Poison Messages

When using container-managed transactions (see Chapter 10) with a JMS
message-driven bean, it is easy to code yourself into a situation that causes the
generation of poison messages. A poison message is a message that is continually
retransmitted by a JMS destination to the consumer because the consumer
continuously fails to acknowledge the consumption of the message. Any time
your JMS message-driven bean does not acknowledge messages to the JMS
destination, you have a situation with the potential to create poison messages.
The diagram in Figure 7.7 shows how poison messages can inadvertently be
generated.

USING QUEUES TO PARTITION BUSINESS PROCESSING IN A CLUSTER

Suppose that you have two clusters of machines: One cluster is configured for a
development and test environment, and the other cluster is configured for a
production environment. You need to make sure that traffic coming from test
clients is sent to the development cluster, while traffic coming from real clients
is sent to the production cluster.

As one solution, you could set up your JMS server with two queues:
DevelopmentQueue and ProductionQueue. You could deploy a series of JSPs
or front-end stateless session beans that analyze each incoming request,
format it into a JMS message, and then place requests onto one of the queues.
Requests that come from an internal development machine could be placed
onto the DevelopmentQueue, and all other requests could be placed on the
ProductionQueue.

On the back end, you could configure two clusters: One cluster has JMS
message-driven beans bound to the DevelopmentQueue, and the other cluster
has JMS message-driven beans bound to the ProductionQueue. The logic for
each of these beans can vary based on the needs of the system. For example,
the behavior of the JMS message-driven beans bound to the
DevelopmentQueue can mimic those bound to the ProductionQueue but add
on debugging statements. You can also tune each cluster independently, based
on load to the system. Since the ProductiongQueue will likely have more load
than the DevelopmentQueue, you could independently grow the size of the
cluster servicing the ProductionQueue without impacting the cluster servicing
the DevelopmentQueue.

This illustrates a general paradigm of using queues to partition business
logic processing. Rather than the servers pulling messages off a single queue,
you prechoose which machines get the messages by splitting the queue into
two queues. This is an artificial way to achieve controlled load balancing in a
JMS system.

188 Chapter 7

JMS Server JMS Consumer

Queuel
NNN I.

1: Mesage Sent to Consumer
4: Message Resent to Consumer at a Later Point

2: onMessage()
3: Transaction Rolls Back
5: onMessage()
6: Transaction Rolls Back

Figure 7.7 How JMS message-driven beans can cause poison messages.

For example, suppose that you have a stock-quoting JMS message-driven
bean that accepts a text message, which represents the stock ticker symbol to
be quoted. Your bean cracks open that message. If the string contained within
the message matches a stock symbol, the bean retrieves the value of that sym-
bol and sends a response message. Otherwise, the bean throws a system excep-
tion or calls MessageDrivenContext.setRollbackOnly (). This causes
the transaction to be rolled back, which means the message acknowledgment
will never be sent to the JMS destination. The JMS destination eventually
resends the same message to the container, causing this same process to occur.

See Source 7.4 for an example of a JMS message-driven bean implementa-
tion class that will cause a poison message scenario. Note that our abuse of
threading is for illustrative purposes only!

package examples.messaging;

import javax.jms.*;
import javax.ejb.*;
import javax.annotation.*;

@MessageDriven (activationConfig = {
@ActivationConfigProperty (
propertyName = "destinationType",
propertyValue = "javax.jms.Topic") })

public class PoisonBean implements MessageListener {

@Resource

Source 7.4 PoisonBean.java.

Introduction to Message-Driven Beans 189

private MessageDrivenContext ctx;

public PoisonBean () {
System.out.println("PoisonBean created") ;

public void onMessage (Message msg) {
try {
System.out.println("Received msg " + msg.getJMSMessageID()) ;

// Let's sleep a little bit so that we don't
// see rapid fire resends of the message.
Thread.sleep(3000) ;

// We could either throw a system exception here or
// manually force a rollback of the transaction.
ctx.setRollbackOnly () ;

} catch (Exception e) {
e.printStackTrace() ;

@PreDestroy
public void remove() {
System.out.println("PoisonBean destroyed.") ;

Source 7.4 (continued)

You can use any of the following strategies to resolve poison messages:

m Make sure to not throw any system exceptions for any business logic-
related error conditions. System exceptions like EJBException are
intended to indicate system or container failure. If this were a session or
entity bean, the ideal solution would be to generate an application
exception and throw it (especially since application exceptions do not
force transactions to be rolled back). However, the E]JB specification
discourages application exceptions from being thrown from the on
Message () method of a JMS message-driven bean. The ideal solution
to this problem would likely involve logging the business error mes-
sage and then quietly returning.

m Consider using bean-managed transactions instead of container-managed
transactions. Message consumption and acknowledgment is not part of
the transaction if bean-managed transactions are used. A bean-managed
transaction can be rolled back and the message is acknowledged anyway.

190 Chapter 7

m Some application servers enable you to configure a poison message
queue. Messages that are redelivered a certain number of times are
flagged as poison messages, removed from their primary queue, and
placed into a poison message queue. Typically, any message that is
redelivered from three to five times can be considered a poison mes-
sage. You can then bind special consumers or JMS message-driven
beans to the poison message queue to handle any unexpected error
conditions.

m Some application servers place a retry count value as a property of any
redelivered messages. Each redelivery of a message incrementally
increases the retry count. Your JMS message-driven bean could check
the value of a retry count (if it exists) to see if it has repeatedly con-
sumed the same message.

m Some application server vendors provide a redelivery delay feature that
administrators can configure to determine how long the JMS destina-
tion delays the redelivery of a message after it receives a negative
acknowledgment. This way, your system doesn’t grind to a halt in case
of rapid-fire poison messages.

How to Return Results Back to Message Producers

The EJB specification does not outline any mechanism that allows a JMS
message-driven bean to propagate a response back to the client that originally
generated the message. So we need to build those facilities ourselves. Figure
7.8 shows how this could be accomplished.

Here is an explanation of Figure 7.8:

1. The client that generates a JMS message for consumption creates a tem-
porary destination associated with its Connection object. The JMS
server temporarily creates a Topic or Queue object, and that object
exists for the lifetime of the Connection object.

2. The request message that the client sends contains extra information, so
the receiving JMS message-driven bean knows how to reply correctly.
Specifically, the client sticks the name of the temporary queue in the
JMSReplyTo header field of the request message. The JMS message-
driven bean can harness this field to reply on the correct queue. The
client also has a unique identifier of the original message in the
JMSCorrelationID header field of the original message. When the
JMS message-driven bean replies, it embeds this original identifier, so
the client knows to which original message he’s receiving a reply.

Introduction to Message-Driven Beans

191

3. The client creates a new Session object and registers a Message

Listener object to consume messages sent to the temporary destination

that was just created.

4. The client sends the message.

5. After consuming the message, the JMS message-driven bean formats a
response and sends it using the JMSReplyTo and JMSCorrelationID

attribute of the received message.

6. The client’s MessageListener class asynchronously consumes the

message that is sent to the temporary destination, recognizes that it is a

response to the original message, and processes it.

Even though this scenario seems like a straightforward solution for
responding to clients from within a JMS message-driven bean, it could poten-
tially lead to some unexpected results. The problem arises if the client itself is
an EJB component, such as a stateful session bean. When your stateful session
bean creates the temporary destination, that temporary destination has a lifespan
equal to the lifespan of the J]MS connection that your bean currently holds. If
your bean is passivated (meaning swapped out of memory), then you need to
release that connection. The temporary destination then goes away, and
you've lost all messages delivered to that temporary destination while you
were passivated, even if you recreate the destination after you are swapped

into memory again.

= O

,— In-Message

3. Client creates request message with
temporary queue as value of [MSReplyTo field.
4. Client sends request message.

JMS Client

1. Client creates temporary queue.
2. Client binds consumer to temporary queue.
8. Client receives response message.

L

JMS Server

Incoming Queue

5. MDB consumes
request message.

\l/

Message-Driven _\
Bean Pool —

= &]

In-Message

Message-Driven

Bean Instances

—

Outgoing Temporary Queue

=]
Dut-Message
-

6. MDB creates response message.
7. MDB sends response message to
the destination specified in the
JMSReplyTo field of the request

message.

Figure 7.8 A simple JMS request/response paradigm solution.

192 Chapter 7

We propose two possible solutions to this problem:

m Don’t use a stateful session bean. Instead the end client, such as a
servlet, application, or JSP tag library (rather than the stateful session
bean), creates a temporary queue that all response messages are sent to.
The stateful session bean is therefore not holding onto a connection,
eliminating any danger of the destination going away because of passi-
vation. See the book’s accompanying source code for an implementa-
tion of this solution.

The advantages of using this architecture include:

m Ease of implementation. Creating temporary queues doesn’t
require any extra configuration from an administrator, whereas set-
ting up a dedicated response topic requires management on the part
of the administrator and your application.

m Security. Since temporary queues are bound to a particular connec-
tion, malicious clients cannot bind to a temporary queue and inter-
cept response messages.

= Immediate client notification. Since the remote client creates and
manages the receiving logic for the temporary queue, the client is
notified immediately when a response message is generated, rather
than having to wait for a middleman session bean to respond.

The disadvantages of this architecture include:

= No persistent messages. Temporary queues cannot have persistent
stores associated with them and therefore cannot support guaran-
teed message delivery. If the system fails while a response message
is located on the temporary queue, the message will be lost.

m Poor abstraction. Since temporary queues are associated with a
Connection object, a stateful session EJB cannot perform middle-
tier management of the request/response process. It might be more
natural to abstract away the JMS request/response logic from the
client.

m A permanent response topic is configured and deployed in the JMS server.
All response messages are delivered to the same response topic for all
clients. Clients filter out the messages that belong to them by registering
a message selector with the JMS server. Any request message that is sent
has a custom application property called C1ientName=MyID where
MyID varies for each client. The JMS message-driven bean that con-
sumes the request message takes the application property from the
request message and inserts the same property in the response message.
All response messages are sent to the same response topic irrespective of
the client. Figure 7.9 illustrates this scenario, and the book’s accompany-
ing source code has its implementation.

Introduction to Message-Driven Beans

193

2. Client creates request message with

application property:ClientName=MyID. JMS Server
MyID changes for each client. 4. MDB consumes
3. Client sends request message. Incoming Queue request message.

/

Message-Driven
JMS Client Bean Pool —ﬁ

essage-Driven
Bean Instances

=]
In-Message

= O

Out-Message|

. . L
1. Client binds consumer to permanent OutgoingResponseTopic
response topic. The registration on the S DDDD
topic has a message selector that will
filter out only messages that have an
application property: ClientName=MyID.
MyID changes for each client. 5. MDB creates response message. The MDB
7. Client receives response message. sets the response message ClientName

property to be the value of the request message.
6. MDB sends response to response topic.

Figure 7.9 Another JMS request/response paradigm solution.

The advantages of using this architecture include:

m Better fault tolerance. Because this architecture proposes that a per-
manent topic be set up for all outgoing messages, the response topic
could be associated with a persistent store. All outgoing messages
could then be sent persistently with guaranteed message delivery.
Temporary topics and queues cannot have persistent messages
delivered to them. This could be ideal for a data retrieval system.
For example, suppose that you had a remote client that randomly
connected to the central server requesting a download of the latest
market data as it pertains to that client. The data could be anywhere
from 1K to 1MB. Let’s also suppose that for situations where a large
amount of data needs to be retrieved for the client, you want to
break up the data chunks into 100K messages. If the client needed to
retrieve 1MB of data, you would need to send 10 response messages.
All of the response messages could be sent with guaranteed message
delivery. If the remote client application were to fail during the
download process, it could easily resume from the last response
message that it received instead of having to restart the entire down-
load process.

m Better filtering. You can add additional filtering of response mes-
sages through the message selector that the client registers with the
JMS server. In the example provided with this book, the client
registers to receive messages that have an application property

194 Chapter 7

ClientName=MyID. You could conceivably add application proper-
ties about the response message that the client filters on. These prop-
erties could be message size, message importance, and so on.

The disadvantages are as follows:

m Lack of security. The main disadvantage of this architecture is lack
of security. Since the JMS specification does not have any security
restrictions on which clients can bind which message selectors, any
client can register any message selector. This presents the opportu-
nity for a malicious client to register for consumption of response
messages that are destined for another client. This malicious behav-
ior is not possible with temporary destinations. Of course, if you're
secured by a firewall, security probably isn’t an issue. Also, it would
take a pretty snazzy developer to actually figure out that you're
sending messages and register a message listener.

m Intermediary E]JB. This approach allows a session EJB to act as a
mediator between the client and the back-end system, as mentioned
in the actual description of the problem. By using an intermediary
session E]B, security can be improved, because the topic that
response messages are delivered to can be made available only inter-
nally by simply not exposing it to a client or blocking the message
server using a firewall or other security measure. The session EJB
can be coded to filter out messages based upon the logged-in user
name.

An Alternative Request/Response Paradigm

If you don't feel like writing your own request/response code as we’ve just
described, you can tap into the JMS facilities to help you. JMS has two special
classes, javax.jms.QueueRequestor and javax.jms.TopicRequestor,
that implement a simple request/response paradigm. You call a method called
request () that takes as input the request message and returns the response
message. This is implemented in the book’s accompanying source code.

The downsides to this approach are:

= You need to block when waiting for a response. You can’t continue
processing and do other things, which is one of the major advantages of
messaging in the first place.

m You can’t use transactions. If you did, the outgoing message would be
buffered until the transaction committed. Since the QueueRequestor
class doesn’t commit right away, but instead blocks until it receives a
response message, it will block indefinitely. The outgoing request mes-
sage will wait forever to be flushed from the buffer. See Chapter 10 for
more on transactions.

Introduction to Message-Driven Beans

195

The Future: Asynchronous Method Invocations

One of the downsides to JMS message-driven beans is that you need to learn a
whole new API—JMS—to call them. This API is highly procedural in nature,
because you are not invoking lots of different business methods on your JMS
message-driven bean; rather, you are sending messages using the J]MS API,
and the server has a single method to crack the message open and then call the
intended method using a giant i f statement.

An asynchronous method invocation is a real method invocation executed in an
asynchronous fashion. You are actually calling business methods on the server,
such as logMessage () or quoteStock(). You can choose whether you
want to block and wait for an asynchronous response or to return immediately
and not wait for a response. Furthermore, the server can take on the context
information of the client.

Asynchronous RMI and Microsoft Queued Components are asynchronous
method invocation infrastructures. JAX-RPC supports one-way RPC over
SOAP. CORBA also has some support for this.

We hope a future EJB specification supports asynchronous method invoca-
tions. Until then, you'll have to build such facilities on top of JMS yourself,
perhaps by writing a code generator.

Summary

In this chapter, we’ve learned about developing JMS message-driven beans
and the pitfalls associated with doing asynchronous development with E]Bs.
We looked at the various benefits of developing asynchronous components
and how message-driven beans compare to their session and entity bean coun-
terparts. We showed how to build a J]MS message-driven bean and deploy it.
Next we looked at how a JMS message-driven bean behaves in its environ-
ment, including how it interacts with transactions. Finally, we took a look at
the common pitfalls of using message-driven beans and proposed some solu-
tions.

This chapter concludes the introductory tour of the different EJB types.
Beginning the next section, Chapter 8 presents additional information that you
will need, such as interceptors and dependency injection.

Adding Functionality to
Your Beans

In previous chapters, you learned the fundamentals of EJB 3.0 programming.
In this chapter, we'll build on that knowledge and cover a slew of essential top-
ics, including:

m How to call beans from other beans

= Annotations

m Dependency injection

m [nterceptors

These topics cover some of the major changes in the 3.0 version of the EJB
specification and are constantly used across the different types of beans. Of
particular importance are the use of annotation and dependency injection.

Calling Beans from Other Beans

Any nontrivial EJB object model has beans calling other beans. For example, a
bank teller bean might call a bank account bean, or a customer bean might call
a credit card bean. In this chapter, we’ll use the following examples:

m A pricing bean that computes prices of products, using all sorts of inter-
esting rules, such as discounts, taxes, and shipping costs

197

198 Chapter 8

m A tax rate bean that returns a tax rate based on the state where the
transaction takes place

The pricing bean calls the tax rate bean. For simplicity, we’ll assume that
both of these beans are stateless session beans.

Default JNDI Lookups

For your bean to call another bean, you must go through the same process that
any other client would go through. Your bean would:

1. Look up the other bean’s interface (either local or remote) via JNDI

2. Call business methods on the E]JB object via the interface

As we mentioned earlier, to look up an EJB interface using JNDI, you first
need to supply JNDI initialization parameters, such as the JNDI driver you're
using, which differs from container to container. But if you're writing a bean
that calls another bean, how do you know which JNDI service provider to use?
After all, your beans should be container-independent. Hard-coding that JNDI
information into your bean would destroy portability.

The good news is that if you're looking up a bean from another bean, you
don’t need to supply any JNDI initialization parameters. You simply acquire a
default JNDI initial context. The container sets the default JNDI initial context
before your bean ever runs. For example, the following code snippet is taken
from a bean calling another bean:

// Obtain the DEFAULT JNDI initial context by calling the
// no-argument constructor
Context ctx = new InitialContext () ;

// Look up the business interface
Object result = ctx.lookup (TaxRate.class.getName()) ;

// Convert the result to the proper type, RMI-IIOP style
TaxRate tr = (TaxRate)result;

The preceding code is portable because nobody ever needs to supply
container-specific JNDI initialization parameters.

Notice that we looked up a bean using the remote interface TaxRate. We
use session beans through an interface that exposes the business methods
implemented in the bean class. This interface is an ordinary Java interface and
as such has access to the static class field. Using the class field, we can call
the getName () method. This returns the fully qualified name of the interface.

The EJB 3.0 specification mandates that containers bind beans to the JNDI
tree by their fully qualified names at deployment time. This ensures that we
can look up the beans in this very simple way.

Adding Functionality to Your Beans

199

This is vastly simplified from previous versions of the specification that
relied on the java: comp/env/ejb JNDI context along with EJB references to
look up other beans. EJB 3.0 still supports this type of reference for backward
compatibility. For more information on EJB references found in the deploy-
ment descriptor, see Appendix C, available from this book’s companion Web
site at Wiley.com.

Another way to get a reference to beans from within other beans is to use the
@EJB annotation. This is an even simpler approach than using a JNDI lookup.
Although this is an annotation, it is used to provide references to other beans’
business interfaces. Let’s take a look at its use in code:

@EJB TaxRate tr;

That’s it! Using the @EJB annotation, the container will provide a reference
to the TaxRate business interface for the TaxRateBean. It is usable in the
same way as in the JNDI lookup example. There are a number of elements to
the @EJB annotation that we will look at in the next section.

One of the major strengths of E]B 3.0 is its support of intuitive defaults. This
makes the job of the developer in most situations very simple and straightfor-
ward. There are times when you will need to override defaults and/or add
functionality to your beans. There are a number of metadata annotations to
support this, covered in the next section.

Annotations

This section looks at some key annotations that help in overriding defaults and
adding functionality to your beans. First, we will look at annotations that are
the same across the various types of beans. We will then discuss annotations
relevant to the business interface of a bean. Finally, we will examine additional
annotations for stateful session beans.

This section focuses on those annotations related to the EJB 3.0 specification.
There are other annotations used for backwards compatibility with earlier
releases of the specification. For a comprehensive reference, use the specifica-
tion found at: www. jcp.org/en/jsr/detail?id=220.

Some of the annotations in this section were introduced in other chapters,
but this section goes beyond the basic use of these annotations and looks at ele-
ments that can be used with the annotation to enhance or change its behavior.

Refer to Chapter 4 for an introduction to the annotations for session beans
and Chapter 7 for an introduction to the annotations for message-driven
beans.

200 Chapter 8

Common Annotations

First, we'll take a look at annotations that apply to session beans (both stateless
and stateful) and message-driven beans. The @Stateless, @Stateful, and
@MessageDriven annotations support a number of elements:

m name
m mappedName

m description

By default, the name element of the annotation defaults to the unqualified
name of the class. It can be overridden as:

@Stateless (name="TR")

public class TaxRateBean implements TaxRate {

The mappedName element is handled in a container specific manner. As the
EJB 3.0 specification warns: “Applications that use mappedNames may not be
portable.” Here is an example:

@Stateful (mappedName="java:comp/env/ejb/CartBean")
public class CartBean implements Cart{

Here is an example of the description element being set:

@MessageDriven (description="Listens for purchase messages")
public class PurchaseMDB implements MessageListener {

Business Interface Annotations

By now we’ve now seen a number of examples where the @Local or @Remote
annotation is used on an interface to indicate that it is the business interface for
a session bean.

No further annotation is required if the bean class implements the business
interface. The business interface does not even need to have a similar name to
the bean class.

Adding Functionality to Your Beans

201

There may be other situations where the business interface name has no
relation to the bean class name or where you want to use a number of inter-
faces for the business interface on the bean class. In this case, you will need to
use elements of the @Remote or @Local annotation. Furthermore, in these
cases the @Remote or @Local annotation will be defined on the bean class
and not on the business interface. Let’s take the case where we have a number
of interfaces that we want to use to make up the business interface. Source 8.1
and 8.2 are the interface definitions. Source 8.3 is the bean class definition.

public interface PricerLookup {
public double getTaxLookup (double cost, String state);

Source 8.1 PricerLookup.java.

public interface PricerInjection {
Public double getTaxInjection(double cost, String state);

Source 8.2 Pricerlnjection.java.

@Stateless

@Remote ({PricerLookup.class,PricerInjection.class})

public class PricerBean implements PricerLookup, PricerInjection {
public double getTaxLookup (double cost, String state) {

public double getTaxInjection(double cost, String state) {

Source 8.3 PricerBean.java.

Notice that the interfaces do not have the @Remote or @Local annotation.
The @Remote annotation is defined on the bean class. It also includes an ele-
ment that is an array of classes. The classes in this list are the interfaces that
make up the business interface for this bean. When specifying the business
interfaces in this way, it is not required that the bean class implement the inter-
faces. However, it is a good practice to explicitly implement the interfaces on

202 Chapter 8

the bean class. This enforces type safety in that you must provide the methods
specified in the interfaces.

We will see a client example of interacting with the bean from Source 8.3 in
the “Dependency Injection” section later in this chapter.

Other Stateful Annotations

As discussed in Chapter 4, the @Remove annotation marks a method of a state-
ful session bean such that when it is called the bean will be removed from the
bean pool. The @PreDestroy life-cycle callback method (if any) will be called
before the specified remove method is executed. When the remove method
completes, the container will destroy the stateful session bean.

The retainIfException element indicates whether or not the stateful
session bean will remain active if an exception is thrown in the remove
method.

Let’s take a look at a simple example in Source 8.4.

package examples.stateful;

import javax.ejb.Remove;
import javax.ejb.Stateful;
import examples.interfaces.Cart;

@Stateful
public class CartBean implements Cart {
private int numItems;

public void addItem() {

numItems++;

public int getItems() {
return numItems;

@Remove (retainIfException=false)
public void removel() throws Exception {
doRemove () ;

@Remove (retainIfException=true)
public void remove2() throws Exception {
doRemove () ;

private void doRemove () throws Exception {

Source 8.4 CartBean.java. (continued)

Adding Functionality to Your Beans

203

if

(numI

tems > 1 && numItems < 4) {

throw new Exception("blah");

}

System.out.println("Removing cart with: "+

numItems+" items.") ;

Source 8.4 (continued)

As you can see, a stateful session bean can have more than one remove
method. The removel () method above has the retainIfException setto
false, while the remove2 () method has the retainIfException set to
true. Both remove methods call the private doRemove method. If the number
of items in the “cart” is 2 or 3, an Exception will be thrown. This code serves
no useful business purpose except to demonstrate the effects of exceptions on
the removal of stateful session beans. What is the effect of this code? Let’s look
at some standalone client code in Source 8.5 to see what happens.

package examples.client;

import
import
import
import
import

import

javax.
javax.
javax.
javax.
javax.

examp

ejb.EJBNoSuchObjectException;
naming.InitialContext;
naming.NameClassPair;
naming.NamingEnumeration;
naming.NamingException;

les.interfaces.Cart;

public class CartClient {

public static void main(String[] args) {

try

{

InitialContext ic = new InitialContext () ;

for (int i=0;i<2;i++) {

Source 8.5

Cart
cart
cart
Syst
try

cart = (Cart)ic.lookup(Cart.class.getName()) ;
.addItem() ;

.addItem() ;

em.out.println("items in the cart: "+cart.getItems());

{

try {

if (i==0) {
cart.removel();

}

else {
cart.remove2();

CartClient.java. (continued)

204 Chapter 8

}

catch (Exception e) {

}

cart.addItem();

cart.addItem() ;

cart.addItem() ;

System.out.println("items in the cart: "+cart.getItems());

}
catch (EJBNoSuchObjectException esoe) {
System.out.println("Cart was already removed "+
"during iteration "+1i);

}
catch (NamingException e) {
e.printStackTrace() ;

Source 8.5 (continued)

In both iterations of the loop, an exception will be thrown, since there are
only two items in the cart when the @Remove method is called. The following
lines from CartBean ensure this:

if (numItems > 1 && numItems < 4) {
throw new Exception("blah");

THE USE OF THE BUSINESS INTERFACE

It is very important to understand the role of the business interface. This has
been explained in other chapters, but it is useful to review here. The bean class
implements the business interface. In object-oriented parlance, this is the “is a”
type of relationship. For instance, we can say that a CartBean “is a” Cart
because it implements the Cart interface. You will notice in the client code
below that all interaction with the bean is done via the business interface (Cart
in this case). This is how the client is kept thin—only the interface (a very small
bit of code) needs to be packaged with the client.

Adding Functionality to Your Beans

205

Since the removel method has the retainIfException element set to
false, the stateful session bean will be removed. The next call to
cart.addItem will throw the runtime NoSuchEJBException Exception
(which we catch in the sample code).

Since the remove2 method has the retainIfException element set to
true, the stateful session bean will not be removed, and thus the next call to
cart.addItem will work just fine.

The @Init annotation is used to indicate that a method corresponds to a
particular create method. This is used when adapting an EJB 2.x stateful ses-
sion bean for use in an EJB 3.0 container. The discussion of this annotation is
outside the scope of this section. Refer to the EJB 3.0 specification at http: //
www.jcp.org/en/jsr/detail?id=220.

Dependency Injection

The EJB 3.0 specification introduces powerful mechanisms for obtaining refer-
ences to resources and for injecting references to E]B-related objects. More tech-
nically, everything we are talking about in this section relates to injection.
Injection is the technique of relying on the container (the Java EE application
server) to provide handles to objects it has access to. In previous versions of the
EJB specification, these resources had to be looked up using JNDI often requir-
ing abstracted resource references and complicated initialization properties.
Now, we can simply define a reference and use the objects. The container will
inject the reference before any of our method calls or other initialization occurs.

Even though both resource references and resource injection are used to
describe the process, both terms refer to general process of dependency injec-
tion. The major difference is that resource references use the @Resource anno-
tation to reference objects that the container has access to but are not
(necessarily) directly related to EJB. Dependency injection, on the other hand,
uses other annotations to inject references to objects directly associated with
EJB. Examples include @EJB and @PersistenceContext.

Resource References

The @Resource annotation is used to set up a reference to a resource in the
bean’s environment. For instance, the following code snippet sets up a refer-
ence to a stateful session bean’s SessionContext:

@Resource SessionContext context;
TaxRate tr = (TaxRate)context.lookup (TaxRate.class.getName()) ;

206 Chapter 8

The preceding example is a good use of a resource reference, since the
SessionContext object can do lookups in the same way that the
InitialContext can. Take a look at this code snippet:

InitialContext context = new InitialContext();
TaxRate tr = (TaxRate)context.lookup (TaxRate.class.getName()) ;

This code has the same result as the first example. However, instantiating
the InitialContext object is a much more heavyweight operation than
using the SessionContext object through the resource reference. As we saw
before (and will discuss further in the injection section) an even simpler form
is available:

@EJB TaxRate tr;

At times, more information is needed to get the resource reference. This
information can be specified using elements of the @Resource annotation.
For instance, when referencing a DataSource resource, we need to use the
name and type elements:

@Resource (name="jdbc/__default", type=Datasource.class)
DataSource dataSource;

Just about any resource available to the Java EE application server is
available for reference using the @Resource annotation. Examples include
(but are not limited to): javax.sqgl.DataSource, javax.transaction
.UserTransaction, javax.jms.Queue, javax.ejb.SessionContext,
and org.omg.CORBA . ORB.

So far, we’ve looked at resource references at the field level. They can also be
used at the method level for setter-based injection. Let’s look at a code snippet
to understand this.

package com.temp;
public class MyClass {

@Resource

private void setMyDataSource (DataSource ds) {
myDataSource = ds;

}

private myDataSource;

Adding Functionality to Your Beans

207

In the preceding example, the name of the resource is inferred based on the
name of the method. The name is inferred based on the reflective properties of
the JavaBeans specification in conjunction with the bean class name. So the
“set” is dropped and the first letter is made lowercase thus making the end of
the name myDataSource. By default, the full name would be java:comp/
env/com. temp.MyClass/myDataSource. The type is also inferred based
on the parameter being passed into the method. The name and type can explic-
itly be set using the name and type elements of the @Resource annotation.

Resource references can even be used for environmental entries set in the
deployment descriptor element: env-entry. For instance, if a long named
timeout was specified by a bean deployer, our code could use it as follows:

@Resource long timeout;

When using resource references you need to ask yourself, “Is the object that
I want to reference available to the application server?” If the answer is yes,
then you should be able to use the @Resource annotation to inject a reference
to it.

As a final note on resource references, we'll discuss the @Resources anno-
tation. This annotation simply allows you to set up multiple resource refer-
ences at once at the class level. Here’s a sample:

@Resources ({
@Resource (name="datasource", type="javax.sqgl .DataSource.class),
@Resource (name="queue", type="javax.jms.Queue")

1)

public class X {

}

When using the @Resources or @Resource annotations at the class level,
an entry in the bean’s environment is declared, but the resource is not injected
into a particular variable. It is expected that the resource would be looked up
using the standard JNDI mechanism within the class. Why would you want to
declare resources at the class level? Each resource may only be injected into a
single field or method for a particular bean. If you need to use a resource in
more than one spot in the bean class, you need to define that resource at the
class level and then look it up explicitly by name.

In the next section, we will look at resource injection. We could really refer
to it as other resource injection as the resource references we have discussed in
this section use injection as well.

As described earlier in this chapter, EJB 3.0 makes it very easy to refer to other
EJBs using the @EJB annotation. (The section “Default JNDI Lookups” pro-
vides a simple example of this annotation’s use.) Here, we will look at the

208 Chapter 8

various elements of the @EJB annotation and its use when applied at the class
level.

The portable elements of the @EJB annotation are name, beanInterface,
beanName, and description. Let’s take a look at an example:

QEJB (

name="ejb/pricer",

beanInterface=Pricer.class,

beanName="pricer",

description="This bean is used to calculate prices."
)

private Pricer pricer;

In the preceding example, the bean has been explicitly deployed (most
likely via a deployment descriptor) using the name java:comp/env/ejb/
pricer.

When applied at the class level, the @EJB annotation has the effect of bind-
ing the name in the E]JB environment. Here is a code snippet:

@EJB (name="ejb/TaxRate", beanInterface=TaxRate.class)
@Stateless
public class PricerBean implements Pricer {

public double getFinalPrice(double cost, String state) {
InitialContext context = new InitialContext();
TaxRate tr = (TaxRate)context.lookup("java:comp/env/ejb/TaxRate");

One of the most powerful annotations for dependency injection in EJB 3.0 is
@PersistenceContext. This is used to inject the EntityManager object,
which is used synchronize entities and the database backing them. Look at
Chapter 6 and Chapter 9 for more detailed information on the persis-
tence mechanism specified for E]JB 3.0. In this section, we will look at how the
EntityManager is injected. Here is its simplest form:

@PersistenceContext EntityManager em;

Once injected, we can call methods on the em reference to perform persis-
tence operations. We can also specify the name binding by using the annota-
tion at the class level.

Adding Functionality to Your Beans 209

@Stateless

@PersistenceContext (name="HelloWorldEntity")

public class HelloWorldBean implements HelloWorld {
@Resource SessionContext context;

public void hello() {
EntityManager em =
(EntityManager)context.lookup ("HelloWorldEntity") ;

In this example, we are binding the name HelloWorldEntity in the
bean’s namespace. Further down, we are using that name to perform a lookup.

In the preceding examples, there was an assumption of a default persistence
unit. As described in Chapter 6, a persistence unit is a set of classes that are
mapped to a single database. Since an application server can support persis-
tence to any number of databases, we can use the optional unitName element
to identify the persistence unit to be used with the bean. If your application
server does not have a default or if there is more than one persistence unit
defined, you must supply this element. Here’s what it looks like:

@PersistenceContext (unitName="pul") EntityManager em;

In this case, a persistence unit named pul was defined within the applica-
tion server. We are indicating that it is this persistence unit that will be used in
the bean.

Interceptors

Interceptors are methods that are invoked automatically when the business
methods of a bean are invoked. Using interceptors enables a clean distinction
between business logic code and meta or support code.

Interceptors can be used on session beans and message-driven beans. Inter-
ceptor methods can be defined within the bean class or in external classes. A
bean class can have any number of interceptors.

The @Interceptor or @Interceptors annotation is used to indicate
which external classes will be used as interceptors, while the @AroundInvoke
annotation is used to identify a method as an interceptor. The method can
either be in the bean class or in one of the named external classes.

Interceptor methods have access to information about the business method
that triggered it, including method names and parameters. The interceptor
method can also be used to halt processing of the business method. For

210 Chapter 8

instance, an interceptor might check for certain security information and, if it
is not found, would halt the processing of the business method. If the inter-
ceptor does not allow the business method to proceed, all other interceptors as
well as the business method will not proceed.

Interceptors are processed in the order they are specified. Interceptors
defined in external classes will be executed before an interceptor defined
within a bean class.

Enough background! Let’s dive into some code. Sources 8.6 and 8.7 show
external classes with methods used as interceptors. Source 8.8 shows a session
bean that uses the external interceptors as well as an interceptor defined
within the bean.

package examples.interceptor;

import javax.ejb.AroundInvoke;
import javax.ejb.InvocationContext;

public class LoggerInterceptor {
@AroundInvoke
public Object logger (InvocationContext inv) throws Exception {
System.out.println("Intercepted call via "+
"external class to: "+inv.getMethod () .getName()) ;
Object[] params = inv.getParameters() ;
for (int i=0;i<params.length;i++) {
System.out.println("\tparam: "+params([i]);
}

return inv.proceed() ;

Source 8.6 Loggerlnterceptor.java.

AOP AND EJB

Almost everyone has heard the term AOP (Aspect Oriented Programming) by
this point. AOP generally is the technique of expressing cross-cutting concerns
(such as security) in a clear way so that the intent (business problem) of the
underlying code remains clear.

EJBs new interceptors gives us a rudimentary AOP system in that the
business code can be completely separated from the interceptor code. The
interceptor code could handle the cross-cutting concerns, such as checking
security. The interceptor code can influence whether or not the call to the
business method will be invoked.

Common uses for interceptors are logging, performing tangential auditing
functions, and security checking.

Adding Functionality to Your Beans 211

package examples.interceptor;

import javax.ejb.AroundInvoke;
import javax.ejb.InvocationContext;

public class AuditorInterceptor {
@AroundInvoke
public Object checkCost (InvocationContext inv) throws Exception {

if (inv.getMethod() .getName () .startsWith("getTax")) {
Object[] o = inv.getParameters() ;
double cost = ((Double)o[0]).doublevalue() ;

if (cost > 50) {
System.out.println("Cost is > 50!");

}

return inv.proceed() ;

Source 8.7 Auditorinterceptor.java.

package examples.stateless;

import javax.annotation.EJB;

import javax.ejb.AroundInvoke;
import javax.ejb.Interceptors;
import javax.ejb.InvocationContext;
import javax.ejb.PostConstruct;
import javax.ejb.PreDestroy;

import javax.ejb.Stateless;

import javax.naming.InitialContext;

import javax.naming.NamingException;

import examples.interfaces.Pricer;
import examples.interfaces.TaxRate;

import examples.interceptor.LoggerInterceptor;
import examples.interceptor.AuditorInterceptor;

@Stateless
@Interceptors ({LoggerInterceptor.class,AuditorInterceptor.class})
public class PricerBean implements Pricer ({

private TaxRate taxRate;

QEJB

Source 8.8 PricerBean.java. (continued)

212

Chapter 8

private TaxRate taxRate2;

public double getTaxLookup (double cost, String state) {
double tax = -1;
tax = cost * taxRate.getTaxRate(state) ;
return tax;

public double getTaxInjection(double cost, String state) {
double tax = -1;
tax = cost * taxRatel2.getTaxRate(state) ;
return tax;

@PostConstruct
public void postConstruct () {
try {
InitialContext ic = new InitialContext() ;
taxRate = (TaxRate)ic.lookup (TaxRate.class.getName()) ;
}
catch (NamingException e) {
// some kind of appropriate handling here

@PreDestroy
public void preDestroy () {
taxRate = null;

@AroundInvoke
public Object logger (InvocationContext inv) throws Exception {
System.out.println("Intercepted call via internal method to: "+
inv.getMethod () .getName ()) ;
Object[] params = inv.getParameters();
for (int i=0;i<params.length;i++) {
System.out.println("\tparam: "+params[i]) ;
}

return inv.proceed() ;

Source 8.8 (continued)

The PricerBean class incorporates a lot of the subjects that we have dis-
cussed in this chapter including beans calling other beans through injection
and JNDI lookups. For now, let’s focus on the interceptors.

Adding Functionality to Your Beans 213

Notice that the interceptor methods have an InvocationContext object
passed into them. It is this object that gives us access to the method names and
parameter list that triggered the interceptor. This object also allows the busi-
ness method to proceed or stops it.

Notice also that the business method is solely concerned with the business
at side, while the interceptors perform their own work. This separation of con-
cerns makes the code very clear.

Finally, note that the PricerBean class uses the TaxRate interface to the
TaxRateBean. For the purposes of this discussion, it is not necessary to dis-
play the TaxRate code here. Please refer to this book’s Web site for all of the
code used in this chapter.

Let’s take a look at a client that uses the PricerBean and deconstruct the
output from the interceptors. Source 8.9 shows the client code.

package examples.client;

import javax.naming.InitialContext;

import javax.naming.NamingException;
import examples.interfaces.Pricer;

public class PricerClient {
public static void main(String[] args) {
try {
InitialContext ic = new InitialContext() ;
Pricer pricer = (Pricer)ic.lookup(Pricer.class.getName()) ;
System.out.println("Tax (using lookup) on: "+
args[0]+" for State: "+args[l]+
"ois: "+
pricer.getTaxLookup (Double.parseDouble (args[0]),args[1l]));
System.out.println("Tax (using injection) on: "+
args[0]+" for State: "+args[l]+
"is: "+
pricer.getTaxInjection(Double.parseDouble(args[0]),args[1l]));
}
catch (NamingException e) {
e.printStackTrace() ;

Source 8.9 PricerClient.java.

Output 8.1 shows a snippet of the log output produced by the application
server when the client defined in Source 8.9 is run. The command-line para-
meters 85 and ny were used for this example.

214 Chapter 8

Intercepted call via external class to: getTaxLookup
param: 85.0
param: ny

Cost 1is > 50!

Intercepted call via internal method to: getTaxLookup
param: 85.0
param: ny

Intercepted call via external class to: getTaxInjection
param: 85.0
param: ny

Cost is > 50!

Intercepted call via internal method to: getTaxInjection
param: 85.0

NnaoaQw®PrPraaanwypp

param: ny

Output 8.1

For clarity, the output has been grouped by letter: A, B, and C. All of the A list-
ings are from the external interceptor: LoggerInterceptor defined in Source
8.6. The B listings are from the external interceptor: AuditorInterceptor
defined in Source 8.7. The C listings are from the internal interceptor defined in
the bean class: PricerBean defined in Source 8.8.

Notice from the client code in Source 8.9, business methods are only called
twice. It is important to remember that all defined interceptors will be fired
when a business method is called. Interceptors are fired in the order that they
are defined with class-level external interceptor definitions taking precedence
over internal interceptor definitions.

If an interceptor does not call the proceed method on the
InvocationContext object, no other interceptors nor the business method
itself will be executed. As such, we must take care to make the interceptor code
very clear. If there is some logic branch that we take that will not call the
proceed method, then we should give some sort of feedback, through logs or
error messages, that the business method was not executed.

Summary

In this chapter, we reviewed some of the fundamental aspects of the EJB 3.0
specification that make it so powerful and easy to use.

m Beans can easily call other beans by using simplified JNDI lookups or
dependency injection using the @EJB annotation.

m The annotations and their elements enable a very flexible and expres-
sive environment to work with EJBs in.

Adding Functionality to Your Beans 215

m Resource and dependency injection allow us to gain access to practi-
cally any resource available to the Java EE application server.

m Interceptors enable us to execute code that is relevant but tangential in
nature to our business code. This separation of concerns makes for
cleaner, more understandable code. In addition, it is easy to alter the
business code or the interceptor code, since they are separate. Previ-
ously, the code we now find in interceptor code would have been pep-
pered throughout our business logic.

The common theme in all of the topics in this chapter is really leveraging the
application server to do the heavy lifting. It is the application server that per-
forms the actual injection on our behalf. The application server reads the anno-
tations and associated elements through Java reflection. Sometimes this is
done at deployment time, and sometimes it is done at runtime. We don’t have
to worry about it.

Through these mechanisms (and the others described throughout this book)
EJB finally achieves its original goal of allowing developers to focus on the
task at hand and to let the application server handle common tasks not directly
related to the business problem.

In the next chapter, we will examine the advanced concepts of the new per-
sistence layer. This is, perhaps, the most exciting aspect of EJB 3.0. The persis-
tence layer is now greatly simplified and is modeled on other lightweight
persistence layers, such as Hibernate.

Mastering Emterprise
lavaBeans 3.0

PART

11

Advanced Enterprise

__ JavaBeans Concepts

If you've read to this point, you should be quite familiar with the basics of
Enterprise JavaBeans development. In Part III, we raise the bar by moving
on to more cutting-edge concepts. These include the following:

m Advanced Persistence. Chapter 9 provides an in-depth discussion on
persistence topics such as inheritance, entity relationships, and EJB-QL
enhancements.

m Transactions. Chapter 10 shows you how to harness transactions to
make your EJB deployments reliable. We’ll discuss transactions at a
conceptual level and how to apply them to EJB. You'll also learn
about the Java Transaction API (JTA).

m EJB Security. Chapter 11 provides an in-depth coverage of techniques
and best practices surrounding EJB application security. It covers
how to enable authentication and authorization declaratively and
programmatically in EJB applications. Also the chapter showcases
enabling JAAS-based authentication for E]JB applications. In addition
to these, it talks about Web services security concepts.

m EJB Timers. Chapter 12 focuses on building E]JB applications that use
the container-provided EJB Timer Service.

Click here to purchase this book.

http://www.amazon.com/gp/product/0471785415/ref=sr_11_1/103-1174895-6545420?%5Fencoding=UTF8
jpiscitelli
cover

218 Partlll

m EJB Best Practices. Chapter 13 covers a lot of best practices pertinent
to EJB, such as when to use EJB, how to choose the right Web applica-
tion framework when working with EJB applications that have Web
clients, how to apply model-driven development or aspect-oriented
programming concepts to EJB applications, and many other such
guidelines.

m EJB Performance Optimizations. Chapter 14 covers tips and tech-
niques for boosting EJB performance. You'll learn about best practices
for boosting performance of stateless session beans, stateful session
beans, and message-driven beans, as well as entities. Also, a lot of
other miscellaneous design and development tips are presented in
this chapter to improve the performance of your EJB applications.

m EJB-based integration. Chapter 15 covers various approaches to inte-
grate disparate applications with EJB applications. Here, you will
primarily learn how to use the Java EE Connector Architecture to
build adapters to integrate EJB applications with the outside world.

m Clustering. Chapter 16 shows you how E]Bs are clustered in large-
scale systems. You'll learn how clustering works behind the scenes
and a few strategies for how containers might achieve clustering.
This is a critical topic for anyone building a system that involves
several machines working together.

m EJB-Java EE integration: Building a complete application. Chapter 17
shows how EJB components can work together with other parts of
Java EE technology stack to solve a business problem.

These are extremely interesting middleware topics; indeed, many books
could be written on each subject alone. To understand these concepts, we
highly recommend that you read Part I and Part II first. However, if you're
already well versed in E]JB, please join us to explore these advanced issues.

Advanced Persistence Concepts

The new Java Persistence specification adds a dimension to the EJB specifica-
tion that has heretofore been missing. Namely, the ability to take full advan-
tage of object orientation while having elements of the object map persisted to
the database behind the scenes.

In previous versions of EJB, in order to take advantage of container-
managed persistence for entity beans, the Java code had to be written in strict
conformance to the rules of the specification. These rules restricted the java
code from taking advantage of the most basic features of object orientation,
including inheritance and polymorphism. This barrier has been shattered by
Java Persistence and entities.

Another advancement with Java Persistence is the update of the EJB Query
Language (EJB-QL). This is a platform-independent query language that sup-
ports all of the modern querying capabilities, including grouping, joins, sub-
queries, and dynamic queries (among others). The benefit of EJB-QL, as
compared to the Structured Query Language (SQL) “standard” is that it is
truly platform-independent and is object-aware. This means that you refer-
ence an entity and its fields by name, rather than having to know the details of
table and column names in the underlying RDBMS.

In this chapter, we will look at these advanced features of Java Persistence.
We will cover inheritance, polymorphism, modeling relationships with
objects, and EJB-QL enhancements.

219

220 Chapter 9

ENTITIES VERSUS ENTITY BEANS

The EJB 3.0 specification requires that EJB container implementers still support
EJB 2.1. This includes support for the previous persistence model. “entity
beans” refer to objects used for persistence in previous versions of the
specification. They must live inside the container. “Entities” refer to objects
used with the new Java Persistence specification. These entities are not
required to be bound to the container. Out of container and standalone
EntityManagers make it possible to work with persistence in a strictly Java
Standard Edition (JSE) environment.

Inheritance

Before we can jump into code, we need to talk about mapping strategies to
support inheritance. As discussed in Chapter 6, we need object-relational map-
ping (ORM) in order to bridge the gap between inherently object-oriented
technology (Java) and inherently relational technology (RDBMSs). There are a
number of mapping strategies for supporting the object-oriented concept of
inheritance in relational databases. These are:

m Single table per class hierarchy
m Separate table per subclass

m Single table per concrete entity class

Figure 9.1 shows a simple object model that we will use to show each of the
strategies.

In this model, our root class is RoadVehicle. Motorcycle and Car inherit
from RoadvVehicle. Coupe and Roadster inherit from Car.

Sources 9.1 through 9.5 show the object model in Java. This is a straightfor-
ward inheritance chain that uses the extends Java keyword. We will add
annotations to these classes to make them into entities and to implement each
of the strategies shown above (standard setters and getters are omitted for
brevity).

Advanced Persistence Concepts 221

RoadVehicle

numPassengers : int
numWheels : int
make : string

model : string

Motorcycle Car
acceleratorType: AcceleratorType acceleratorType: AcceleratorType
A A
Coupe Roadster
boringFactor: BoringFactor coolFactor: CoolFactor

Figure 9.1 UML object model.

package examples.entity.single_table;

public class RoadVehicle {
public enum AcceleratorType {PEDAL,THROTTLE};

protected int numPassengers;
protected int numWheels;
protected String make;
protected String model;

// setters and getters go here
public String toString() {
return "Make: "+make+

", Model: "+model+

", Number of passengers: "+numPassengers;

Source 9.1 RoadVehicle.java root class.

222 Chapter 9

package examples.entity.single_table;
public class Motorcycle extends RoadVehicle {
public final AcceleratorType acceleratorType =
AcceleratorType.THROTTLE;
public Motorcycle() {

numiWheels = 2;

numPassengers = 2;

public String toString() {

return "Motorcycle: "+super.toString();

Source 9.2 Motorcycle.java.

package examples.entity.single_table;
public class Car extends RoadVehicle {
public final AcceleratorType acceleratorType =
AcceleratorType.PEDAL;
public Car() {

numiWheels = 4;

public String toString() {

return "Car: "+super.toString() ;

Source 9.3 Carjava.

package examples.entity.single_table;

public class Roadster extends Car {

public enum CoolFactor {COOL,COOLER,COOLEST};
private CoolFactor coolFactor;

public Roadster () {
numPassengers = 2;

Source 9.4 Roadster.java. (continued)

Advanced Persistence Concepts 223

// setters and getters go here

public String toString() {
return "Roadster: "+super.toString() ;

Source 9.4 (continued)

package examples.entity.single_table;

public class Coupe extends Car {
public enum BoringFactor {BORING,BORINGER,BORINGEST};

private BoringFactor boringFactor;

public Coupe() {
numPassengers = 5;

// setters and getters go here

public String toString() {
return "Coupe: "+super.toString() ;

Source 9.5 Coupe.java.

Single Table per Class Hierarchy

In this strategy, a single table is used to represent the entire class hierarchy. A
discriminator column is used to distinguish between subclasses. The discrimi-
nator column in the database will have different values based on the Java type
it is representing.

The advantage of this strategy is that it is very efficient and supports poly-
morphism (as you will see in the next section). The disadvantage is that the table
must have a column representing every field of every class in the hierarchy. Not
only can this produce an extremely wide table if you have a deep inheritance
hierarchy, but more importantly, every field that maps to a property of a subclass

224 Chapter 9

must be nullable. This makes sense since a row in the table can represent many
different types, it would not be possible to define all the columns as NOT NULL.
Let’s see how our five listings change in order to be entities and to use the
single table per class hierarchy mapping strategy. Sources 9.6 through 9.10
show this (standard setters and getters as well as imports are omitted for
brevity). Significant code additions are bolded. We will discuss the code below.

package examples.entity.single_table;
// imports go here

@Entity (name="RoadVehicleSingle")

@Inheritance(strategy=InheritanceType.SINGLE TABLE)

@DiscriminatorColumn (name="DISC",
discriminatorType=DiscriminatorType.STRING)

@DiscriminatorValue ("ROADVEHICLE")

public class RoadVehicle implements Serializable ({
public enum AcceleratorType {PEDAL,THROTTLE};

erd

protected int id;

protected int numPassengers;
protected int numWheels;
protected String make;
protected String model;

public Roadvehicle() {

id = (int) System.nanoTime();

// setters and getters go here

Source 9.6 RoadVehicle with entity annotations.

package examples.entity.single_table;
// imports go here

@Entity

@DiscriminatorValue ("MOTORCYCLE")

public class Motorcycle extends RoadVehicle implements Serializable ({
public final AcceleratorType acceleratorType =

Source 9.7 Motorcycle.java with entity annotations. (continued)

Advanced Persistence Concepts 225

AcceleratorType.THROTTLE;

public Motorcycle() {

super () ;
numiWheels = 2;
numPassengers = 2;

Source 9.7 (continued)

package examples.entity.single_table;

// imports go here

@Entity
@DiscriminatorvValue ("CAR")

public class Car extends RoadVehicle implements Serializable ({

public final AcceleratorType acceleratorType =

AcceleratorType.PEDAL;

public Car() {
super () ;
numiWheels = 4;

Source 9.8 Car.java with entity annotations.

package examples.entity.single_table;

// imports go here

@Entity
@DiscriminatorValue ("ROADSTER")

public class Roadster extends Car implements Serializable {
public enum CoolFactor {COOL,COOLER,COOLEST};

private CoolFactor coolFactor;

public Roadster() {
super () ;
numPassengers = 2;

Source 9.9 Roadster with entity annotations. (continued)

226 Chapter 9

// setters and getters go here

Source 9.9 (continued)

package examples.entity.single_table;
// imports go here

@Entity

@DiscriminatorValue ("COUPE")

public class Coupe extends Car implements Serializable ({
public enum BoringFactor {BORING,BORINGER,BORINGEST};

private BoringFactor boringFactor;

public Coupe() {
super () ;
numPassengers = 5;

// setters and getters go here

Source 9.10 Coupe with entity annotations.

Let’s start our analysis of this code with Source 9.6. Our first annotation is
the @Entity annotation. This marks this Plain Old Java Object (POJO—see
the sidebar “What’s in a POJO?” for more information) as an entity for the
application server.

At deployment time, the annotations are inspected and appropriate
action is taken. It is the @Inheritance, @DiscriminatorColumn, and
@DiscrimintaorValue annotations that give the hints to the application
server that we are setting up a hierarchy using the single-table approach. The
strategy element of the @Inheritance annotation explicitly indicates which
strategy we want to use: InheritanceType . SINGLE_TABLE, in this case. The
@DiscriminatorColumn annotation indicates a column name and type that
will be used to discriminate between types. If this is not completely clear yet,
don’t worry! When you see the table definition that is automatically generated
for this code, it will become clearer. Our discriminator column will be named

Advanced Persistence Concepts

227

DISC and will contain values of type String (indicated by DiscriminatorType
. STRING). Finally, we indicate that for objects of type RoadvVehicle that are
persisted, the value put in the discriminator column should be ROADVEHICLE.
This is indicated using the @DiscriminatorValue annotation.

We also added the @Id annotation, which is required for entities. We are
using a simple primary key (an int in this case). The key is generated in the
constructor of Roadvehicle. The implication of this is that we are going to
want each of our subclasses to call super () in their constructors so that the
value of id will be properly set. The bottom line is that before you persist the
entity, it must have a unique ID.

Notice that for each of the other source listings (9.7-9.10) the only
annotation that we added aside from the @Entity annotation, is the
@DiscriminatorValue annotation. It is the discriminator value that will
distinguish between types in the single table. As described previously, each
subclass calls super () in its constructer to guarantee that a unique ID is cre-
ated for it.

We have added implements Serializable to each of the entity classes.
This is simply so that (detached) objects can be passed back from methods to a
standalone client.

You should take note of the fact that we explicitly gave the entity a name using
the name element of the @Ent ity annotation. As you will see farther down, we
create another version of these classes that use the multiple table strategy. In
order to distinguish between these the two entity classes named Roadvehicle,
we name one RoadVehicleSingle and the other RoadvehicleJoined.

WHAT’'S IN A POJO?

POJO stands for plain old Java object. It has been a long sought after goal for
persistence frameworks to be able to work with plain Java objects. This goal
has now finally been achieved with the EJB 3.0 persistence layer.

There have been a number of articles and comments in forums questioning
whether or not entities, as described in the EJB 3.0 persistence specification,
really are POJOs. After all, the entity classes need to be annotated in order to
be properly identified as entities. The container picks up on these annotations
in order to properly deploy the entity and to inject resources, such as the
EntityManager.

EJB 3.0 entities are, in fact, POJOs. This is so because annotations, in general,
are now a part of the Java language. There is nothing that would prevent a
standalone program, for instance, from instantiating and using an entity object
completely outside any container or managed environment.

Much has been made of the fact that now that entities are POJOs, they can
be tested outside the container. While this is true and very important, it is not
the whole picture. If the code relies on injected resources, the testing
framework must also inject these resources, even if the injected objects are
simple mockup objects for the purposes of testing.

228 Chapter 9

When we package these entities into a persistence unit (as described in
Chapter 6) and deploy the code to the server, a table (if it doesn’t exist) is cre-
ated according to the rules specified via annotations in the code. To better
understand what’s going on behind the scenes, let’s take a look at the structure
of the table that is generated. Source 9.11 shows the Data Definition Language
(DDL) for the generated table.

CREATE TABLE ROADVEHICLE (
ID INTEGER NOT NULL,
DISC VARCHAR(31),
NUMWHEELS INTEGER,
MAKE VARCHAR (255),
NUMPASSENGERS INTEGER,
MODEL VARCHAR (255),
ACCELERATORTYPE INTEGER,
COOLFACTOR INTEGER,
BORINGFACTOR INTEGER

Source 9.11 DDL for table generated from entities.

Notice that all of the properties specified in the class hierarchy are repre-
sented in the table. We have ID, NUMWHEELS, NUMPASSENGERS, MAKE,
and MODEL from the parent class, Roadvehicle (which is also the default
name of the table). We have ACCELERATORTYPE defined in the Motorcycle
and Car classes. We have COOLFACTOR defined in the Roadster class and
BORINGFACTOR defined in the Coupe class. We have one extra column,
named DISC. This is the discriminator column we defined via annotation on
the Roadvehicle root class. This field in the database will contain different
values, depending on the type of object being persisted to the database. Notice
that it is only the ID field that is defined as NOT NULL. If one of the fields that
mapped back to a property were defined as NOT NULL, we would get into trou-
ble when persisting types that didn’t have that property. For instance, if the
BORINGFACTOR field was defined as NOT NULL and we were persisting a
Roadster object, we would get an error as Roadster has no BORINGFACTOR
field and thus would want to set the field to null.

Let’s take a look at a code snippet that creates some new entities and persists
those entities. We will then take a look at the database rows that result. Source
9.12 is a code snippet that we might find when creating some new entities:

Advanced Persistence Concepts

229

@PersistenceContext
EntityManager em;

Coupe ¢ = new Coupe () ;

c.setMake ("Bob") ;

c.setModel ("E400") ;

c.setBoringFactor (BoringFactor .BORING) ;
em.persist(c);

Roadster r = new Roadster();
r.setMake ("Mini") ;

r.setModel ("Cooper S");
r.setCoolFactor (CoolFactor.COOLEST) ;
em.persist(r);

Motorcycle m = new Motorcycle() ;
em.persist (m);

Source 9.12 Let's persist some entities!

Notice that we create the various objects like any other Java object. When we
are ready to synchronize with the database, we use the persist method of
the EntityManager interface. A reference to the EntityManager is injected
at the start of the code snippet in Source 9.12. Table 9.1 shows the data inserted
into the database after this code executes (only columns relevant to the point
are shown).

See how the record representing our Coupe object has a NULL for the
CoolFactor property (since it does not have this property) and has a 0 for the
BoringFactor property (representing the value of BORING as per the code).
The record representing the Roadster object has a value of 2 (represent-
ing the value of COOLEST as per the code), while it has a value of NULL for
BoringFactor since Roadster does not have this property. The discrimina-
tor column has values as specified in the annotations for the code.

Table 9.1 Persisted Data

iD DISC MAKE MODEL COOL BORINGFACTOR
FACTOR

1818876882 COUPE Bob E400 NULL 0

1673414469 MOTORCYCLE NULL NULL 2 NULL

1673657791 ROADSTER Mini Cooper S NULL NULL

230 Chapter 9

When deciding to use this strategy, you want to make sure that your class
hierarchy does not contain too many properties (which would result in a very
wide table) and that it is acceptable that columns in the table (potentially many
of them) have NULL values.

Let’s now take a look at the second strategy, the separate table per subclass.

Separate Table per Subclass

This strategy has a separate table for each subclass in the hierarchy. The layout
of the table will be only those properties that are defined in the subclass sepa-
rate from parent classes in the hierarchy.

To code this strategy in Java, we simply take away the annotations on the
subclasses for discriminator (since we don’t need the discriminator) and
change the inheritance type in the root class. Source 9.13 shows this.

@Entity (name="RoadVehicleJoined")

@Table (name="ROADVEHICLEJOINED")
@Inheritance(strategy=InheritanceType.JOINED)
public class RoadVehicle {

}

Source 9.13 RoadVehicle with table per subclass strategy.

This time, we use the InheritanceType.JOINED to indicate the table per
subclass strategy. The reason that it is referred to as joined is that in this strategy,
in order to resolve all of the properties for a subclass, a join between tables must
be performed. The Id from the parent object is used as the foreign key to the
tables representing the subclasses. We also use the @Table annotation to spec-
ify a database table name explicitly different from the class name, in this case to
differentiate the table name from that in our previous examples. By default,
the container will generate the table name based on the class name. Since we
already had a Roadvehicle class example with a corresponding table named
ROADVEHICLE, we explicitly named the table ROADVEHICLEJOINED.

Using the exact same code from Source 9.12, let’s see the tables that are gener-
ated as a result. Tables 9.2 through 9.6 show the generated tables and (relevant)
values.

Each table has an ID column that is used for joining when resolving indi-
vidual entities. The table representing the root of the hierarchy also has a dis-
criminator column. By default, the column is named DTYPE and is of type
DiscriminatorType.STRING. This column and its value type can be explic-
itly specified the same way we did for the single-table approach.

Advanced Persistence Concepts

231

Table 9.2 ROADVEHICLEJOINED Table

iD DTYPE NUMWHEELS MAKE MODEL
1423656697 Coupe 4 Bob E400
1425368051 Motorcycle 2 NULL NULL
1424968207 Roadster 4 Mini Cooper S

Table 9.3 MOTORCYCLE Table
ID ACCELERATORTYPE
1425368051 1

Table 9.4 CAR Table

iD ACCELERATORTYPE
1423656697 0
1424968207 0

Table 9.5 COUPE Table
ID BORINGFACTOR
1423656697 0

Table 9.6 ROADSTER Table
ID COOLFACTOR
1423656697 2

Let’s say that we now wanted to get at all the Roadster entities. Behind the
scenes, a query like the following might be executed:

SELECT
rvj .NumiWheels, rvj.Make, rvj.Model,
c.AcceleratorType, r.CoolFactor
FROM
ROADVEHICLEJOINED rvj, CAR c, ROADSTER r
WHERE
rvj.Id = c.Id and c.Id = r.Id;

This highlights the only drawback with this strategy: Table joins must be
performed in order to get at all of the properties of subclasses. This strategy
does support polymorphism, and if your class hierarchy is not too deep, it is

232 Chapter 9

an excellent approach. The deeper the class hierarchy (the more subclasses),
the more joins that will need to be performed. This could significantly affect
performance.

Single Table per Concrete Entity Class

In this strategy, each concrete subclass has its own table. Each table has all of
the properties found in the inheritance chain up to the parent class. Given the
original source code in listings 9.1-9.5, we might expect the following layout in
the generated tables, Tables 9.7-9.9.

In this strategy, each subclass has its own copy of all of the fields mapped in
parent classes. This strategy does not support polymorphism well (covered in
the next section).

Since the single table per concrete entity class strategy is not required to be
supported by the E]JB 3.0 specification, we will not go into further detail on this
approach.

So far, we have been focusing on entity mapping strategies. In the next sec-
tion, we will look at the other ways that entities support inheritance.

Other Modes of Inheritance
In a nutshell, the following general rules apply to inheritance with entities:

m Entities can extend non-entity classes
m Non-entity classes can extend entity classes
m Abstract classes can be entities

m An entity class can inherit from another entity class (as we saw above)

In order for an entity to extend a non-entity class, the @MappedSuperclass
annotation is used. The superclass will not have any database tables directly
associated with it, regardless of the mapping strategy used. You would want to
use a mapped superclass in situations where a number of entities inherit from
it. Source 9.14 shows this in action.

@MappedSuperclass
public class RoadVehicle {
public enum AcceleratorType {PEDAL, THROTTLE};

@Id

protected int id;

protected int numPassengers;
protected int numWheels;

Source 9.14 Mapped superclass example. (continued)

IdALYOLYYITIIIV LELeLe]l] DIVIN STITHMINNN SYIDNISSVdINNN al

enel-appAdiolopy 1oy paddeyy noke a|qe] aseqeleq 676 dlqeL

YOLDViIDONINO9 IdALYOLYYITIIIV LELeLe]l] DIVIN STITHMINNN SYIDNISSVdINNN al
enel-adno) Joj paddepy 1noAeq s|qe] aseqeieq 86 3|qelL

YOoLdVi100D IdALYOLYYITIIIV LELeLe]l] DIVIN STITHMINNN SYIDNISSVdINNN al

enef19)1speoy 1o} paddeyy 1noAeq sjqe] aseqeieq L6 d]qelL

234 Chapter 9

protected String make;
protected String model;

@Entity
public class Motorcycle extends RoadVehicle {
public final AcceleratorType ac = AcceleratorType.THROTTLE ;

@Entity
public class Car extends RoadVehicle {
public final AcceleratorType ac = AcceleratorType.PEDAL;

Source 9.14 (continued)

The preceding example is very similar to what we have seen before. The dif-
ference is that this time, while we have maintained the inheritance hierarchy in
Java, the table mappings will be different. Even if we use the JOINED strategy,
RoadVehicle will never have its own table. It is not an entity by itself.

There is no problem with an entity class inheriting from a non-entity class
that is not annotated as a mapped superclass. But none of the properties of the
superclass will be persisted to the database. You may want to do this in a situ-
ation where there are transient properties in the superclass that you explicitly
don’t want to be persisted to the database.

Abstract classes can be entities. The only difference between abstract entities
and concrete entities is that they cannot be instantiated. This, of course, is the
same rule that applies to Java in general. Abstract entities can be mapped to
the database and can be the target of queries.

In the next section, we will look at the polymorphic behavior of entities. The
lack of support for polymorphism in previous versions of EJB has been one of
the most bitter complaints of the specification. EJB 3.0’s support for polymor-
phism marks a big leap forward in its maturity.

Polymorphism

Polymorphism with EJB 3.0 functions in exactly the same way we are used to
with regular Java. Once a table mapping strategy has been selected, we can
employ polymorphic behavior over a collection of entities. This can be done

Advanced Persistence Concepts

235

through an EJB-QL query, for instance (a more detailed discussion of EJB-QL
queries follows later in this chapter, in the “EJB-QL Enhancements” section).
Source 9.15 shows a code snippet that performs the query. Source 9.16 shows a
client that interacts with the collection returned from the query.

@Stateless

public class RoadVehicleStatelessBean implements RoadVehicleStateless {
@PersistenceContext (unitName="pul")
EntityManager em;

public void doSomeStuff () {
Coupe ¢ = new Coupe() ;
c.setMake ("Bob") ;
c.setModel ("E400") ;
c.setBoringFactor (BoringFactor .BORING) ;
em.persist(c);

Roadster r = new Roadster() ;
r.setMake ("Mini") ;

r.setModel ("Cooper S");
r.setCoolFactor (CoolFactor.COOLEST) ;

em.persist(r) ;

Motorcycle m = new Motorcycle() ;
em.persist (m) ;

public List getAllRoadVehicles() {
Query q = em.createQuery(
"SELECT r FROM RoadVehicleSingle r");
return g.getResultList () ;

Source 9.15 RoadVehicleStatelessBean.java.

public class RoadVehicleClient {
public static void main(String[] args) {
InitialContext ic;
try {
ic = new InitialContext () ;
String name =

Source 9.16 RoadVehicleClient.java. (continued)

236 Chapter 9

RoadVehicleStateless.class.getName () ;
RoadvehicleStateless rvs =
(RoadVehicleStateless)ic.lookup (name) ;

rvs.doSomeStuff () ;

for (Object o : rvs.getAllRoadVehicles()) {
System.out.println("RoadVehicle: "+0);
}
}
catch (NamingException e) {
e.printStackTrace() ;

Source 9.16 (continued)

The query in Source 9.15 will return a List of all Roadvehicles. The persis-
tence layer will automatically handle searching the database for any data that
maps to objects in the RoadVehicle hierarchy. In the for loop highlighted in
Source 9.16, we iterate over this collection and pass the retrieved object in to the
System.out.println () method. This causes the toString () method to be
executed for each object in the list. If you reexamine the code in Sources 9.1 to
9.5, you will see that each class in the Roadvehicle hierarchy (including
RoadVehicle itself) has its own implementation of the toString () method.
We can see the polymorphic behavior in action in Output 9.1.

RoadvVehicle: Coupe: Car:

Make: Bob, Model: E400, Number of passengers: 5
RoadVehicle: Motorcycle:

Make: null, Model: null, Number of passengers: 2
RoadVehicle: Roadster: Car:

Make: Mini, Model: Cooper S, Number of passengers: 2

Output 9.1 Polymorphic behavior with entities.

In this case, the list returned from the query had three Roadvehicle ele-
ments: a Coupe, a Motorcycle, and a Roadster. The query was not explicit.
Rather, it requested a list of all RoadVehicle entities. Since each of the sub-
classes is an entity, their data was added to the list. Calling 0. toString () in
the for loop exercised the polymorphic behavior and the individual object’s
toString () method was executed.

Advanced Persistence Concepts

237

In the next section, we will look at the new annotations to support relation-
ships between entities. While previous versions of the specification supported
relationships between entities, the EJB 3.0 specification greatly simplifies
marking these classes as participating in a relationship through annotation.

Relationships

Support for relationships has been around since the EJB 2.x specifications. EJB
3.0 significantly simplifies working with related entities through the use of
annotation. First, let’s review the matrix of entity relationships.

Relationship Types

Coming from the relational database world, the following are the possible rela-
tionships with a brief description of how each works.

m One-to-one. There is exactly one record related to another record. An
example of this is the relationship between a Person and their home
Address.

m One-to-many. A particular record is related to many other records. An
example of this is the relationship between a Manager and his or her
Employees. We can say, “one Manager has many Employees.”

m Many-to-one. Many records are related to one particular record. An
example of this is the relationship between Bank Accounts and a Per-
son. There may be many Accounts belonging to one Person.

m Many-to-many. Many records are related to many other records. An
example of this is the relationship between a Subscriber and an E-mail
list. Each Subscriber can be subscribed to many E-mail lists. And, each
E-mail list can have many Subscribers.

Relationships are also said to have directionality. They can be unidirectional
or bidirectional. In a unidirectional relationship only the owning side of the
relationship is aware of it. In a bidirectional relationship, both sides of the rela-
tionship are aware of it. For instance, if a one-to-one relationship between a
Person and a Toothbrush is unidirectional, then given a Person we can get to
the related Toothbrush. But, given a Toothbrush we can not get to the related
Person. If the relationship were bidirectional, then given a Toothbrush, we
could also get to the related Person.

So, with four relationship types and two types of directionality, we have a
total of eight combinations, right? Wrong! There are actually only seven. This
is because a bidirectional one-to-many relationship is equivalent to a bidirec-
tional many-to-one relationship. Let’s examine this in more detail. Suppose

238 Chapter 9

that we have a bidirectional one-to-many relationship between a Customer
and some Orders. Given a particular Person, we can get to all of their Orders.
An Order is related to a particular Customer. In a collection of these Orders, all
of them relate back to the same person. Let’s use the same example with a
many-to-one bidirectional relationship. Given a collection of Orders, we can
relate them back to a Customer. And, given a Customer, we can get to all of his
or her Orders. It is the same relationship.
We will now look at code examples for each of the relationship types.

One-to-One

In a one-to-one relationship, each constituent can have at most one relation-
ship with the other constituent. Examples of one-to-one relationships include:

m Person:Address
m Car:Windshield
m Order:Shipment

One-to-one relationships are typically set up by a foreign key relationship in
the database. Figure 9.2 shows a possible database setup.

In Figure 9.2, the order has a relationship with a shipment. The order table
has a foreign key, which is the shipment table’s primary key. This foreign key
is the link between the two tables. Note that this isn’t the only way to set up a
one-to-one relationship. In this figure, the relationship is unidirectional. If we
wanted it to be bidirectional, the Shipment table would have a foreign key link

back to the Order table.
OrderPK OrderName Shlp.ment
ForeignPK
12345 Software Order 10101

///,/V

p—

ShipmentPK City ZipCode

10101 Austin 78727

Figure 9.2 A possible one-to-one database schema.

Advanced Persistence Concepts 239

Let’s take a look at some code implementing the relationship shown in Fig-
ure 9.2. Sources 9.17 and 9.18 show two entities: Order and Shipment.

@Entity (name="0OrderUni")

public class Order implements Serializable {
private int id;
private String orderName;
private Shipment shipment;

public Order () {
id = (int)System.nanoTime () ;

@Id
public int getId() {
return id;

public void setId(int id) {
this.id = id;

// other setters and getters go here

@OneToOne (cascade={CascadeType.PERSIST})
public Shipment getShipment () {
return shipment;

public void setShipment (Shipment shipment) {
this.shipment = shipment;

Source 9.17 Order,java.

@Entity (name="ShipmentUni")

public class Shipment implements Serializable {
private int id;
private String city;
private String zipcode;

public Shipment () {

Source 9.18 Shipment.java. (continued)

240 Chapter 9

id = (int)System.nanoTime () ;

@Id
public int getId() {
return id;

}

public void setId(int id) {
this.id = id;
}

// other setters and getters go here

Source 9.18 (continued)

In both sources, the entities are explicitly named. This is because these
examples are repeated in a separate package to show bidirectional behavior
(we look at the bidirectional example below). We name the entities to avoid
naming conflicts. Each source also implements Serializable. This is so that
these objects can be returned to a standalone client.

The Order. java class is a simple POJO. It has a reference to a Shipment
object. In order to give the hint to the application server that we want to estab-
lish a one-to-one relationship between Order and Shipment, we use the
@OneToOne annotation on the getter for the Shipment property. That’s it (see
the sidebar “To Cascade or Not to Cascade” for an explanation of the cascade
element). The Shipment . java requires no other annotation as this is a unidi-
rectional relationship.

Source 9.19 shows a code snippet from a stateless session bean with a
method that persists an Order entity and a method that retrieves all of the
Order entities. Source 9.20 shows a code snippet from a client that outputs the
Order information as well as the related Shipment information.

@Stateless

public class OrderShipmentUniBean implements OrderShipment {
@PersistenceContext
EntityManager em;

public void doSomeStuff () {

Source 9.19 OrderShipmentUniBean.java snippet. (continued)

Advanced Persistence Concepts 241

Shipment s = new Shipment() ;
s.setCity ("Austin") ;
s.setZipcode ("78727") ;

Order o = new Order () ;
o.setOrderName ("Software Order") ;
o.setShipment (s);

em.persist (o) ;
}

public List getOrders () {
Query g = em.createQuery("SELECT o FROM OrderUni o");
return g.getResultList () ;

Source 9.19 (continued)

TO CASCADE OR NOT TO CASCADE

In Source 9.17, you are introduced to the cascade element. This element is
available to all of the relationship annotations. In order to provide the proper
persistence behavior for related objects, we need to give hints to the
application server on how to handle them. The cascade element indicates what
types of persistence operations should be cascaded to the related entity or
entities.

The cascade element takes an array of values from the enumeration
CascadeType. Valid values are: PERSIST, MERGE, REMOVE, REFRESH, and ALL.
Specifying cascade={CascadeType.ALL} is equivalent to specifying
cascade={CascadeType.PERSIST, CascadeType.MERGE,

CascadeType .REMOVE, CascadeType.REFRESH}. By default, there is no
cascade. In the example in Source 9.17, we indicate that persist operations on
the order entity should be cascaded to the related shipment entity. If an
Order entity were removed from the database using the EntityManager’s
remove method, the operation would not cascade to the related shipment
entity.

Generally speaking, we will want persistence operations to cascade to
related entities. However, this is not a universal rule. For instance, suppose that
you have an entity tracking transaction history. Just because you remove a
particular record, you don’t want a related transaction history record to
automatically be removed because of your cascade settings.

You will have to decide on an entity-by-entity basis what the most
appropriate cascade settings should be.

242 Chapter 9

InitialContext ic = new InitialContext();
OrderShipment os =
(OrderShipment)ic.lookup (OrderShipment.class.getName()) ;

os.doSomeStuff () ;

System.out.println("Unidirectional One-To-One client\n") ;

for (Object o : os.getOrders()) {
Order order = (Order)o;
System.out.println("Order "+order.getId()+": "+

order.getOrderName ()) ;
System.out.println("\tShipment details: "+

order.getShipment () .getCity ()+" "+

order.getShipment () .getZipcode()) ;

Source 9.20 OrderShipmentClient.java snippet.

In Source 9.19, we create Shipment and Order objects. Notice how the
setShipment method on the Order object is called. The very next line per-
sists the Order to the database. Because of our cascade element settings in the
@OneToOne annotation on Order, the related Shipment object is also per-
sisted to the database. Tables 9.10 and 9.11 show the database table definitions
automatically generated for these entities.

The foreign key column SHIPMENT_ID is automatically generated by the
application server. There are rules for the naming of this column outlined in
the JSR 220: Java Persistence API part of the EJB 3.0 specification. In this case,
the name is formed from the relationship property found in Order.java
(namely shipment), followed by an underscore (_), followed by the name of
the primary key in the related entity.

To finish up this section, let’s take a look at a bidirectional version of this
same example. The Order.java code found in Source 9.17 stays the same
(with the exception that the entity name is changed to OrderBid in order to
avoid naming conflicts). Source 9.21 shows the Shipment. java code anno-
tated to support a bidirectional relationship.

Table 9.10 Database Table Layout Mapped for Order.java
1D ORDERNAME SHIPMENT_ID

Table 9.11 Database Table Layout Mapped for Shipment.java.
1D CITY ZIPCODE

Advanced Persistence Concepts

243

@Entity (name="ShipmentBid")

public class Shipment implements Serializable {

private int id;
private String city;
private String zipcode;
private Order order;

public Shipment () {
id = (int)System.nanoTime () ;

@Id
public int getId() {
return id;

public void setId(int id) {
this.id = id;

// other setters and getters go here

@OneToOne (mappedBy="shipment")
public Order getOrder () {

return order;

public void setOrder (Order order) {
this.order = order;

Source 9.21 Shipment.java (bidirectional version).

In this version of the code, we add an Order property along with the stan-
dard getter and setter code. We also add the @0OneToOne annotation. We use
the mappedBy element of the @OneToOne annotation to indicate that the ship-
ment property from the Order entity is used in the database mapping. That is,
the target side of a one-to-one relationship needs to know the property from
the owner side of the relationship in order to make it bidirectional.

Source 9.22 shows code added to our stateless session bean from Source
9.19. Source 9.23 shows code added to our client from Source 9.20.

244

Chapter 9

public List getShipments () {
Query g = em.createQuery("SELECT s FROM ShipmentBid s");
return g.getResultList();

Source 9.22 Snippet added to OrderShipmentBidBean.java.

for (Object o : os.getShipments()) {
Shipment shipment = (Shipment)o;
System.out.println("Shipment: "+
shipment.getCity ()+" "+
shipment.getZipcode()) ;
System.out.println("\tOrder details: "+
shipment .getOrder () .getOrderName ()) ;

Source 9.23 Snippet added to OrderShipmentClient.java.

In Source 9.22, we can see that this time we are querying on the Shipment
side of the relationship. In Source 9.23, we get a hold of the order that is related

to the shipment through the bidirectional relationship.

Interestingly, the resultant table layout is exactly the same as in the unidirec-
tional example. This highlights the fact that the underlying database table layout
isnot always an exact match to the properties in the class definitions. In this case,
it is not necessary to have a separate ORDER_ID column in the SHIPMENTBID
table because it is a one-to-one relationship. This means that there should only
be one ORDERBID record for a SHIPMENTBID record. A simple query will get
hold of the ORDERBID record that is related to a given SHIPMENTBID record.

It might look something like this:

SELECT

0.Id, o.OrderName
FROM

ORDERBID o, SHIPMENTBID s
WHERE

s.Id = 646590264 and s.Id = o.Shipment_Id;

Advanced Persistence Concepts

245

Let’s now take a look at the next relationship type, one-to-many. Note that
in this section we will cover many-to-one relationships as well, since they are
functionally equivalent from a database perspective.

One-to-Many

A one-to-many relationship is one of the more common relationships you’ll
see in your object model. This is because one-to-one relationships are often
combined into a single data object, instead of having a relationship between
two separate data objects. Examples of one-to-many relationships include:

m QOrder:Lineltems
m Customer:Orders
m Company:Employees

One-to-many relationships are also typically set up by a foreign key rela-
tionship in the database. In a unidirectional one-to-many relationship, the
application server automatically generates a join table. The join table has two
foreign key columns. The first foreign key column references the “one” side of
the relationship, while the second foreign key column references the “many”
side of the relationship. There is unique constraint placed on the second for-
eign key column. This ensures that the “many” side of the relationship can’t be
repeated. See the “Join Table Generation Rules” sidebar in the “Many-to-
Many” section for more information on join table generation rules. Figure 9.3
shows this database layout.

id name Company
12345 M*Power Internet Services, Inc.
company_id employees_id | Company_Employee
12345 20202
12345 20203
id name sex Employee
20202 Micah M
20203 Tes F

Figure 9.3 Unidirectional one-to-many relationship with join table.

246

Chapter 9

Let’s take a look at a unidirectional one-to-many example using the layout
from Figure 9.3. Sources 9.24 and 9.25 show the code for our two entities
involved in the unidirectional one-to-many relationship.

@Entity (name="CompanyOMUni")

public class Company implements Serializable {
private int id;
private String name;

private Collection<Employee> employees;

// other getters and setters go here
// including the Id

@OneToMany (cascade={CascadeType.ALL}, fetch=FetchType.EAGER)
public Collection<Employee> getEmployees() {
return employees;

public void setEmployees (Collection<Employee> employees) {
this.employees = employees;

Source 9.24 Company.java.

@Entity (name="EmployeeOMUni")

public class Employee implements Serializable {
private int id;
private String name;
private char sex;

// other getters and setters go here
// including the Id

Source 9.25 Employee.java.

Advanced Persistence Concepts 247

In Source 9.24, we indicate the one-to-many on the get Employees method.
In this example, we use the fetch element of the @OneToMany annotation.
The reason is that we will be returning the entities (detached) to a standalone
client. The default behavior is to use lazy fetching (FetchType . LAZY), which
fills in related entities only as needed. Lazy fetching is an important tool to
improve performance on the server side. However, we must use eager fetching
because the returned collection will become detached when sent back to the
standalone client. Source 9.26 shows a code snippet from a stateless session
bean and Source 9.27 shows a snippet from a standalone client that interacts
with the stateless session bean.

LAZY AND EAGER FETCHING

Understanding the difference between lazy and eager loading, and when to use
them, is critical to dealing with relationships efficiently.

Lazy loading will retrieve related entities only as needed, while eager
loading attempts to retrieve all related entities at once.

The type of loading is marked using the fetch element to one of the
relationship types, as in Source 9.24.

Eager loading is generally less efficient because the entire relationship map
is retrieved. For instance, take the example where we have multiple customers,
each of whom can have many orders, where each order can have many line
items. If our fetch type is eager among all of these relationships, then a simple
query of customers would produce a huge object map, including all of the
orders for each customer with each order including all of the line items for that
order. Marking everything as FetchType . EAGER often leads to poor
performance.

If you are operating on a set of managed entities within an existing
persistence context, then lazy loading is usually more efficient. In most cases,
behind the scenes, related entities will be loaded as needed. In the customers
example, if we wanted to query the list of customers for the purpose of
retrieving each of their e-mail addresses, lazy loading would ensure that the
related orders (and the orders’ line items) were not retrieved because they
would not be needed (referenced) in such a query.

A more granular level of loading can be achieved by using lazy loading in
conjunction with fetch joins. Fetch joins are described in more detail in the
“Join Operations” section. For now, we'll just state that a fetch join allows for
eager loading on a case-by-case basis through a specific query. That is, if the
query doesn’t explicitly specify a fetch join, then the query will return results
using lazy loading. If a fetch join is specified in the query, those entities
involved in the join will be eagerly loaded.

248 Chapter 9

@Stateless

public class CompanyEmployeeOMUniBean implements CompanyEmployeeOM {
@PersistenceContext
EntityManager em;

public void doSomeStuff () {
Company ¢ = new Company () ;
c.setName ("M*Power Internet Services, Inc.");

Collection<Employee> employees = new ArrayList<Employee>();
Employee e = new Employee() ;

e.setName ("Micah Silverman") ;

e.setSex('M') ;

employees.add(e) ;

e = new Employee() ;
e.setName ("Tes Silverman") ;
e.setSex('F');
employees.add(e) ;

c.setEmployees (employees) ;
em.persist (c);

c = new Company () ;
c.setName ("Sun Microsystems") ;

employees = new ArrayList<Employee>();
e = new Employee() ;

e.setName ("Rima Patel") ;
e.setSex('F');

employees.add(e) ;

e = new Employee() ;
e.setName ("James Gosling");
e.setSex('M') ;
employees.add(e);

c.setEmployees (employees) ;

em.persist (c);

public List getCompanies () {
Query q = em.createQuery("SELECT c¢ FROM CompanyOMUni c");
return g.getResultList();

Source 9.26 CompanyEmployeeOMUniBean.java.

Advanced Persistence Concepts 249

InitialContext ic = new InitialContext();
CompanyEmployeeOM ceom = (CompanyEmployeeOM)ic.lookup (
CompanyEmployeeOM.class.getName ()) ;

ceom.doSomeStuff () ;

for (Object o : ceom.getCompanies()) {
Company ¢ = (Company)o;
System.out.println("Here are the employees for company: "+
c.getName ()) ;
for (Employee e : c.getEmployees()) {
System.out.println("\tName: "+
e.getName ()+", Sex: "+e.getSex());

}
System.out.println() ;

Source 9.27 CompanyEmployeeClient.java.

In Source 9.26, we set up two Company entities in the doSomeStuff
method. Each Company entity has two Employees associated with it. Just
before we persist the company to the database, we call the setEmployees
method and pass in the Employees collection. Since we have a cascade setting
of CascadeType.ALL defined on the @OneToMany annotation, the related
Employees entities will be persisted as well. Source 9.27 is a snippet from a
standalone client. The getCompanies method returns all the Company enti-
ties based on the query from Source 9.26. We iterate over these Company enti-
ties, and for each one get the collection of related Employees.

The bidirectional version of this code requires some more annotation, but
results in an underlying database model that does not require a join table.

In Figure 9.4, each employee has a foreign key, which is the company table’s
primary key. Thus, the employees are pointing back to their company. This
may seem backward if we want to get from the company to the employees. It
works, however, because the database doesn’t care—it is a flat structure with-
out a sense of direction. You can still construct queries that get from the com-
pany to employees.

250

Chapter 9

CompanyPK Name
12345 The Middleware Company
—
EmployeePK Name Sex Company
20202 Ed M 12345
20203 Floyd M 12345

Figure 9.4 A one-to-many database schema.

Let’s see how the code changes to be bidirectional. Source 9.28 shows a snip-
pet from Company . java.

@Entity (name="CompanyOMBid")

public class Company implements Serializable {
private int id;
private String name;
private Collection<Employee> employees;

@OneToMany (cascade={CascadeType.ALL},
fetch=FetchType.EAGER,
mappedBy="company")

public Collection<Employee> getEmployees () {
return employees;

public void setEmployees (Collection<Employee> employees) {
this.employees = employees;

Source 9.28 Company.java bidirectional annotation.

The only change to our code is to add the mappedBy element to the
@OneToMany annotation. This indicates the property from the target entity
that will participate in the relationship. Source 9.29 shows the bidirectional
version of the Employee, java code.

Advanced Persistence Concepts

251

@Entity (name="EmployeeOMBid")
public class Employee implements Serializable {
private int id;
private String name;
private char sex;
private Company company;

@ManyToOne
public Company getCompany () {
return company;

public void setCompany (Company company) {
this.company = company;

Source 9.29 Employee.java with bidirectional annotation.

You will notice that we added a Company property to the Employee class.
This enables the reference from Employee to Company without the need for a
join table. The @ManyToOne annotation is used to identify the relationship
from Employee back to Company.

Let’s take a look at the stateless session bean code for the bidirectional exam-
ple. Source 9.30 shows the CompanyEmployeeOMBidBean. java code.

@Stateless

public class CompanyEmployeeOMBidBean implements CompanyEmployeeOM {
@PersistenceContext
EntityManager em;

public void doSomeStuff () {
Company ¢ = new Company () ;
c.setName ("M*Power Internet Services, Inc.");

Collection<Employee> employees = new ArrayList<Employee> () ;
Employee e = new Employee() ;

e.setName ("Micah Silverman") ;

e.setSex('M') ;

e.setCompany (c) ;

Source 9.30 CompanyEmployeeOMBidBean.java. (continued)

252 Chapter 9

employees.add(e) ;

e = new Employee() ;
e.setName ("Tes Silverman") ;
e.setSex('F');
e.setCompany(c) ;
employees.add(e) ;

c.setEmployees (employees) ;
em.persist(c);

// the other Company and Employee code
// comes after this

Source 9.30 (continued)

This code is the same as before, except that now we must explicitly set the
Company reference for each Employee entity.

For the final part of this section, we’ll focus on the unidirectional many-to-
one relationship. In this example, we have many Employees that all have the
same (one) business Address. Source 9.31 shows the Employee class, and
Source 9.32 shows the BusinessAddress class.

@Entity

public class Employee implements Serializable {
private int id;
private String name;
private BusinessAddress address;

public Employee() {
id = (int)System.nanoTime () ;

@Id
public int getId() {
return id;

public void setId(int id) {

Source 9.31 Employee.java. (continued)

Advanced Persistence Concepts

253

this.id = id;

public String getName () {

return name;

public void setName (String name) {
this.name = name;

@ManyToOne (cascade={CascadeType.ALL})
public BusinessAddress getAddress() {
return address;

public void setAddress (BusinessAddress address) {
this.address = address;

Source 9.31 (continued)

@Entity

public class BusinessAddress implements Serializable {
private int id;
private String city;
private String zipcode;

// setters and getters go here

Source 9.32 BusinessAddress.java.

The owner side of the unidirectional relationship, the Employee entity, has the
@ManyToOne annotation. Since it is a unidirectional relationship, no other anno-
tation is required on the target side of the relationship, the BusinessAddress
entity.

To close the relationship section of this chapter, we will examine the many-
to-many relationship.

254

Chapter 9

Many-to-Many

Many-to-many relationships are not as common as one-to-many relationship
but are still important. Examples of many-to-many relationships include:

m Student:Course
m [nvestor:MutualFund
m Stock:Portfolio

Many-to-many relationships are typically set up by a join table in the data-
base. As you saw in the unidirectional one-to-many example, a join table con-
tains foreign keys to the two other tables. Figure 9.5 shows a possible database
setup.

We're going to first look at the unidirectional implementation of the many-
to-many Student/Course example. Source 9.33 shows the Student entity
code, and Source 9.34 shows the Course entity code.

StudentPK StudentName
Joe
10101 Student
EnrolimentPK StudentPK CoursePK
12345 10101 20202
E——
U

CoursePK CourseName

20202 EJB for Architects

Figure 9.5 A possible many-to-many database schema.

Advanced Persistence Concepts 255

@Entity (name="StudentUni")
public class Student implements Serializable {
private int id;
private String name;
private Collection<Course> courses = new ArrayList<Course>();

public Student () {
id = (int)System.nanoTime () ;

@Id
public int getId() {
return id;

//other setters and getters go here

@ManyToMany (cascade={CascadeType.ALL}, fetch=FetchType.EAGER)
@JoinTable (name="STUDENTUNI_COURSEUNI")
public Collection<Course> getCourses() {

return courses;

public void setCourses(Collection<Course> courses) {

this.courses = courses;

Source 9.33 Student.java.

@Entity(name="CourseUni")
public class Course implements Serializable {
private int id;
private String courseName;
private Collection<Student> students = new ArrayList<Student>();

//setters and getters go here

Source 9.34 Course.java.

256 Chapter 9

First, notice that each entity uses the name element of the @Ent ity annota-
tion. This has nothing to do with the many-to-many nature of them, but since
further along we will use this same example in a bidirectional configuration,
we want to distinguish between the entity names. This will have the effect of
auto-creating database tables with the same entity name (more on this later).
As before, each of the entities implements the Serializable interface so that
they can be returned to a standalone client.

The Student entity has a collection of Course entities. This collection is
initialized when a new Student entity is created. You will see a little farther
down why we initialize the collection this way.

The student entity also has the @ManyToMany annotation. This gives the
hint to the container to generate the appropriate tables, including a join table
to model the relationship. In this example, we also specify the @JoinTable
annotation. This is done because the default behavior of the join table genera-
tion is to use the names of the entities involved with an underscore (_) in
between (see the “Lazy and Eager Fetching” sidebar in the “One-to-Many”
section). Thus, without the @JoinTable annotation, the generated join table
would be named STUDENT_COURSE. Since we will have similar entities
defined for the bidirectional example, we want to explicitly name the join table
so that there is no naming conflict.

The Course entity has no further annotation, since this is a unidirectional
relationship.

JOIN TABLE GENERATION RULES

The EJB 3.0 specification defines specific rules to auto-generating join tables

and the columns of join tables. These rules take effect if not overridden by

annotations (see Appendix B for a full treatment of all the EJB 3.0 annotations).
The rules for generating a join table are:

1. The name of the join table will be the name of the owning entity, followed
by an underscore (_), followed by the name of the target entity.

2. The name of the first column in the join table will be the property name,
followed by an underscore, followed by the primary key name in the
owner entity.

3. The name of the second column in the join table will be the property
name, followed by an underscore, followed by the primary key name in
the target entity.

4. The types of the columns in the join table will match the primary key
types of the tables that will be referenced by it.

In the Student/Course many-to-many example (without any overriding
annotation), the join table would be named STUDENT_COURSE. This first
column would be named STUDENTS_ID, and the second column would be
named COURSES_ID.

Advanced Persistence Concepts 257

Let’s take a look at these entities in action. Source 9.35 shows a stateless ses-
sion bean used to interact with the entities. Source 9.36 shows code for a stand-
alone client.

@Stateless

public class StudentCourseUniBean implements StudentCourse {
@PersistenceContext
EntityManager em;

public void doSomeStuff () {
Course cl = new Course() ;

cl.setCourseName ("EJB 3.0 101");

Course c2 = new Course() ;
c2.setCourseName ("EJB 3.0 202");

Student sl = new Student();
sl.setName ("Micah") ;

sl.getCourses () .add(cl);
cl.getStudents() .add(sl);

Student s2 = new Student() ;
s2.setName ("Tes") ;

s2.getCourses () .add(cl);
s2.getCourses () .add(c2);

cl.getStudents () .add(s2);
c2.getStudents () .add(s2);

em.persist(sl);

em.persist (s2);

public List<Student> getAllStudents () {
Query g = em.createQuery("SELECT s FROM StudentUni s");
return g.getResultList () ;

Source 9.35 StudentCourseUniBean.java stateless session bean.

258 Chapter 9

InitialContext ic = new InitialContext () ;
StudentCourse sc = (StudentCourse)ic.lookup (
StudentCourse.class.getName ()) ;

sc.doSomeStuff () ;

for (Student s : sc.getAllStudents()) {
System.out.println("Student: "+s.getName()) ;
for (Course c : s.getCourses()) {
System.out.println("\tCourse: "+c.getCourseName()) ;

Source 9.36 StudentCourseClient.java code snippet.

In the doSomeStuff method of Source 9.35, we create two Course entities.
We then create a Student entity. The first bolded line of code shows how
we use methods to manage the Collection of Courses. We first call the
getCourses method, which returns the Collection. We then call its add
method to add the course to the Collection. This highlights why we initialize
the Collection in Source 9.33 and Source 9.34. The first Student is taking one
Course and the second Student is taking two Courses.

We perform the same collection operations with the Course entity in order
to register Students. The first Course has two students, and the second
Course has one Student. Output 9.2 shows the output from the standalone
client code above.

Student: Micah
Course: EJB 3.0 101
Student: Tes
Course: EJB 3.0 101
Course: EJB 3.0 202

Output 9.2 Output from standalone client.

Since this is a unidirectional many-to-many relationship with Student
being the “owner,” we iterate over the list of all Students and show the
Courses that each student has.

The bidirectional version of this code is more interesting and more power-
ful, since we can get at the data from both sides. Given a Student, we can
see all the Courses she is taking, and given a Course, we can see all the
Students enrolled in that course.

Advanced Persistence Concepts

259

Let’s take a look at the differences in the code when we make it bidirectional.
The only changes to Student . java are the entity name (StudentBid) and the
join table name (STUDENTBID_COURSEBID). Other than that, the code is
exactly the same. Source 9.37 shows the changes to Course. java to enable a
bidirectional relationship.

@Entity (name="CourseBid")
public class Course implements Serializable {
private int id;
private String courseName;
private Collection<Student> students = new ArrayList<Student> () ;

//getters and setters go here

@ManyToMany (cascade={CascadeType.ALL},
fetch=FetchType.EAGER, mappedBy="courses")

public Collection<Student> getStudents () {
return students;

public void setStudents (Collection<Student> students) {
this.students = students;

Source 9.37 Course.java bidirectional.

In this version of the code, the @ManyToMany annotation is used and the
mappedBy element is used to indicate which property of the “owner” entity is
used in the mapping. When using a many-to-many bidirectional relationship
either side can be the owner.

Source 9.38 shows a snippet from the stateless session bean. The only
change is the addition of a method to return all of the Course entities.

public List getAllCourses() {
Query g = em.createQuery ("SELECT c¢ FROM CourseBid c");
return g.getResultList();

Source 9.38 StudentCourseBidBean.java snippet

260 Chapter 9

Source 9.39 shows the bidirectional many-to-many entities in action.

InitialContext ic = new InitialContext();
StudentCourse sc = (StudentCourse)ic.lookup (
StudentCourse.class.getName()) ;

sc.doSomeStuff () ;

for (Object o : sc.getAllStudents()) {
Student s = (Student)o;
System.out.println("Student: "+s.getName()) ;
for (Object ol : s.getCourses()) {
Course c¢ = (Course)ol;
System.out.println("\tCourse: "+c.getCourseName()) ;

}
System.out.println() ;
for (Object o : sc.getAllCourses()) {
Course ¢ = (Course)o;
System.out.println("Course: "+c.getCourseName()):;
for (Object ol : c.getStudents()) {
Student s = (Student)ol;
System.out.println("\tStudent: "+s.getName());

Source 9.39 Standalone client.

In this version of the standalone client, we still iterate over all of the
Students and show the Collection of Courses for each Student. We also
iterate over all of the Courses and show the Collection of Students for each
Course.

Output 9.3 shows the output from the standalone client.

Student: Micah
Course: EJB 3.0 101
Student: Tes
Course: EJB 3.0 101
Course: EJB 3.0 202

Course: EJB 3.0 202
Student: Tes

Course: EJB 3.0 101
Student: Tes
Student: Micah

Output 9.3 Output from standalone client.

Advanced Persistence Concepts

261

We have covered a huge amount of ground in this section. The way that the
new Java Persistence specification handles the various types of relationships
makes bridging the gap between Java objects and relational databases more
straightforward than it has ever been.

There are many more annotations that offer a finer grain of control than we
covered in this section. Using these annotations, we have total control over the
mapping process, including table names and column names. This is extremely
important when dealing with legacy databases, where we may not be able to
use the defaults of table generation. See Appendix B for a more thorough dis-
cussion of available annotations.

In the next section you look at enhancements to the standardized query lan-
guage for EJB 3.0.

EJB-QL Enhancements

In this section, we will focus on enhancements to E]JB-QL for EJB 3.0. EJB-QL
was introduced in Chapter 6. (For more information on EJB-QL, see Appendix
D, available from this book’s companion Web site.)

EJB-QL has been enhanced from the E]JB 2.1 specification to include opera-
tions and modes common to those familiar with relational databases. These
enhancements include:

m Bulk updates

m Bulk deletes

= JOIN operations
GROUP BY clause
HAVING clause
Projection
Subqueries
Dynamic queries

Named parameters

Constructing new objects in SELECT statements

We will look at each of these in turn.

Bulk Updates and Deletes

Bulk updates and deletes are a common operation when working with a rela-
tional database. As you might guess (or already know), the idea is to remove a
number of entities at once (which in turn removes a number of rows from the
database all at once) or to update a number of entities at once (which, in turn,

262 Chapter 9

updates a number of rows from the database all at once). There are a few rules
that apply to these operations:

1. The operation applies to the specified entity and all subclasses of the
entity.
2. The operation does not cascade to any related entities.

3. The new value specified in a bulk update must be the right type for the
update field in the database.

4. Bulk updates occur directly in the database. This means that optimistic
locking checks are bypassed and the value of the version column (if it
exists) is not automatically updated.

5. The persistence context is not synchronized with the result of the
operation.

The first three items are fairly intuitive. It is critical to understand the impli-
cations of the last two items. Because of the way that bulk updates and deletes
are handled, they should be performed either at the beginning of a transaction
or should be performed in a separate transaction. Doing otherwise could result
in an invalid or inconsistent state between entities in the current persistence
context and the database.

Let’s look at a few examples. We'll examine the bulk operations on a previ-
ous example involving inheritance. Recall our Roadvehicle entity from the
beginning of the chapter. In particular, we’ll focus on the single-table inheri-
tance example, although everything we cover here would work for the table
per subclass method as well. We're going to add a few methods to the stateless
session bean (and its corresponding business interface) in order to perform
some bulk update and delete operations. Source 9.40 shows these methods.

public void deleteAll (String type) {
Query g = em.createQuery ("DELETE FROM "+type) ;
g.executeUpdate () ;

}

public void updateAll (String type) {
Query g = em.createQuery ("UPDATE "+type+
" r SET r.numPassengers = 1");
g.executeUpdate() ;

Source 9.40 RoadVehicleStatelessBean.java snippet.

Advanced Persistence Concepts 263

Both the deleteAll and updateAll methods take a type parameter. We
will see this in action in a moment. Source 9.41 shows a standalone client to
exercise all the methods of our stateless session bean, which in turn works
with our entities.

public class RoadvehicleClient {
public static void main(String[] args) {
String action = "insert";
String type = "RoadVehicleSingle";

if (args.length>0) {
if (args[0].startsWith ("update")) {
action="update";
}
else if (args[0].startsWith("delete")) {
action="delete";

if (args.length == 2) {
type = args[1l];

InitialContext ic;
try {
ic = new InitialContext () ;
RoadvehicleStateless rvs =
(RoadVehicleStateless)ic.lookup (
RoadVehicleStateless.class.getName()) ;

if (action.equals("insert")) {
System.out.println("Inserting...");
rvs.doSomeStuff () ;

}

else if (action.equals("update")) {
System.out.println("Updating "+type+"...");
rvs.updateAll (type) ;

}

else if (action.equals("delete")) {
System.out.println("Deleting "+type+"...");
rvs.deleteAll (type) ;

System.out.println (
"Here is the list of all Roadvehicles:\n");
for (Object o : rvs.getAllRoadVehicles()) {
System.out.println("RoadVehicle: "+0);

Source 9.41 RoadVehicleClient.java. (continued)

264 Chapter 9

}
catch (NamingException e) {
e.printStackTrace() ;

Source 9.41 (continued)

This client takes an optional action parameter and an optional type
parameter. By default the action will be insert and the type will be
RoadVehicleSingle. We perform the indicated action and then call the
getAllRoadVehicles method. This conforms to our rules above in that we
are performing a bulk update or delete before we retrieve a collection of
RoadVehicle entities.

The type parameter only applies for the update and delete actions. By spec-
ifying a valid entity type, the bulk operation will be performed only on that
type. Output 9.4 shows the result of performing an insert and Output 9.5
shows the result of a subsequent update using the default parameters. Note:
Extra whitespace and formatting have been added for readability.

Inserting...
Here is the list of all RoadVehicles:

RoadVehicle: Coupe: Car:

Make: Bob, Model: E400, Number of passengers: 5
RoadVehicle: Motorcycle:

Make: null, Model: null, Number of passengers: 2
RoadVehicle: Roadster: Car:

Make: Mini, Model: Cooper S, Number of passengers: 2

Output 9.4 Create some entities and persist to the database.

Updating RoadVehicleSingle...
Here is the list of all Roadvehicles:

RoadVehicle: Coupe: Car:

Make: Bob, Model: E400, Number of passengers: 1
RoadVehicle: Motorcycle:

Make: null, Model: null, Number of passengers: 1
RoadvVehicle: Roadster: Car:

Make: Mini, Model: Cooper S, Number of passengers: 1

Output 9.5 Bulk update.

Advanced Persistence Concepts 265

After the bulk update operation is performed (per the code in Source 9.40)
you can see that all the values for the number of passengers have been
changed to 1.

Given the same setup as in Output 9.4, let’'s do the bulk update again,
only this time we will perform the update only for the Car entities (named
CarSingle). Output 9.6 shows this.

Updating CarSingle...
Here is the list of all RoadvVehicles:

RoadVehicle: Coupe: Car:

Make: Bob, Model: E400, Number of passengers: 1
RoadVehicle: Motorcycle:

Make: null, Model: null, Number of passengers: 2
RoadVehicle: Roadster: Car:

Make: Mini, Model: Cooper S, Number of passengers: 1

Output 9.6 Bulk update only for CarSingle.

Notice that only those entities of type Car (Coupe and Roadster) have had
their number of passengers updated. This is a powerful example of object rela-
tional mapping in action.

Let’s do a bulk delete. Output 9.7 shows the result of a bulk delete where the
passed in type is CarSingle.

Deleting CarSingle...
Here is the list of all Roadvehicles:

RoadVehicle: Motorcycle:
Make: null, Model: null, Number of passengers: 2

Output 9.7 Bulk delete only for CarSingle.

Notice that all of the Car entities have been deleted. In the next section, we
will look at EJB-QL enhancements for JOIN operations.

JOIN Operations

Joins are a very common operation in the relational database world. A table
will have a foreign key that corresponds to the primary key in another table.
This process is critical to having normalized databases. A normalized database
is one in which, to the greatest extent possible, data is not repeated across
tables.

266 Chapter 9

Join operations are performed to identify which data should be selected. An
inner join (the default) will only select records when the join condition is satis-
fied. For instance, the following query will select companies that have at least
one associated employee:

SELECT ¢ FROM CompanyOMUni c¢ JOIN c.employees e

A left join (synonymous with the term left outer join) will retrieve entities
where matching values from the join condition may be absent. The following
query will select companies even if there are not associated employees:

SELECT ¢ FROM CompanyOMUni LEFT JOIN c.employees e

A fetch join enables the prefetching of related entities specified in a query.
Fetch joins take precedence over FetchTypes specified in relationships (see
the “Lazy and Eager Fetching” sidebar in the “One-to-Many” section). Let’s
say that you have customers, each of whom may have made any number of
orders (one-to-many relationship). Let’s also say that lazy loading was speci-
fied for the orders when querying customers. Why would you want the orders
to be “lazy loaded”? If you were performing a query just to get a list of cus-
tomers to get their contact information, it would be a much more efficient
query if all of the associated orders were not fetched as part of that query. Now,
though, let’s say we do want to perform a query that will prefetch all the orders
as well as the customers. We might have an EJB-QL query that looks like this:

SELECT c¢ from Customer c¢ LEFT JOIN FETCH c.orders

Using the fetch join above, all orders for each customer would be prefetched
which (in this use case) would make getting at this information much more
efficient.

GROUP BY and HAVING clauses

The GROUP BY and HAVING clauses are also very common to relational data-
bases. They are new, however, to EJB-QL. GROUP BY allows the results to be
grouped according to a set of properties. For instance, if we wanted to know
how many female and male employees there were in the database, we might
have the following query:

SELECT

e.sex, count(e)
FROM

EmployeeOMBid e
GROUP BY

e.sex

Advanced Persistence Concepts

267

This will give us the information across the entire collection of employees.
The HAVING clause allows us to further filter the results. For instance, if we just
wanted to see the number of female employees, we would add a HAVING
clause to our query:

SELECT

e.sex, count(e)
FROM

EmployeeOMBid e
GROUP BY

e.sex
HAVING

e.sex = 'F'

The following rules apply to the use of these clauses:

m Any argument that appears in the SELECT clause that is not an aggrega-
tion function (such as SUM, AVG, etc.) must appear in the GROUP BY clause.

m The HAVING clause must specify conditions on the GROUP BY argu-
ments or by other aggregation functions (such as SUM, AVG, and so on).

m The use of HAVING in the absence of GROUP BY is not required to be
supported by implementations of the E]JB 3.0 specification and, there-
fore, should not be used.

Projection

Projections allow us to write a query over a (potentially large) set of entities,
but only return certain attributes